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Abstract

Graph matching is a fundamental problem in computer

vision. In this paper, we propose a novel graph match-

ing algorithm based on tabu search [13]. The proposed

method solves graph matching problem by casting it into

an equivalent weighted maximum clique problem of the

corresponding association graph, which we further penal-

ize through introducing negative weights. Subsequent tabu

search optimization allows for overcoming the convention

of using positive weights. The method’s distinct feature is

that it utilizes the history of search to make more strate-

gic decisions while looking for the optimal solution, thus

effectively escaping local optima and in practice achiev-

ing superior results. The proposed method, unlike the ex-

isting algorithms, enables direct optimization in the orig-

inal discrete space while encouraging rather than artifi-

cially enforcing hard one-to-one constraint, thus resulting

in better solution. The experiments demonstrate the ro-

bustness of the algorithm in a variety of settings, present-

ing the state-of-the-art results. The code is available at

http://cv.snu.ac.kr/research/˜DTSGM/.

1. Introduction

Graph matching is an important problem in both theo-

retical computer science, and practical applications of com-

puter vision and machine learning. In computer vision, it

has been proven to effectively deal with the problem of

matching two sets of visual features making it the approach

of choice in shape matching [4], object recognition [8, 25]

and tracking [18]. Typically, graph matching is formulated

as an integer quadratic program (IQP) with an additional

one-to-one constraint. The formulation is popular due to its

generality to allow complex but more informative affinity

measures between node correspondences such as transfer

error [6]. Nonetheless, there are two main theoretical issues

with optimizing this graph matching formulation; (1) IQP

is generally an NP-hard non-convex problem with multiple

local minima; (2) the one-to-one constraint is not straight-

forward to combine into the IQP optimization process. As

a result, various methods have been developed to approx-

imate the optimal solution of the graph matching problem

based on different approaches, including eigenvector analy-

sis [27, 20], random walk [7], stochastic methods [26] and

other optimization techniques [21, 32].

Conventionally, two stage procedure has been used to

approximate the solution of IQP: first, solve the optimiza-

tion problem in continuous domain by relaxing integer con-

straint, and then project the intermediate solution into the

original feasible space of IQP [20, 7, 14]. Nonetheless, re-

cent research [21, 30] devises methods that produce discrete

solutions and suggests that post-processing discretization

leads to substantial loss in accuracy, especially that the dis-

cretization step is independent of the optimization of IQP.

The approach to one-to-one constraint is three-fold. The

first way, which enforces one-to-one constraint in the post-

processing stage, suffers from the above-mentioned post-

processing loss [2, 20]. The second approach, bistochastic

normalization, in continuous space softly enforces the con-

straint during the optimization procedure [7, 14]. Finally,

incorporating hard one-to-one during optimization results

in overly restrictive search of the solution space. [19, 26]

In this work we propose a novel method for the graph

matching based on tabu search, which solves the IQP prob-

lem effectively incorporating the one-to-one constraint. The

contributions of this paper are manyfold: (1) It proposes

the penalized association graph framework which softly en-

courages the one-to-one constraint while directly searching

in the discrete solution space. (2) Given the above frame-

work, it adopts tabu search as an optimization technique.

Tabu search, thanks to its strategic approach to searching

the solution space has become a successful tool in optimiz-

ing hard combinatorial problems, while not being popular

yet in computer vision. (3) It extends the proposed frame-

work to work with repeated structure graph matching, en-

hancing its usage in practice. (4) Presents experimental re-

sults which prove outstanding robustness of the algorithm
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Figure 1. An example of tabu search to find the maximum

weighted clique. At each iteration we swap two non-tabu nodes

to maximize the objective (1). After being swapped, the nodes

(marked as shaded) remain tabu for 1 iteration. (0) initially,

K = acf and |acf | = 5; no variables are tabu. (1) e substi-

tutes a, and |cef | = 8. (2) tabu variables are e that entered and a

that left, we choose between b and d, both choices lower the ob-

jective, choose b, |bef | = 6. (3) tabu variables are b and c, choose

d to obtain the global optimum |bed| = 9.

in practical environment where noise and outliers exist.

