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Abstract

We propose the task of free-form and open-ended Visual

Question Answering (VQA). Given an image and a natural

language question about the image, the task is to provide an

accurate natural language answer. Mirroring real-world

scenarios, such as helping the visually impaired, both the

questions and answers are open-ended. Visual questions se-

lectively target different areas of an image, including back-

ground details and underlying context. As a result, a system

that succeeds at VQA typically needs a more detailed un-

derstanding of the image and complex reasoning than a sys-

tem producing generic image captions. Moreover, VQA is

amenable to automatic evaluation, since many open-ended

answers contain only a few words or a closed set of answers

that can be provided in a multiple-choice format. We pro-

vide a dataset containing ∼0.25M images, ∼0.76M ques-

tions, and ∼10M answers (www.visualqa.org), and

discuss the information it provides. Numerous baselines for

VQA are provided and compared with human performance.

1. Introduction

We are witnessing a renewed excitement in multi-discipline

Artificial Intelligence (AI) research problems. In particular,

research in image and video captioning that combines Com-

puter Vision (CV), Natural Language Processing (NLP),

and Knowledge Representation & Reasoning (KR) has dra-

matically increased in the past year [13, 7, 9, 32, 21, 19, 45].

Part of this excitement stems from a belief that multi-

discipline tasks like image captioning are a step towards

solving AI. However, the current state of the art demon-

strates that a coarse scene-level understanding of an image

paired with word n-gram statistics suffices to generate rea-

sonable image captions, which suggests image captioning

may not be as “AI-complete” as desired.

What makes for a compelling “AI-complete” task? We

believe that in order to spawn the next generation of AI

algorithms, an ideal task should (i) require multi-modal

knowledge beyond a single sub-domain (such as CV) and

(ii) have a well-defined quantitative evaluation metric to

∗ The first two authors contributed equally.

Does it appear to be rainy?

Does this person have 20/20 vision?

Is this person expecting company?

What is just under the tree?

How many slices of pizza are there?

Is this a vegetarian pizza?
What color are her eyes?

What is the mustache made of?

Figure 1: Examples of free-form, open-ended questions collected

for images via Amazon Mechanical Turk. Note that common-

sense knowledge is needed along with a visual understanding of

the scene to answer many questions.

track progress. For some tasks, such as image captioning,

automatic evaluation is still a difficult and open research

problem [43, 10, 18].

In this paper, we introduce the task of free-form and open-

ended Visual Question Answering (VQA). A VQA sys-

tem takes as input an image and a free-form, open-ended,

natural-language question about the image and produces a

natural-language answer as the output. This goal-driven

task is applicable to scenarios encountered when visually-

impaired users [2] or intelligence analysts actively elicit vi-

sual information. Example questions are shown in Fig. 1.

Open-ended questions require a potentially vast set of

AI capabilities to answer – fine-grained recognition (e.g.,

“What kind of cheese is on the pizza?”), object detection

(e.g., “How many bikes are there?”), activity recognition

(e.g., “Is this man crying?”), knowledge base reasoning

(e.g., “Is this a vegetarian pizza?”), and commonsense rea-

soning (e.g., “Does this person have 20/20 vision?”, “Is this

person expecting company?”).

VQA [16, 30, 42, 2] is also amenable to automatic quan-

titative evaluation, making it possible to effectively track
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progress on this task. While the answer to many questions

is simply “yes” or “no”, the process for determining a cor-

rect answer is typically far from trivial (e.g. in Fig. 1, “Does

this person have 20/20 vision?”). Moreover, since questions

about images often tend to seek specific information, sim-

ple one-to-three word answers are sufficient for many ques-

tions. In such scenarios, we can easily evaluate a proposed

algorithm by the number of questions it answers correctly.

In this paper, we present both an open-ended answering task

and a multiple-choice task [38, 27]. Unlike the open-answer

task that requires a free-form response, the multiple-choice

task only requires an algorithm to pick from a predefined

list of possible answers.

We present a large dataset that contains 204,721 images

from the MS COCO dataset [26] and a newly created ab-

stract scene dataset [48, 1] that contains 50,000 scenes. The

MS COCO dataset has images depicting diverse and com-

plex scenes that are effective at eliciting compelling and di-

verse questions. We collected a new dataset of “realistic”

abstract scenes to enable research focused only on the high-

level reasoning required for VQA by removing the need to

parse real images. Three questions were collected for each

image or scene. Each question was answered by ten sub-

jects along with their confidence. The dataset contains over

760K questions with around 10M answers.

