Robust and Optimal Sum-of-Squares-Based Point-to-Plane Registration of Image Sets and Structured Scenes
Danda Pani Paudel, Adlane Habed, Cedric Demonceaux, Pascal Vasseur; Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015, pp. 2048-2056
Abstract
This paper deals with the problem of registering a known structured 3D scene and its metric Structure-from-Motion (SfM) counterpart. The proposed work relies on a prior plane segmentation of the 3D scene and aligns the data obtained from both modalities by solving the point-to-plane assignment problem. An inliers-maximization approach within a Branch-and-Bound (BnB) search scheme is adopted. For the first time in this paper, a Sum-of-Squares optimization theory framework is employed for identifying point-to-plane mismatches (i.e. outliers) with certainty. This allows us to iteratively build potential inliers sets and converge to the solution satisfied by the largest number of point-to-plane assignments. Furthermore, our approach is boosted by new plane visibility conditions which are also introduced in this paper. Using this framework, we solve the registration problem in two cases: (i) a set of putative point-to-plane correspondences (with possibly overwhelmingly many outliers) is given as input and (ii) no initial correspondences are given. In both cases, our approach yields outstanding results in terms of robustness and optimality.
Related Material
[pdf]
[
bibtex]
@InProceedings{Paudel_2015_ICCV,
author = {Paudel, Danda Pani and Habed, Adlane and Demonceaux, Cedric and Vasseur, Pascal},
title = {Robust and Optimal Sum-of-Squares-Based Point-to-Plane Registration of Image Sets and Structured Scenes},
booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
month = {December},
year = {2015}
}