2. Related works

The proposed method casts graph matching as a

weighted maximum clique problem. In the literature, Ho-

raud et al. [17] first proposed to formulate feature corre-

spondence problem as finding the maximum clique between

the nodes representing linear segments in two images. Sim-

ilarly, Liu et al. [23] formulated graph matching as finding

dense subgraphs within the association graph correspond-

ing to local optima. The method was further generalized

by allowing subgraph matching [22]. Zhao et al. [31] pro-

posed heuristic label propagation as a post processing step

following the initialization by [23]. In contrast, in this work,

we redefine the notion of the association graph to incor-

porate soft one-to-one constraint and further propose tabu

search method, which is less initialization dependent, to ef-

fectively explore given solution space searching beyond the

local maxima, and thus resulting in more accurate solution.

Nevertheless, despite being a flexible and effective tool

for solving combinatorial optimization problems [13], tabu

search has not been actively applied in computer vision.

Sorlin and Solnon [24] and Williams et al. [29] mentioned

tabu search for graph matching focusing on simple incom-

plete synthetic graphs without noise nor outliers, omitting

any tests on real world datasets. Moreover, [29] restricts

the formulation to simple Bayesian consistency similarity

measure and [24] uses cardinality functions.

This work is written in the spirit of recent research that

advocates the importance of discretization in the course of

the algorithm. Leordeanu et al. [21] iterates between max-

imizing linearly approximated objective in discrete domain

and maximizing along the gradient direction in continuous

domain. Moreover, Zhou et al. [32] induces discrete solu-

tion by gradually changing weights of concave and convex

relaxations of the original objective. Although these meth-

ods mitigate the artifact of continuous relaxation, they still

phase through the continuous solution space during the op-

timization.

On the other hand, few algorithms have been proposed

to directly explore the feasible space of IQP without any re-

laxation. Yan et al. [30] propose discrete method for hyper

graph matching. Lee et al. [19] built Markov chain Monte

Carlo based algorithm and Suh et al. [26] used Sequential

Monte Carlo sampling to deal with the exponentially large

and discrete solution space. Though they circumvent the

issue of relaxation mentioned above, instead, they suffer

from inefficient exploration, because the one-to-one con-

straint significantly limits the possible moves in their ap-

proach.

3. Graph Matching Problem

A graph G is represented as a quadruple G =
(V, E ,WV ,WE). The elements V, E ,WV ,WE respectively

denote a set of nodes, a set of edges (which represent pair-

wise relations between the nodes), attributes of nodes and

attributes of edges. In feature correspondence, a node at-

tribute describes a local appearance of a feature in an image,

and an edge geometrical relationship between features.

The objective of graph matching is to find the correct

correspondences between nodes of two graphs G1 and G2
with n1 and n2 nodes, respectively. In this work, “one-to-

one” constraint is assumed, which requires one node in G1
to be matched to at most one node in G2 and vice versa The

case when a node is not matched can be interpreted as the

node being an outlier.

The compatibility between nodes and edges of two

graphs G1 and G2 is commonly encoded in the nonnegative

affinity matrix A ∈ R
n1n2×n1n2 . A diagonal entry Aii′;ii′

1

represents an affinity between attributes of vi ∈ V1 and

vi′ ∈ V2. A non-diagonal entry Aii′;jj′ is a quantified in-

formation how well a match between vi ∈ V1 and vi′ ∈ V2
corresponds to another match vj ∈ V1 and vj′ ∈ V2. In

subsequent sections for simplicity of notation, we will use

superscript v1i to denote the i-th node of graph G1.