While the use of open-ended questions offers many bene-

fits, it is still useful to understand the types of questions

that are being asked and which types various algorithms

may be good at answering. To this end, we analyze the

types of questions asked and the types of answers provided.

Through several visualizations, we demonstrate the aston-

ishing diversity of the questions asked. We also explore

how the information content of questions and their answers

differs from image captions. For baselines, we offer several

approaches that use a combination of both text and state-of-

the-art visual features [23]. As part of the VQA initiative,

we will organize an annual challenge and associated work-

shop to discuss state-of-the-art methods and best practices.

VQA poses a rich set of challenges, many of which have

been viewed as the holy grail of automatic image under-

standing and AI in general. However, it includes as build-

ing blocks several components that the CV, NLP, and KR

[4, 6, 25, 29, 3] communities have made significant progress

on during the past few decades. VQA provides an attrac-

tive balance between pushing the state of the art, while be-

ing accessible enough for the communities to start making

progress on the task.

2. Related Work

VQA Efforts. Several recent papers have begun to study

visual question answering [16, 30, 42, 2]. However, unlike

our work, these are fairly restricted (sometimes synthetic)

settings with small datasets. For instance, [30] only consid-

ers questions whose answers come from a predefined closed

world of 16 basic colors or 894 object categories. [16] also

considers questions generated from templates from a fixed

vocabulary of objects, attributes, relationships between ob-

jects, etc. In contrast, our proposed task involves open-

ended, free-form questions and answers provided by hu-

mans. Our goal is to increase the diversity of knowledge

and kinds of reasoning needed to provide correct answers.

Critical to achieving success on this more difficult and un-

constrained task, our VQA dataset is two orders of mag-

nitude larger than [16, 30] (>250,000 vs. 2,591 and 1,449

images respectively). The proposed VQA task has connec-

tions to other related work: [42] has studied joint parsing

of videos and corresponding text to answer queries on two

datasets containing 15 video clips each. [2] uses crowd-

sourced workers to answer questions about visual content

asked by visually-impaired users. In concurrent work, [31]

proposed combining an LSTM for the question with a CNN

for the image to generate an answer – a similar model is

evaluated in this paper. [28] generates abstract scenes to

capture visual common sense relevant to answering (purely

textual) fill-in-the-blank and visual paraphrasing questions.

[40] and [44] use visual information to assess the plausibil-

ity of common sense assertions. [47] introduced a dataset of

10k images and prompted captions that describe specific as-

pects of a scene (e.g., individual objects, what will happen

next). Concurrent with our work, [15] collected questions &

answers in Chinese (later translated to English) for COCO

images. [37] automatically generated four types of ques-

tions (object, count, color, location) using COCO captions.

Text-based Q&A is a well studied problem in the NLP and

text processing communities (recent examples being [12,

11, 46, 38]). Other related textual tasks include sentence

completion (e.g., [38] with multiple-choice answers). These

approaches provide inspiration for VQA techniques. One

key concern in text is the grounding of questions. For in-

stance, [46] synthesized textual descriptions and QA-pairs

grounded in a simulation of actors and objects in a fixed set

of locations. VQA is naturally grounded in images – requir-

ing the understanding of both text (questions) and vision

(images). Our questions are generated by humans, making

the need for commonsense knowledge and complex reason-

ing more essential.

Describing Visual Content. Related to VQA are the tasks

of image tagging [8, 23], image captioning [24, 14, 34, 7,

13, 45, 9, 19, 32, 21] and video captioning [39, 17], where

words or sentences are generated to describe visual content.

While these tasks require both visual and semantic knowl-

edge, captions can often be non-specific (e.g., observed by

[45]). The questions in VQA require detailed specific infor-

mation about the image for which generic image captions

are of little use [2].

Other Vision+Language Tasks. Several recent papers

have explored tasks at the intersection of vision and lan-

guage that are easier to evaluate than image captioning, such

as coreference resolution [22, 36] or generating referring

expressions [20, 35] for a particular object in an image that
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Is something under 
the sink broken? 

yes 
yes 
yes 

no 
no 
no 

What number do 
you see? 

