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Abstract

Modern large displacement optical flow algorithms usu-

ally use an initialization by either sparse descriptor match-

ing techniques or dense approximate nearest neighbor

fields. While the latter have the advantage of being dense,

they have the major disadvantage of being very outlier

prone as they are not designed to find the optical flow, but

the visually most similar correspondence. In this paper we

present a dense correspondence field approach that is much

less outlier prone and thus much better suited for optical

flow estimation than approximate nearest neighbor fields.

Our approach is conceptually novel as it does not require

explicit regularization, smoothing (like median filtering) or

a new data term, but solely our novel purely data based

search strategy that finds most inliers (even for small ob-

jects), while it effectively avoids finding outliers. Moreover,

we present novel enhancements for outlier filtering. We

show that our approach is better suited for large displace-

ment optical flow estimation than state-of-the-art descriptor

matching techniques. We do so by initializing EpicFlow (so

far the best method on MPI-Sintel) with our Flow Fields

instead of their originally used state-of-the-art descriptor

matching technique. We significantly outperform the origi-

nal EpicFlow on MPI-Sintel, KITTI and Middlebury.

1. Introduction

Finding the correct dense optical flow between images

or video frames is a challenging problem. While the visual

similarity between two image regions is the most important

clue for finding the optical flow, it is often unreliable due to

illumination changes, deformations, repetitive patterns, low

texture, occlusions or blur. Hence, basically all dense opti-

cal flow methods add prior knowledge about the properties

of the flow, like local smoothness assumptions [18], struc-

ture and motion adaptive assumptions [30], the assump-

tion that motion discontinuities are more likely at image

edges [26], or the assumption that the optical flow can be ap-

(a) ANNF [16] (b) Our Flow Field

(c) Our outlier filtered Flow Field (d) Ground truth

Figure 1. Comparison of state-of-the-art approximate nearest

neighbor fields (a) and Flow Fields (b) with the same data term.

a) and b) are shown with ground truth occlusion map (black pix-

els). c) is after outlier filtering, occluded regions are successfully

filtered. It can be used as initialization for an optical flow method.

proximated by a few motion patterns [9]. The most popular

of these assumptions is the local smoothness assumption. It

is usually incorporated into a joint energy based regulariza-

tion that rates data consistency together with the smooth-

ness in a variational setting of the flow [18]. One major

drawback of this setting is that fast minimization techniques

usually rely on local linearization of the data term and thus

can adapt the motion field only very locally. Hence, these

methods have to use image pyramids to deal with fast mo-

tions (large displacements) [6]. In practice, this fails in

cases where the determined motion on a lower scale is not

very close to the correct motion of a higher scale.

In contrast, for purely data based techniques like approx-

imate nearest neighbor fields [16] (ANNF) and sparse de-

scriptor matches [32] there are fast approaches that can ef-

ficiently perform a global search for the best match on the

full image resolution. However, as there is no regulariza-

tion, (approximate) nearest neighbor fields (NNF) usually

contain many outliers that are difficult to identify. Further-

more, even if outliers can be identified they leave gaps in the

motion field that must be filled. Sparse descriptor matches
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usually contain fewer outliers as matches are only deter-

mined for carefully selected points with high confidence.

However, due to their sparsity the gaps between matches are

usually even larger than in outlier filtered ANNF. Gaps can

be problematic, since a motion for which no match is found

cannot be considered. Despite these difficulties, ANNF and

sparse descriptor matches gained a lot of popularity in the

last years as initial step of large displacement optical flow

algorithms. Nowadays, nearly all top-performing methods

on challenging datasets like MPI-Sintel [8] rely on such

techniques. However, while there are descriptor matching

approaches like Deep Matching [32] that are tailored for

optical flow, dense initialization is usually simply based on

ANNF – which is suboptimal. The intention behind ANNF

is to find the visually closest match (NNF), which is often

not identical with the optical flow. An important difference

is that NNF are known to be very noisy regarding the offset

of neighboring pixels, while optical flow is usually locally

smooth and occasionally abrupt (see Figure 1).

In this paper we show that it is possible to utilize this

fact, to create dense correspondence fields that contain sig-

nificantly fewer outliers than ANNF regarding optical flow

estimation – not because of explicit regularization, smooth-

ing (like median filtering) or a different data term, but solely

because of our novel search strategy that finds most inliers

while it effectively avoids finding outliers. We call them

Flow Fields as they are tailored for optical flow estimation,

while they are at the same time dense and purely data term

based like ANNF. Flow Fields are conceptually novel as we

avoid building on the popular, but for optical flow estima-

tion inappropriate, (A)NNF concept. Our contributions are:

• A novel hierarchical correspondence field search strat-

egy that features powerful non-locality in the im-

age space (see Figure 5 a)), but locality in the flow

space (for smoothness) and can utilize hierarchy lev-

els (scales) as effective outlier sieves. It allows to ob-

tain better results with hierarchies/scales than without,

even for tiny objects and other details.