3.1. Formulation

The goal of graph matching problem is to find the set of

matches between nodes of two graphs G1 and G2 that maxi-

1For ease of understanding, in this paper we use notation Aii′;jj′ to

refer actually to the affinity matrix entry A(i′−1)n1+i,(j′−1)n1+j .
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Figure 2. An example of using penalty to enforce one-to-one constraint through local search for (a) graph matching between G1 and G2

with initial matching ij′,jk′,kk′ violating the constraint. (b) the corresponding association graph. The weights for non-conflicting matches

are 1 and for conflicting matches −2 (for clarity, only the weights for the subgraph K are shown). (c) affinity value of each node to K given

by Eq.(5) (d) The change ∆ab to the IQP objective for interchanging top two matches from (c) according to Eq.(6). (e) Resulting subgraph

with matches satisfying one-to-one constraint (one of the two possible results).

mize the sum of affinity values of corresponding nodes and

edges given by the affinity matrix A. This formulation can

be compactly represented by means of Integer Quadratic

Programming (IQP):

x = argmax
x

x
T
Ax (1)

s.t x ∈ {0, 1}n1n2 , (2)

where the resulting matches are represented by a column

vector x, where xii′ = 1 if node v1i is matched with v2i′ and

0 otherwise2. In accordance with the IQP graph matching

conventional formulation, we assume the one-to-one con-

straint:

∀i,

n2∑

i′=1

xii′ ∈ {0, 1} and ∀i′,

n1∑

i=1

xii′ ∈ {0, 1}. (3)

3.2. Equivalent weighted maximum clique problem

In this section we build a graph matching framework

based on the notion of the association graph, and incor-

porate graph matching constraints in an intuitive yet pow-

erful way. Let us consider the association graph A =
(VA, EA,W

V
A, ,W

E
A) constructed from two input graphs, G1

and G2, which is a fully connected graph with real valued

attributes for both node and edges. Each node represents

a possible node correspondence between input graphs, i.e.,

v ∈ VA stands for (v1i , v
2
i′) ∈ V1×V2 and each edge e ∈ EA

represents a relationship between the two node correspon-

dences. The nodes and edges are respectively characterized

by its weights wv ∈ W
V
A and we ∈ W

E
A. Then, denote K

as the corresponding fully connected induced subgraph of

A such that the subset of nodes VK ⊂ VA. Choosing the

2In a similar manner to the convention used for A, we use xii′ to de-

note the entry x(i−1)n2+i′ = 1

subset VK is equivalent to selecting a set of node correspon-

dences between the original graphs (see Fig. 2(a,b)). Anal-

ogously, we let L = A\K. Thus, we represent the selection

of nodes inA with a binary indicator vector x ∈ {0, 1}|VA|,

where xa = 1 if a-th node is selected, that is va ∈ K and

xa = 0 if va ∈ L. Let us note, that vector x in this form

satisfies the graph matching integer constraint and belongs

to the feasible solution set of the constrained IQP (1).

Now, we can construct a graph AP , whose maximum

clique problem is equivalent to the graph matching prob-

lem. The weighted maximum clique problem is to find a

subgraph K, also referred to as a clique, in the graph AP

which maximizes its potential, where the potential is the

sum of all weights of included nodes and edges, i.e.,

∑

v∈VK

wv +
∑

e∈EK

we. (4)

We assign the attributes as follows: wv = Aii′;ii′ , where

v = (v1i , v
2
i′), and we = Aii′;jj′ + p, where e = (v, u),

v = (v1i , v
2
i′), u = (v1j , v

2
j′) and the term p < 0 when i = j

or i′ = j′, which is a conflicting match, and 0 otherwise.

If p = 0, then finding the vector x that maximizes the sum

of the affinities values in K is equivalent to maximizing the

QP with the integer constraint. If p = −∞, then it be-

comes equivalent to maximizing the IQP with one-to-one

constraint.

In this work, we propose to incorporate the penalty term

p into the association graph framework which enforces the

one-to-one constraint in soft way. As our objective is to

maximize the sum of affinities in the clique K, choosing a

match that violates one-to-one constraint, (which is equiv-

alent to selecting an edge penalized negatively) lowers the

objective function. The subsequent section describes the lo-

cal search optimization which utilizes above framework to

enforce the one-to-one constraint.
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4. Discrete Tabu Search for Graph Matching

In this section, we propose a tabu search based graph

matching algorithm that optimizes the framework built

in the previous section. Tabu search solves the original

optimization problem Eq.(1-3) by solving the equivalent

weighted maximum clique problem (3.2) in the penalized

association graph AP . Tabu search, also called adaptive

memory programming, has been introduced to deal with

hard optimization problems through economical search in

the solution space exploiting the search history [11, 12].