33 
33 
33 

5 
6 
7 

Does this man have 
children? 

yes 
yes 
yes 

yes 
yes 
yes 

Is this man crying? 
no 
no 
no 

no 
yes 
yes 

Has the pizza been 
baked? 

yes 
yes 
yes 

yes 
yes 
yes 

What kind of cheese is 
topped on this pizza? 

feta 
feta 

ricotta 

mozzarella 
mozzarella 
mozzarella 

Do you think the 
boy on the ground 
has broken legs?  

yes 
yes 
yes 

no 
no 
yes 

Why is the boy 
on the right 
freaking out? 

his friend is hurt 
other boy fell down 

someone fell 

ghost 
lightning 

sprayed by hose 

How many pickles 
are on the plate? 

1 
1 
1 

1 
1 
1 

What is the shape 
of the plate? 

circle 
round 
round 

circle 
round 
round 

What kind of store is 
this? 

bakery 
bakery 
pastry 

art supplies 
grocery 
grocery 

Is the display case as 
full as it could be?  

no 
no 
no 

no 
yes 
yes 

How many bikes 
are there? 

2 
2 
2 

3 
4 
12 

What number is 
the bus?  

48 
48 
48 

4 
46 

number 6 

What does 
the sign say? 

stop 
stop 
stop 

stop 
stop 
yield 

What shape is 
this sign? 

octagon 
octagon 
octagon 

diamond 
octagon 
round 

Can you park 
here? 

no 
no 
no 

no 
no 
yes 

What color is 
the hydrant? 

white and orange 
white and orange 
white and orange 

red 
red 

yellow 

How many glasses 
are on the table?  

3 
3 
3 

2 
2 
6 

What is the woman 
reaching for? 

door handle 
glass 
wine 

fruit 
glass 

remote 

Are the kids in the room 
the grandchildren of the 
adults? 

probably 
yes 
yes 

yes 
yes 
yes 

What is on the 
bookshelf? 

nothing 
nothing 
nothing 

books 
books 
books 

How many balls 
are there? 

2 
2 
2 

1 
2 
3 

What side of the 
teeter totter is 
on the ground? 

right 
right 

right side 

left 
left 

right side 

Figure 2: Examples of questions (black), (a subset of the) answers given when looking at the image (green), and answers given when not

looking at the image (blue) for numerous representative examples of the dataset. See the supplementary material for more examples.

would allow a human to identify which object is being re-

ferred to (e.g., “the one in a red shirt”, “the dog on the left”).

While task-driven and concrete, a limited set of visual con-

cepts (e.g., color, location) tend to be captured by referring

expressions. As we demonstrate, a richer variety of visual

concepts emerge from visual questions and their answers.

3. VQA Dataset Collection

We now describe the Visual Question Answering (VQA)

dataset. We begin by describing the real images and abstract

scenes used to collect the questions. Next, we describe our

process of collecting questions and their corresponding an-

swers. Analysis of the questions and answers gathered as

well as baseline results are provided in following sections.

Real Images. We use the 123,287 training and valida-

tion images and 81,434 test images from the newly-released

Microsoft Common Objects in Context (MS COCO) [26]

dataset. The MS COCO dataset was gathered to find images

containing multiple objects and rich contextual information.

Given the visual complexity of these images, they are well-

suited for our VQA task. The more diverse our collection

of images, the more diverse, comprehensive, and interesting

the resultant set of questions and their answers.

Abstract Scenes. The VQA task with real images requires

the use of complex and often noisy visual recognizers. To

attract researchers interested in exploring the high-level rea-

soning required for VQA, but not the low-level vision tasks,

we create a new abstract scenes dataset [1, 48, 49, 50] con-

taining 50K scenes. The dataset contains 20 “paperdoll”

human models [1] spanning genders, races, and ages with 8

different expressions. The limbs are adjustable to allow for

continuous pose variations. The clipart may be used to de-

pict both indoor and outdoor scenes. The set contains over

100 objects and 31 animals in various poses. The use of

this clipart enables the creation of more realistic scenes (see

bottom row of Fig. 2) that more closely mirror real images

than previous papers [48, 49, 50]. See the supp. material for

the user interface, additional details, and examples.

Splits. For real images, we follow the same train/val/test

split strategy as the MC COCO dataset [26] (including test-

dev, test-standard, test-challenge, test-reserve). For abstract

scenes, we create standard splits, separating the scenes into

20K/10K/20K for train/val/test splits, respectively.