• We extend the common forward backward consistency

check by a novel two way consistency check as well as

region and density based outlier filtering.

• We show the effectiveness of our approach by clearly

outperforming ANNF and by obtaining the best result

on MPI-Sintel [8] and the second best on KITTI [13].

2. Related Work

Dense optical flow research started more than 30 years

ago with the work of Horn and Schunck [18]. We refer

to publications like [2, 27, 29] for a detailed overview of

optical flow methods and the general principles behind it.

One of the first works that integrated sparse descriptor

matching for improved large displacement performance was

Brox and Malik [7]. Since then, several works followed the

idea of using sparse descriptors [34, 32, 20, 28, 26]. Only

few works used dense ANNF instead [19, 9]. Chen et al. [9]

showed that remarkable results can be achieved on the Mid-

dlebury evaluation portal by extracting the dominant motion

patterns from ANNF. Revaud et al. [26] compared ANNF to

Deep Matching [32] for the initialization of their approach.

They found that Deep Matching clearly outperforms ANNF.

We will use their approach for optical flow estimation and

show that this is not the case for our Flow Fields.

An important milestone regarding fast ANNF estimation

was Patchmatch [4]. Nowadays, there are even faster ANNF

approaches [21, 16]. There are also approaches that try to

obtain correspondence fields tailored to optical flow. Lu

et al. [23] used superpixels to gain edge aware correspon-

dence fields. Bao et al. [3] used an edge aware bilateral data

term instead. While the edge aware data term helps them

to obtain good results – especially at motion boundaries,

their approach is still based on the ANNF strategy to deter-

mine correspondences, although it is unfavorable for optical

flow. HaCohen et al. [15] presented a hierarchical corre-

spondence field approach for image enhancement. While it

does well in removing outliers, it also removes inliers that

are not supported by a big neighborhood (in each scale).

Such inliers are especially important for optical flow as they

cannot be determined by the classical coarse to fine strategy.

Our approach cannot only preserve such isolated inliers, but

can also spread them if needed (Figure 5 a)).

A technique that shares the idea of preferring locality

(to avoid outliers) with our approach is region growing in

3D reconstruction [14, 12]. It is usually computationally

expensive. A faster GPU parallelizable alternative based on

PatchMatch [4] was presented in our previous work [1]. It

shares some ideas with our basic approach in Section 3.1,

but was not designed for optical flow estimation and lacks

many important aspects of our approach in this paper.

3. Our Approach

In this section we detail our Flow Field approach, our

extended outlier filter and the data terms used in the tests

of our paper. Flow Fields are described in two steps. First

we describe a basic (non-hierarchical) Flow Field approach.

Afterwards, we build our full (hierarchical) Flow Field ap-

proach on top of it. Given two images I1, I2 ⊂ R
2 we

use the following notation: Pr(pi) is an image patch with

patch radius r centered at a pixel position pi = (x, y)i ∈
Ii i = 1, 2. The total size of our rectangular patch is

(2r + 1) × (2r + 1) pixels. Our goal is to determine the

optical flow field of I1 with respect to I2 i.e. the displace-

ment field for all pixels p1 ∈ I1, denoted by F (p1) =
M(p1) − p1 ∈ R

2 for each pixel p1. M(p1) is the corre-

sponding matching position p2 ∈ I2 for a position p1 ∈ I1.

All parameters mentioned below are assigned in Section 4.
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Figure 2. The pipeline of our Flow Field approach. For the basic

approach we only consider the full resolution.

3.1. Basic Flow Fields

The first step of our basic approach is similar to the kd-

tree based initialization step of the ANNF approach of He

and Sun [16]. We do not use any other step of [16] as we

have found them to be harmful for optical flow estimation,

since they introduce resistant outliers whose matching er-

rors are below those of the ground truth. Once introduced,

a purely data based approach without regularization cannot

remove them anymore. The secret is to avoid finding them.1

Our approach, outlined in Figure 2, works as fol-

lows: First we calculate the Walsh-Hadamard Transform

(WHT) [17] for all patches Pr(p2) centered at all pixel po-

sitions p2 in image I2 similar to [16].2 In contrast to them

we use the first 9 bases for all three color channels in the

CIELab color space. The resulting 27 dimensional vectors

for each pixel are then sorted into a kd-tree with leaf size

l. We also split the tree in the dimension of the maximal

spread by the median value. After building the kd-tree we

create WHT vectors for all patches Pr(p1) at all pixel posi-

tions in image I1 as well and search the corresponding leaf

within the kd-tree (where it would belong to if we would

add it to the tree). All l entries L in the leaf found by the

vector of the patch Pr(p1) are considered as candidates for

the initial Flow Field F (p1). To determine which of them

is the best we calculate their matching errors Ed with a ro-

bust data term d and only keep the candidate with the lowest

matching error in the initial Flow Field, i.e.