It has been widely applied in various fields including en-

gineering, economics and finance spanning the application

ranging from pattern classification, VLSI design, invest-

ment planning, energy policy, biomedical analysis and en-

vironmental conservation [13] due to its flexibility and ex-

cellent performance, though it has not been widely applied

yet in computer vision. In this work, we use tabu search to

explore the space of all possible cliques of the association

graph.

Tabu search is a meta-algorithm and constitutes of two

components. The first one is the base algorithm which de-

scribes the general mechanism how we iterate between solu-

tions (Section. 4.1). The second part consists of the criteria

which solutions are allowed and which ones are forbidden

at any given iteration (Section. 4.2). The overall algorithm

is described as Alg. 1. The subsequent section describes

the local search, where we propose how to utilize discrete

solution space to iterate between solutions.

4.1. Local search and search space

Local search is an optimization technique which

searches for the optimal solution among the set of candi-

date solutions. In our case, the set of candidate solutions is

the neighborhood N(x). The basic idea behind local search

is to advance from one candidate solution x to another so-

lution x
′ by an operation called a move. The movement

occurs in the neighborhood N(x) which we define as the

set of solutions that differ with the candidate solution x by

one node:

N(x) = {x′|x′ · x = k − 2, ‖x‖ = ‖x′‖ = k}.

Since the goal of the graph matching is to maximize the

affinity sum between the matches, local search moves from

one solution to another in such a way to encounter a solution

that maximizes the objective (1). To this aim, we need to

make appropriate change to the composition of K, that is to

remove the nodes that have little affinity to the rest of the

subgraph and substitute them with the nodes which have

high affinity with the rest of the subgraph.

Let αa be the sum of affinity values between a node va
and all the nodes in K:

αa =
∑

b|vb∈K

Aab (5)

Then change in the objective (1) when interchanging

va ∈ K and vb ∈ L is equal to:

∆ab = αb − αa −Aab. (6)

For simplicity, we denote αK
a if va ∈ K and respectively

αL
a if va ∈ L. Computing affinity values and the affinity

change are illustrated in Fig. 2(c,d) and in Alg. 1 lines 7-8.

4.1.1 Decreasing the size of local search space

Note that for a single solution x, the search space contains

|K| · |L| possible moves and as the search space of local

search is large, we attempt to decrease the scope of the

search to the movements which are most likely to cause the

large positive change ∆ in the objective. To this aim simi-

larly to the method in [28], we select the pairs of nodes from

K and L which are likely to result in the largest positive

change in the objective. To do so, we sort values αK
a in the

increasing order and αL
a in the decreasing order and identify

the top t nodes in each of the list for which we compute the

change in the objective (Alg.1, line 8). Thus, we narrow the

search space from |K|·|L| to t2 where t2 ≪ |K|·|L|. Define

the narrowed space as Ñ(x). Let us note that swapping top

nodes from each of the list may not be optimal if the affinity

between two nodes we swap is large. Subsequently, among

t2 candidate pairs we choose the pair of nodes that results

in the highest gain and swap the two nodes.

Once the move is done and a node va in K is replaced

by a node vb, then and therefore the node affinity values for

each node in both K and L must be updated accordingly:

αc := αc −Aca +Acb. (7)

Note two special cases when c = a and c = b. The affinity

Acc is 0 for all c, and therefore when va is replaced by vb in

the subgraph, the sum of affinities of va to the new subgraph

increases by its affinity to the new node in the subgraph, vb.

The case for the new node vb is analogous.