Captions. The MS COCO dataset [26, 5] already contains

five single-sentence captions for all images. We also col-

lected five single-captions for all abstract scenes using the

same user interface1 for collection.

Questions. Collecting interesting, diverse, and well-posed

1https://github.com/tylin/coco-ui
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questions is a significant challenge. Many simple ques-

tions may only require low-level computer vision knowl-

edge, such as “What color is the cat?” or “How many chairs

are present in the scene?”. However, we also want questions

that require commonsense knowledge about the scene, such

as “What sound does the pictured animal make?”. Impor-

tantly, questions should also require the image to correctly

answer and not be answerable using just commonsense in-

formation, e.g., in Fig. 1, “What is the mustache made of?”.

By having a wide variety of question types and difficulty,

we may be able to measure the continual progress of both

visual understanding and commonsense reasoning.

We tested and evaluated a number of user interfaces for col-

lecting such “interesting” questions. Specifically, we ran

pilot studies asking human subjects to ask questions about a

given image that they believe a “toddler”, “alien”, or “smart

robot” would have trouble answering. We found the “smart

robot” interface to elicit the most interesting and diverse

questions. As shown in the supplementary material, our

final interface stated “We have built a smart robot. It un-

derstands a lot about images. It can recognize and name all

the objects, it knows where the objects are, it can recognize

the scene (e.g., kitchen, beach), people’s expressions and

poses, and properties of objects (e.g., color of objects, their

texture). Your task is to stump this smart robot!”. To bias

against generic image-independent questions, subjects were

instructed to ask questions that require the image to answer.

The same user interface was used for both the real images

and abstract scenes. In total, three questions from unique

workers were gathered for each image/scene. When writing

a question, the subjects were shown the previous questions

already asked for that image to increase the question diver-

sity. In total, the dataset contains over ∼0.76M questions.

Answers. Open-ended questions result in a diverse set of

possible answers. For many questions, a simple “yes” or

“no” response is sufficient. However, other questions may

require a short phrase. Multiple different answers may also

be correct. For instance, the answers “white”, “tan”, or “off-

white” may all be correct answers to the same question. Hu-

man subjects may also disagree on the “correct” answer,

e.g., some saying “yes” while others say “no”. To handle

these discrepancies, we gather 10 answers for each question

from unique workers, while also ensuring that the worker

answering a question did not ask it. We ask the subjects to

provide answers that are “a brief phrase and not a complete

sentence. Respond matter-of-factly and avoid using conver-

sational language or inserting your opinion.” In addition to

answering the questions, the subjects were asked “Do you

think you were able to answer the question correctly?” and

given the choices of “no”, “maybe”, and “yes”. See Sec. 4

for an analysis of the answers provided.

For testing, we offer two modalities for answering the ques-

tions: (i) open-answer and (ii) multiple-choice.

For the open-answer task, the generated answers

are evaluated using the following accuracy metric:

min( # humans that provided that answer

3
, 1), i.e., an answer is

deemed 100% accurate if at least 3 workers provided that

exact answer.2 Before comparison, all responses are made

lowercase, numbers converted to digits, and punctuation

& articles removed. We avoid using soft metrics such as

Word2Vec [33], since they often group together words that

we wish to distinguish, such as “left” and “right”.

For multiple-choice task, 18 candidate answers are created

for each question. As with the open-answer task, the accu-

racy of a chosen option is computed based on the number of

human subjects who provided that answer (scaled by 3 and

clipped at 1). We generate a candidate set of correct and

incorrect answers from four sets of answers: Correct: The

most common (out of ten) correct answer. Plausible: To

generate incorrect, but still plausible answers we ask three

subjects to answer the questions without seeing the image.

If three unique answers are not found, we gather additional

answers from nearest neighbor questions using a bag-of-

words model. The use of these answers helps ensure the im-

age, and not just commonsense knowledge, is necessary to

answer the question. Popular: These are the 10 most pop-

ular answers. For instance, these are “yes”, “no”, “2”, “1”,

“white”, “3”, “red”, “blue”, “4”, “green” for real images.

