Automatic Concept Discovery From Parallel Text and Visual Corpora
Chen Sun, Chuang Gan, Ram Nevatia; Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015, pp. 2596-2604
Abstract
Humans connect language and vision to perceive the world. How to build a similar connection for computers? One possible way is via visual concepts, which are text terms that relate to visually discriminative entities. We propose an automatic visual concept discovery algorithm using parallel text and visual corpora; it filters text terms based on the visual discriminative power of the associated images, and groups them into concepts using visual and semantic similarities. We illustrate the applications of the discovered concepts using bidirectional image and sentence retrieval task and image tagging task, and show that the discovered concepts not only outperform several large sets of manually selected concepts significantly, but also achieves the state-of-the-art performance in the retrieval task.
Related Material
[pdf]
[
bibtex]
@InProceedings{Sun_2015_ICCV,
author = {Sun, Chen and Gan, Chuang and Nevatia, Ram},
title = {Automatic Concept Discovery From Parallel Text and Visual Corpora},
booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
month = {December},
year = {2015}
}