αc = αb +Aab, if c = a

αc = αb −Aab, if c = b. (8)

4.2. Tabu search

The local search algorithm is a vanilla algorithm which

forms the base for the tabu search. Local search defines

the general direction of the search by aiming to choose the

move which maximizes the change in the objective. On the

other hand, tabu search defines the criteria whether a move

proposed by local search can be executed or not.
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Input: Affinity matrix A ∈ R
n1n2×n1n2

Output: Solution vector x∗ ∈ {0, 1}n1n2×1

1 penalize conflicting matches in A with penalty p ;

2 S← {} // stores multiple solutions

3 for i=1 to sol do

4 it← 0;nonImpIt← 0; bestTabu←
−∞, bestnTabu← −∞; tabuIt[]← 0[];

5 while NonImpIter > endIt do

6 initialize subgraph K with random nodes from

affinity graph A ;

7 αa ← compute subgraph affinity for va ∈ VA;

8 ∆ab ← compute the change (6) in the

objective for exchanging top t nodes from

sorted αK
a (increasingly) and αL

a

(decreasingly) ;

9 xtabu,xnontabu,xnontabu2 ← choose tabu

(tabuIt > it), best non-tabu and second best

tabu solution with highest ∆ab;

10 if f(xtabu) > f(xnontabu) and f(xtabu) >
f(x∗) then

11 xcur ← xtabu

12 else

13 xcur ← xnontabu // can lower objective.

14 end

15 tabuIt(a), tabuIt(b)← rand([q, r]) + it
16 αa ← recompute subgraph affinity for

va ∈ VA for new solution xcur using (7)&(8);

17 if f(xcur) > f(x∗
cur) then

18 x
∗
cur ← xcur

19 else

20 nonImpIt = nonImpIt+ 1;

21 end

22 if f(xcur) > f(x∗
cur) then

23 x
∗
cur ← xcur

24 end

25 end

26 if f(x∗
cur) > f(x∗) then

27 x
∗ ← x

∗
cur

28 end

29 end

Algorithm 1: Tabu search for Graph Matching

In other words, the purpose of tabu search is to mod-

ify neighborhood N(x) (usually by removing solutions) in

such a way as to encourage or discourage certain moves

in order to find the global solution. The advantages of the

tabu search follow. Tabu search overcomes the shortcom-

ings of simple descent method, which looks within the static

neighborhood for the solutions that improve the objective,

but terminates at a local optimum when no improving solu-

tion can be found. In contrast, the tabu search by redefining

the neighborhood and forbidding certain moves, allows the

objective to worsen in order to leave the current neighbor-

hood in the search for more optimal solutions. As a result,

optimization via tabu search is less dependent on the ini-

tialization as the tabu search has capability of moving away

from the undesired states. Finally, the distinct feature of

tabu search is its use of the history of search in making

strategic changes to N(x). The set of rules behind modi-

fication of search space are called adaptive memory and are

described in detail in the following sections. The proposed

method adapts two types of adaptive memory, short-term

memory and long-term memory.

4.2.1 Short term memory

The main component of tabu search is short-term mem-

ory which uses recent search history to modify the neigh-

borhood of the current solution. Short-term memory is a

selective memory that keeps track of solutions visited in

the past to forbid revisiting them in the future. Fig. 1 de-

scribes a simple example of short-term memory mechanism

on a graph, which, in this work, is the penalized association

graph AP .

In the proposed algorithm, the search history of the op-

timization process of the objective (1) relies on a sequence

of swaps between two nodes, va ∈ K and vb ∈ L. Thus,

we consider a solution x to be characterized by two nodes

va and vb that participate in the swap. The short-term mem-

ory is implemented to keep track of nodes that have been

swapped and forbid them to participate in the swap within

certain span of time in the future. Thus, the result of the

short-term mechanism is a modified neighborhood Ñ(xcur)
which is the subset of the original neighborhood N(x).

Short-term memory is implemented via a list, called tabu

list which keeps track of the nodes that are forbidden to

participate in the swap at the current iteration. After every

swap a node vi that was swapped (there are two of them) is

assigned a positive integer, si, randomly selected from the

interval [q, r] which prevents the variable to participate in

swap for si subsequent iterations. Originally, all the values

sa are initialized to 0. These nodes which cannot participate

in the swap are called tabu variables. Clearly, at subsequent

iterations only non-tabu variables can be swapped.