The inclusion of the most popular answers makes it more

difficult for algorithms to infer the type of question from the

set of answers provided, i.e., learning that it is a “yes or no”

question just because “yes” and “no” are present in the an-

swers. Random: Correct answers from random questions

in the dataset. To generate a total of 18 candidate answers,

we first find the union of the correct, plausible, and popular

answers. We include random answers until 18 unique an-

swers are found. The order of the answers is randomized.

Example multiple choice questions are in the supplement.

4. VQA Dataset Analysis

In this section, we provide an analysis of the questions and

answers in the VQA train dataset. To gain an understand-

ing of the types of questions asked and answers provided,

we visualize the distribution of question types and answers.

We also explore how often the questions may be answered

without the image using just commonsense information. Fi-

nally, we analyze whether the information contained in an

image caption is sufficient to answer the questions.

The dataset includes 614,163 questions and 7,984,119 an-

swers (including answers provided by workers with and

without looking at the image) for 204,721 images from

the MS COCO dataset [26] and 150,000 questions with

1,950,000 answers for 50, 000 abstract scenes.

4.1. Questions

Types of Question. Given the structure of questions gener-

ated in the English language, we can cluster questions into

2In order to be consistent with ‘human accuracies’ reported in Sec. 4,

machine accuracies are averaged over all
(

10

9

)

sets of human annotators

2428



Real Images Abstract Scenes 

Figure 3: Distribution of questions by their first four words for a random sample of 60K questions for real images (left) and all questions

for abstract scenes (right). The ordering of the words starts towards the center and radiates outwards. The arc length is proportional to the

number of questions containing the word. White areas are words with contributions too small to show.
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Figure 4: Percentage of questions with different word lengths for

real images and abstract scenes.

different types based on the words that start the question.

Fig. 3 shows the distribution of questions based on the first

four words of the questions for both the real images (left)

and abstract scenes (right). Interestingly, the distribution of

questions is quite similar for both real images and abstract

scenes. This helps demonstrate that the type of questions

elicited by the abstract scenes is similar to those elicited

by the real images. There exists a surprising variety of

question types, including “What is. . .”, “Is there. . .”, “How

many. . .”, and “Does the. . .”. Quantitatively, the percent-

age of questions for different types is shown in Table 3. Sev-

eral example questions and answers are shown in Fig. 2. A

particularly interesting type of question is the “What is. . .”

questions, since they have a diverse set of possible answers.

See the supp. for visualizations for “What is. . .” questions.

Lengths. Fig. 4 shows the distribution of question lengths.

We see that most questions range from four to ten words.

4.2. Answers

Typical Answers. Fig. 5 (top) shows the distribution of

answers for several question types. We can see that a num-

ber of question types, such as “Is the. . . ”, “Are. . . ”, and

“Does. . . ” are typically answered using “yes” and “no” as

answers. Other questions such as “What is. . . ” and “What

type. . . ” have a rich diversity of responses. Other question

types such as “What color. . . ” or “Which. . . ” have more

specialized responses, such as colors, or “left” and “right”.

See the supplement for a list of the most popular answers.

Lengths. Most answers consist of a single word, with the

distribution of answers containing one, two, or three words,

respectively being 89.32%, 6.91%, and 2.74% for real im-

ages and 90.51%, 5.89%, and 2.49% for abstract scenes.

The brevity of answers is not surprising, since the ques-

tions tend to elicit specific information from the images.

This is in contrast with image captions that generically de-

scribe the entire image and hence tend to be longer. The

brevity of our answers makes automatic evaluation feasi-

ble. While it may be tempting to believe the brevity of

the answers makes the problem easier, recall that they are

human-provided open-ended answers to open-ended ques-

tions. The questions typically require complex reasoning

to arrive at these deceptively simple answers (see Fig. 2).

There are currently 23,234 unique one-word answers in our

dataset for real images and 3,770 for abstract scenes.

‘Yes/No’ and ‘Number’ Answers. Many questions are an-

swered using either “yes” or “no” (or sometimes “maybe”)

– 38.37% and 40.66% of the questions on real images and

abstract scenes respectively. Among these ‘yes/no’ ques-

tions, there is a bias towards “yes” – 58.83% and 55.86%
of ‘yes/no’ answers are “yes” for real images and abstract

scenes. Question types such as “How many. . . ” are an-

swered using numbers – 12.31% and 14.48% of the ques-

tions on real images and abstract scenes are ‘number’ ques-

tions. “2” is the most popular answer among the ‘number’

questions, making up 26.04% of the ‘number’ answers for
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Answers with Images

Answers without Images

Figure 5: Distribution of answers per question type for a random sample of 60K questions for real images when subjects provide answers

when given the image (top) and when not given the image (bottom).

real images and 39.85% for abstract scenes.

