Lost Shopping! Monocular Localization in Large Indoor Spaces

Shenlong Wang, Sanja Fidler, Raquel Urtasun; Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015, pp. 2695-2703

Abstract


In this paper we propose a novel approach to localization in very large indoor spaces (i.e., 200+ store shopping malls) that takes a single image and a floor plan of the environment as input. We formulate the localization problem as inference in a Markov random field, which jointly reasons about text detection (localizing shop's names in the image with precise bounding boxes), shop facade segmentation, as well as camera's rotation and translation within the entire shopping mall. The power of our approach is that it does not use any prior information about appearance and instead exploits text detections corresponding to the shop names. This makes our method applicable to a variety of domains and robust to store appearance variation across countries, seasons, and illumination conditions. We demonstrate the performance of our approach in a new dataset we collected of two very large shopping malls, and show the power of holistic reasoning.

Related Material


[pdf]
[bibtex]
@InProceedings{Wang_2015_ICCV,
author = {Wang, Shenlong and Fidler, Sanja and Urtasun, Raquel},
title = {Lost Shopping! Monocular Localization in Large Indoor Spaces},
booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
month = {December},
year = {2015}
}