Table 1. Parameters used in Alg. 1

p penalty for conflicting matches. (-4·max A)

q-r lower and upper bound of the possible tabu

tenure. (2-4)

t number of nodes inK and L which are consid-

ered for move in a given iteration. (5)

endIt number of iterations that do not improve the

objective to terminate. (1500)

sol number of runs of the algorithm. (20)
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4.2.2 Implementation details

In the proposed algorithm, at any given time we maintain

pointers to three main solutions, xcur, the solution which

indicates the point in solution space where the algorithm

currently stands, x∗
cur, the maximum solution in the current

run of the tabu search and x
∗, the overall maximum solution

of the objective (1). At every iteration, a subset of solutions

given by parameter t is used for candidate moves from xcur.

Non-tabu solutions are computed from Ñ(xcur) accord-

ing to Eq.(6). Then the non-tabu solution with highest

change ∆ in the objective becomes the incumbent solution

xcur (Alg. 1, line 14). Notice that the algorithm is designed

in such a way that xcur changes after every iteration and we

are never stuck in one place in the solution space. Thus, the

tabu search algorithm explores the solution space in a way

that the objective function value (1) may fluctuate. For in-

stance, if all the potential moves have negative value, then

the objective function will decrease. The solution x
∗
cur is

updated when the new solution is larger. The proposed al-

gorithm also incorporates the exception, called aspiration

criterion which allows tabu move to take place. The tabu

solution becomes current solution if it is strictly bigger than

the maximum solution x
∗
cur (Alg. 1, line 10).

4.2.3 Long term memory

Long-term memory, in contrast to short-term memory, takes

into account the extended search history and is activated

when the short-term criterion fails to improve the objec-

tive function. Long-term memory maintains a list of use-

ful but suboptimal solutions visited in the past (while using

only short-term memory criteria to move between the so-

lutions) which can be used as a new solution from which

local search may proceed. The search is restarted when the

solution x
∗ is not improved for the given number of itera-

tions (for brevity the loop not included in the Alg. 1). The

rationale behind the criterion is that the current region is

not promising for finding a more optimal solution and the

mechanism chooses to relocate to a more promising region.

4.2.4 Implementation details

Various criteria can be adopted to make the long-term mem-

ory list. We implement long term memory as a list of “sec-

ond” solutions Ssec [3] which consists of solutions that at

every iteration landed just behind the current solution xcur,

called the “second” solution list . Therefore, in the algo-

rithm we also maintain pointers to a secondary solution xsec

which, if better, replaces the worst solution in the list of

secondary solutions. When the long-term termination cri-

terion is activated, a search is restarted from the solution

x ∈ Ssec with the highest objective. In the subsequent sec-

tion, we present the experimental results of both short-term

and long-term mechanism compared to the existing graph

matching methods.

5. Experiments

This section presents extensive evaluation of the pro-

posed method through three sets of experiments in both syn-

thetic and real-world setting.

5.1. Synthetic random graph matching

The experiments perform an evaluation on the randomly

synthesized graphs which simulate the practical environ-

ment where deformation noise and outliers obfuscate the

underlying matching. In this experiment, we construct

two graphs, G1 and G2, each with n nodes such that n =
nin + nout where nin and nout denote the number of inlier

and outlier nodes, respectively. First, we construct G1 such

that its edge attributes wij are generated from the uniform

distribution [0, 1]. Subsequently, G2 is created by perturb-

ing the attributes of G1 with Gaussian noise ǫ ∼ N(0, σ2
s).

Generated in similar manner, outliers are added in G2 from

the uniform distribution and then perturbed. The affinity

matrix values between two potential matches v1i with v2i′
and v1j with v2j′ is computed using the negative exponential

of Aii′;jj′ = exp(−‖wij −wi′j′‖)/σ
2), where σ2 = 0.1.

The node attributes are all set to 0.

In the synthetic setting, we evaluate the proposed dis-

crete tabu search algorithm in two forms. The first contains

only the short-term mechanism described in section 4.2.1

while the second includes also long-term memory described

in section 4.2.3. The proposed methods are evaluated along

with seven state-of-the-art methods, Graduate assignment

(GA) [14], Shrinking and expansion algorithm (SEA) [22],

Integer projected fixed point method (IPFP) [21], Spectral

matching (SM) [20], Re-weighted random walk matching

(RRWM) [7], and Factorized graph matching (FGM) [32].