Subject Confidence. When the subjects answered the ques-

tions, we asked “Do you think you were able to answer the

question correctly?”. Fig. 6 shows the distribution of re-

sponses. A majority of the answers were labeled as confi-

dent for both real images and abstract scenes.

Inter-human Agreement. Does the self-judgment of con-

fidence correspond to the answer agreement between sub-

jects? Fig. 6 shows the percentage of questions in which (i)

7 or more, (ii) 3−7, or (iii) less than 3 subjects agree on the

answers given their average confidence score (0 = not con-

fident, 1 = confident). As expected, the agreement between

subjects increases with confidence. However, even if all of

the subjects are confident the answers may still vary. This is

not surprising since some answers may vary, yet have very

similar meaning, such as “happy” and “joyful”.

As shown in Table 1 (Question + Image), there is significant

inter-human agreement in the answers for both real images

(83.30%) and abstract scenes (87.49%). Note that on aver-

7 or more same 3-7 same less than 3 same # of Questions

Figure 6: Number of questions per average confidence score (0 =

not confident, 1 = confident) for real images and abstract scenes

(black lines). Percentage of questions where 7 or more answers

are same, 3-7 are same, less than 3 are same (color bars).

age each question has 2.70 unique answers for real images

and 2.39 for abstract scenes. The agreement is significantly

higher (> 95%) for “yes/no” questions and lower for other

questions (< 76%), possibly due to the fact that we do exact

string matching and do not account for synonyms, plurality,

etc. Note that the automatic determination of synonyms is a
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difficult problem, since the level of answer granularity can

vary across questions.

4.3. Commonsense Knowledge

Is the Image Necessary? Clearly, some questions can

sometimes be answered correctly using commonsense

knowledge alone without the need for an image, e.g., “What

is the color of the fire hydrant?”. We explore this issue by

asking three subjects to answer the questions without seeing

the image (see the examples in blue in Fig. 2). In Table 1

(Question), we show the percentage of questions for which

the correct answer is provided over all questions, “yes/no”

questions, and the other questions that are not “yes/no”. For

“yes/no” questions, the human subjects respond better than

chance. For other questions, humans are only correct about

21% of the time. This demonstrates that understanding the

visual information is critical to VQA and that commonsense

information alone is not sufficient.

To show the qualitative difference in answers provided with

and without images, we show the distribution of answers

for various question types in Fig. 5 (bottom). The distri-

bution of colors, numbers, and even “yes/no” responses is

surprisingly different for answers with and without images.

Which Questions Require Common Sense? In order to

identify questions that require commonsense reasoning to

answer, we conducted two AMT studies (on a subset 10K

questions from the real images of VQA trainval) asking sub-

jects – (i) whether or not a question required knowledge

external to the image, and (ii) the youngest age group that

could answer the question – toddler (3-4), younger child (5-

8), older child (9-12), teenager (13-17), adult (18+). Each

question was shown to 10 subjects. We found that for

47.43% of question 3 or more subjects voted ‘yes’ to com-

monsense, (18.14%: 6 or more). In the ‘human age re-

quired to answer question’ study, we found the following

distribution of responses: toddler: 15.3%, younger child:

39.7%, older child: 28.4%, teenager: 11.2%, adult: 5.5%.

A fine-grained breakdown of average age required to an-

swer a question is shown in Table 3. The two rankings of

questions in terms of common sense required according to

the two studies were largely correlated (Pearson’s rank cor-

relation: 0.58).

4.4. Captions vs. Questions

Do generic image captions provide enough information to

answer the questions? Table 1 (Question + Caption) shows

the percentage of questions answered correctly when hu-

man subjects are given the question and a human-provided

caption describing the image, but not the image. As ex-

pected, the results are better than when humans are shown

the questions alone. However, the accuracies are signifi-

cantly lower than when subjects are shown the actual im-

age. This demonstrates that in order to answer the questions

correctly, deeper image understanding (beyond what image

captions typically capture) is necessary. In fact, we find

that the distributions of nouns, verbs, and adjectives men-

Dataset Input All Yes/No Number Other

Question 40.81 67.60 25.77 21.22

Real Question + Caption* 57.47 78.97 39.68 44.41

Question + Image 83.30 95.77 83.39 72.67

Question 43.27 66.65 28.52 23.66

Abstract Question + Caption* 54.34 74.70 41.19 40.18

Question + Image 87.49 95.96 95.04 75.33

Table 1: Test-standard accuracy of human subjects when asked

to answer the question without seeing the image (Question), see-

ing just a caption of the image and not the image itself (Question

+ Caption), and seeing the image (Question + Image). Results are

shown for all questions, “yes/no” & “number” questions, and other

questions that are neither answered “yes/no” nor number. All an-

swers are free-form and not multiple-choice. *These accuracies

are evaluated on a subset of 3K train questions (1K images).

tioned in captions is statistically significantly different from

those mentioned in our questions + answers (Kolmogorov-

Smirnov test, p < .001) for both real images and abstract

scenes. See supplementary material for details.

5. VQA Baselines and Methods

In this section, we explore the difficulty of the VQA dataset

for the MS COCO images using several baselines and novel

methods. For reference, if we randomly choose an answer

from the top 1K answers of the VQA train/val dataset, the

test-standard accuracy is 0.12%. If we always select the

most popular answer (“yes”), the accuracy is 29.72%. Pick-

ing the most popular answer per question type does 36.18%

and a nearest neighbor approach does 40.61% on val (see

the supplement for details).

We train on VQA train+val. Unless stated otherwise, all

human accuracies are on test-standard, machine accuracies

are on test-dev, and results involving human captions (in

gray font) are trained on train and tested on val (because

captions are not available for test).

For our baselines, we choose the top K = 1000 most fre-

quent answers as possible outputs. This set of answers cov-

ers 82.67% of the train+val answers. We experiment with

two models: (i) a multi-layer perceptron (MLP) neural net-

work classifier with 2 hidden layers and 1000 hidden units

(dropout 0.5) in each layer with tanh non-linearity, and (ii)

an LSTM model followed by a softmax layer to generate

the answer. We experimented with six inputs for the MLP

model. Question: The top 1,000 words in the questions are

used to create a bag-of-words representation. Since there

is a strong correlation between the words that start a ques-

tion and the answer (see Fig. 5), we find the top 10 first,

second, and third words of the questions and create a 30

dimensional bag-of-words representation. These features

are concatenated to get a 1,030 dimensional input repre-

sentation. Caption: Similar to Table 1, we assume that a

human-generated caption is given as input. We use a bag-

of-words representation containing the 1,000 most popular

words in the captions as the input feature. Image: We use
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Open-Answer Multiple-Choice

All Yes/No Number Other All Yes/No Number Other

Question 48.09 75.66 36.70 27.14 53.68 75.71 37.05 38.64

Image 28.13 64.01 00.42 03.77 30.53 69.87 00.45 03.76

Q+I 52.64 75.55 33.67 37.37 58.97 75.59 34.35 50.33

LSTM Q 48.76 78.20 35.68 26.59 54.75 78.22 36.82 38.78

LSTM Q+I 53.74 78.94 35.24 36.42 57.17 78.95 35.80 43.41

Caption 26.70 65.50 02.03 03.86 28.29 69.79 02.06 03.82

Q+C 54.70 75.82 40.12 42.56 59.85 75.89 41.16 52.53

Table 2: Accuracy of our methods for the open-answer and

multiple-choice tasks on the VQA test-dev for real images. (Cap-

tion and Q+C results are on val). See text for details.

the last hidden layer of VGGNet [41] as our 4096-dim fea-

ture. We also report the learned baseline results on Ques-

tion+Image (Q+I), Question+Caption (Q+C), and Ques-

tion+Image+Caption (Q+I+C) by simply concatenating

the first hidden layer representations of networks trained on

each feature individually. The LSTM model uses a one-hot

encoding for the question words, and the same image fea-

tures as above followed by a linear transformation to trans-

form the image features to 1024 dimensions to match the

LSTM encoding of the question. The question and image

encodings are fused via element-wise multiplication.

For testing, we report the result on two different tasks:

open-answer selects the answer with highest activation from

all possible K answers and multiple-choice picks the an-

swer that has the highest activation from the potential an-

swers. As shown in Table 2, the accuracy using only the

question is ∼48%, which demonstrates that the type of

question is informative of the answer. As expected, results

on multiple-choice are better than open-answer. All meth-

ods are significantly worse than human performance.