We evaluate the methods in four experimental settings

which reflect the possible combinations of variation of the

two factors: the amount of deformation noise σ and the

number of outliers nout: (1) varying deformation noise with

no outliers, (2) varying deformation noise with some out-

liers, (3) varying the number of outliers with no deformation

noise (4) varying the number of outliers with some deforma-

tion noise. In each setting the number of inliers nin is fixed

to be 20. For every setting, we generate independently 50

graph matching problems as defined in the previous para-

graph and report the average accuracy and objective score.

Fig. 3 presents the results. In the first and second setting

(Fig. 3a and 3b), the deformation noise σ varies between

0 and 0.4 by 0.05 increments while we fix the number of

outliers to 0 and 10. In the third and fourth setting (Fig. 3c

and 3d), the number of outliers varies between 0 and 20 by

increments of 4, while the noise levels are fixed to be σ = 0
and σ = 0.1.

Under varying condition the proposed methods perform

outstandingly well, noting the better performance of tabu
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(a) Varying deformation with no

outliers

(b) Varying deformation with

some outliers

(c) Varying outliers with no

deformation

(d) Varying outliers with some

deformation

Figure 3. Accuracy and score curves are plotted for four different conditions: varying the amount of deformation noise with fixed number

of outliers (a) nout = 0 and (b) nout = 10, and varying the number of outliers with fixed deformation noise (c) σ = 0 (d) σ = 0.15)

Table 2. SNU Dataset Average Accuracy (%)

Alg SEA GAGM RRWM IPFP Ours

Accuracy(%) 56.3 70.3 73.6 74.1 79.0

Time(s) 3.33 1.78 0.22 0.10 0.69

Table 3. Willow Object Dataset Average Accuracy (%)

Class Car Duck Face
Motor

bike

Wine

bottle
avg

SEA 30.3 26.5 72.9 32.4 45.4 41.4

GAGM 38.6 35.4 79.4 38.3 53.9 49.1

RRWM 38.0 35.7 78.3 40.4 53.7 49.2

IPFP 37.6 36.9 80.4 40.4 56.0 50.3

Ours 39.5 36.1 80.2 44.0 57.9 51.5

search which includes only short-term memory. As the only

evaluated method, it achieves 100% accuracy given high

levels of noise (σ = 0.2 and σ = 0.25 with no outliers

and σ = 0.1 σ = 0.15 with outliers). While varying out-

liers, the method slightly falls short to SEA, whose perfor-

mance, however, considerably deteriorates when noise ap-

pears. The proposed method proves to be particularly robust

in more practical settings where both outliers and noise are

present. Given choice of parameters from Table 4.2.1 and

varying endIt and sol, it obtains superior solutions in the

presence of noise and outliers in 1.0-4.4 sec.; FGM - 23.5,

RRWM - 0.2, IPFP - 0.2, GAGM - 0.4 and SEA - 1.1 (aver-

aged results for results in Fig. 3b,d).

5.2. Real image feature correspondence

In this section, we evaluate the proposed method for fea-

ture correspondence task on two datasets: SNU dataset [7]

and Willow Object Class dataset [5]. RRWM, IPFP,

Model graph Proposed method IPFP

RRWM GAGM SEA

Model graph Proposed method IPFP

RRWM GAGM SEA

Figure 4. Example results of the real image matching on Willow

Object dataset. Keypoints are distinguished by different colors in

the model image and the matched locations are depicted for each

algorithm

GAGM, and SEA are compared with the proposed method3.

SNU dataset consists of 30 pairs of images most of which

are collected from Caltech-101 [10] and MSRC [1] dataset.

Each pair of images have similar viewpoints with large

3FGM is not compared because it cannot be applied in the experimental

setting of [7], which uses initial candidate matches.
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(a) Varying deformation with no

outliers

(b) Varying deformation with

some outliers

(c) Varying outliers with no

deformation

(d) Varying outliers with some

deformation

Figure 5. Accuracy and score curves are plotted for four different conditions: varying the amount of deformation noise with fixed number

of outliers (a) nout = 0 and (b) nout = 10, and varying the number of outliers with fixed deformation noise (c) σ = 0 (d) σ = 0.1).

intra-class variation. In addition to the original experimen-

tal setting [7], which did not use unary score, WHO [16]

and their inner product are used as feature descriptor and

unary score to enhance the overall performance. The aver-

age accuracy over 10 experiments is shown in Table 2. The

proposed algorithm outperforms all the other methods.

Willow dataset consists of 5 classes, whose images are

collected from Caltech-256 [15] and PASCAL VOC2007

dataset [9] with 10 manual keypoint annotation for each

image. Each class contains 40 to 108 images taken from

various viewpoints with clutter, making feature correspon-

dence extremely challenging. Therefore, we restricted the

graph constructed from one side image to have only key-

points without outliers. WHO [16] and HARG [5] are used

as node and edge descriptors, respectively. The average ac-

curacy over 100 random pairs is shown in Table 3. Classes

with low intra-class variation (face and winebottle) show

high accuracy overall, while the performance of the classes

with large intra-class variation (car, duck, and motorbike)

is relatively low. The proposed algorithm outperforms the

other algorithms in car, motorbike and winebottle classes,

while is comparable in face and duck classes. Some qual-

itative example results are shown in Fig. 4. The average

running times are following: proposed - 0.93s, RRWM -

0.04s, IPFP - 0.03s, GAGM - 0.08s, SEA - 0.49s.

5.3. Repeated Structure Matching

In this set of experiments, we present particular suit-

ability of tabu search method to multiple graph matching,

attempting to discover repeated structures or multiple in-

stances of an object. The advantage is due to the fact that

the method produces multiple solutions (Alg. 1, line 2-3),

each of which is a set of matches between two regions in

two graphs. The multiple solutions may or may not cor-

respond to the same regions in the original graphs. This

setting makes graph matching more useful in practical ap-

plications. E.g., in feature correspondence, it overcomes the

conventional restriction to allow one object per image.

In this set of experiments, we simulate the multiple ob-

ject environment. We construct Gmult
1 and Gmult

2 according

to the procedure in Section (5.1) where |Gmult
1 | = n and

|Gmult
2 | = 2|Gmult

1 | = 2n in such a way that Gmult
1 con-

sists of two independently perturbed copies of Gmult
1 . The

affinity matrix Amult has size 2n2× 2n2. We subsequently

perform tabu search optimization on the penalized associa-

tion graph AP
mult obtained from Amult.

We compare our method to SEA which also produces

multiple solutions and the remaining methods evaluated in

Section (5.1) (with the exception of FGM whose running

time is too large for this set of experiments) adapted to mul-

tiple matching setting by means of the following sequential

matching procedure. We perform matching m times (where

m = 2 in our case) after each stage removing matched

nodes and performing the subsequent round on the remain-

ing nodes. The methods are evaluated in the same settings

as in Section (5.1) where we vary deformation noise and

the number of outliers. The results are presented in Fig. 5.

The proposed method outperforms the existing methods by

large margin when noise is varied. The improving accuracy

of SEA with the increasing number of outliers is notewor-

thy. The proposed method again performs very robustly in

a mixed environment with both noise and outliers present.

6. Conclusion

In this work, we propose graph matching algorithm

which adapts tabu search to search discrete solution space

directly and effectively. First, we build the framework based

on penalized association graph to move between its sub-

graphs by forbidding certain solutions and encouraging oth-

ers. As a result unlike any of the existing works, this method

works both in discrete space (by itself discrete graph match-

ing optimization is rare) and incorporates one-to-one con-

straint softly into the optimization process with no post-

processing step. The proposed method is suitable for mul-

tiple graph matching as it produces different solutions that

potentially correspond to repeated instances of an object.

The algorithm proves to be outstandingly robust achieving

superior results to the existing algorithms (in some cases

over 40 percentage points, which given a long history of

graph matching research, is notable) in the extensive combi-

nation of experiments where noise and outliers are present.
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