To gain further insights into these results, we computed ac-

curacies by question type in Table 3. Interestingly, for ques-

tion types that require more reasoning, such as “Is the” or

“How many”, the scene-level image features do not provide

any additional information. However, for questions that can

be answered using scene-level information, such as “What

sport,” we do see an improvement. Similarly, for questions

whose answer may be contained in a generic caption we

see improvement, such as “What animal”. For all question

types, the results are worse than human accuracies.

The accuracy of our best model (LSTM Q+I, selected using

VQA test-dev accuracies) on VQA test-standard is 54.06%.

Finally, evaluating our model on the questions for which we

have annotations for how old a human needs to be to answer

the question correctly, we estimate that our model performs

as well as a 4.45 year old child! See the supp. for details.

6. Conclusion and Discussion

In conclusion, we introduce the task of Visual Question An-

swering (VQA). Given an image and an open-ended, natu-

ral language question about the image, the task is to provide

an accurate natural language answer. We provide a dataset

Open-Answer Human Age

Question K = 1000 Human To Be Able

Type Q Q + I Q + C Q Q + I To Answer

what is (13.84) 23.57 34.28 43.88 16.86 73.68 09.07

what color (08.98) 33.37 43.53 48.61 28.71 86.06 06.60

what kind (02.49) 27.78 42.72 43.88 19.10 70.11 10.55

what are (02.32) 25.47 39.10 47.27 17.72 69.49 09.03

what type (01.78) 27.68 42.62 44.32 19.53 70.65 11.04

is the (10.16) 70.76 69.87 70.50 65.24 95.67 08.51

is this (08.26) 70.34 70.79 71.54 63.35 95.43 10.13

how many (10.28) 43.78 40.33 47.52 30.45 86.32 07.67

are (07.57) 73.96 73.58 72.43 67.10 95.24 08.65

does (02.75) 76.81 75.81 75.88 69.96 95.70 09.29

where (02.90) 16.21 23.49 29.47 11.09 43.56 09.54

is there (03.60) 86.50 86.37 85.88 72.48 96.43 08.25

why (01.20) 16.24 13.94 14.54 11.80 21.50 11.18

which (01.21) 29.50 34.83 40.84 25.64 67.44 09.27

do (01.15) 77.73 79.31 74.63 71.33 95.44 09.23

what does (01.12) 19.58 20.00 23.19 11.12 75.88 10.02

what time (00.67) 8.35 14.00 18.28 07.64 58.98 09.81

who (00.77) 19.75 20.43 27.28 14.69 56.93 09.49

what sport (00.81) 37.96 81.12 93.87 17.86 95.59 08.07

what animal (00.53) 23.12 59.70 71.02 17.67 92.51 06.75

what brand (00.36) 40.13 36.84 32.19 25.34 80.95 12.50

Table 3: Open-answer test-dev results for different question types

on real images (Q+C is reported on val). Questions types are de-

termined by the one or two words that start the question. The per-

centage of questions for each type is shown in parentheses. Last

column shows the human age required to answer the questions (as

reported by AMT workers). See text for details.

containing over 250K images, 760K questions, and around

10M answers. We will set up an evaluation server and or-

ganize an annual challenge and an associated workshop to

facilitate systematic progress. We demonstrate the wide va-

riety of questions and answers in our dataset, as well as the

diverse set of AI capabilities in computer vision, natural lan-

guage processing, and commonsense reasoning required to

answer these questions accurately.

The questions we solicited from our human subjects were

open-ended and not task-specific. For some application do-

mains, it would be useful to collect task-specific questions.

For instance, questions may be gathered from subjects who

are visually impaired [2], or the questions could focused on

one specific domain (say sports). Bigham et al. [2] created

an application that allows the visually impaired to capture

images and ask open-ended questions that are answered by

human subjects. Interestingly, these questions can rarely be

answered using generic captions. Training on task-specific

datasets may help enable practical VQA applications.

We believe VQA has the distinctive advantage of push-

ing the frontiers on “AI-complete” problems, while be-

ing amenable to automatic evaluation. Given the recent

progress in the community, we believe the time is ripe to

take on such an endeavor.
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