F (p1) = argminp2∈L(Ed(Pr(p1), Pr(p2)))− p1 (1)

This is similar to reranking in [16]. We call points in the

initial Flow Field arising directly from the kd-tree seeds.

Larger l increase the probability that both correct seeds and

resistant outliers are found. However, if both are found at a

position the resistant outlier prevails. Thus, it is advisable

to keep l small and to utilize the local smoothness of opti-

cal flow to propagate rare correct seeds in the initial Flow

Field into many surrounding pixels – outliers usually fail in

this regard as their surrounding does not form a smooth sur-

face. The propagation of our initial flow values works sim-

ilar to the propagation step in the PatchMatch approach [4]

i.e. flow values are propagated from position (x, y − 1)1

1 ANNF try to reproduce the NNF that contains all resistant outliers.
2 For WHTs patches must be split in the middle. We found that quality

does not suffer from spiting uneven patches (2r+1) into sizes r and r+1.

a) b) c)

Figure 3. a) Example for the ability of propagation to propagate

into different directions within a 90 degree angle. Gray pixels re-

ject the flow of the green seed pixel. In practice each pixel is a

seed. b) Pixel positions of P1 (green), P 2

1 (blue) and P
4

1 (red).

The central pixel is in black. c) Our propagation directions.

and (x− 1, y)1 to position p1 = (x, y)1 as follows:

F (p1) = argminp2∈G1
(Ed(Pr(p1), Pr(p2)))− p1

G1 = {F (p1), F
(

(x, y − 1)1
)

, F
(

(x− 1, y)1
)

}+ p1
(2)

G1 are the considered flows for our first propagation step. It

is important to process positions (x, y− 1)1 and (x− 1, y)1
with Equation 2 before position (x, y)1 is processed. This

allows the propagation approach to propagate into arbitrary

directions within a 90 degree angle (see Figure 3 a)). As

optical flow varies between neighboring pixels, but propa-

gation can only propagate existing flow values our next step

is a random search step. Here, we modify the flow of each

pixel p1 by a random uniformly distributed offset Ornd of at

most R pixels. If the matching error E decreases we replace

the flow F by the new flow F + Ornd. Ornd is a subpixel

accurate offset which leads to subpixel accurate positions

M(p1). The pixel colors of M(p1) and Pr(M(p1)) are de-

termined by bilinear interpolation. Early subpixel accuracy

not only improves accuracy, but also helps to avoid outliers

as subpixel accurate matches have a smaller matching error.

In total we perform alternately 4 propagation and 3 ran-

dom search steps (all with the same R) as shown in Fig-

ure 2. While the first propagation step is performed to the

right and bottom, the subsequent three propagation steps are

performed into the directions shown in Figure 3 c). Many

approaches that perform propagation (e.g. [16]) do not con-

sider different propagation directions. Even the original

PatchMatch approach only considers the first two direc-

tions. While these already include all 4 main directions,

we have to consider that propagation actually can propagate

into all directions within a quadrant (see Figure 3 a)) and

that there are 4 quadrants in the full 360 degree range.

Extensive propagation with random search is important

to distribute rare correct seeds into the whole Flow Field.

The locality of single propagation steps and random search

(with small R) effectively prevents the Flow Field from in-

troducing new outliers not existing in the initial Flow Field.

3.2. Flow Fields

Our basic Flow Fields still contain many resistant out-

liers arising from kd-tree initialization. We can further re-
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Figure 4. Illustration of our hierarchical Flow Field approach.

Flow offsets saved in pixels are propagated in all arrow directions.

duce their amount (and the amount of inliers) by not deter-

mining an initial flow value for each pixel. This helps as

inliers usually propagate much further than outliers (optical

flow is smooth, outliers are usually not). However, to cover

the larger flow variations between fewer inliers (that are fur-

ther apart from each other) the random search distance R

must be increased, which raises the danger of adding close

by resistant outliers. A way to avoid this is to increase r, as

well. This helps e.g. in the presence of repetitive patterns

or poorly textured regions, but also significantly increases

computation time and creates new failure cases e.g. close to

motion discontinuities and for small objects. Furthermore,

a larger r (and R) leads to less accurate matches.

We found a powerful solution (outlined in Figure 4) that

avoids most of the disadvantages of large patches while be-

ing even more robust: First we define that Pn
r (pi) is a sub-

sampled patch at pixel position pi with patch radius r ∗ n

that consists of only each nth pixel within its radius includ-

ing the center pixel i.e. (see Figure 3 b) for an illustration):

(x∗, y∗) ∈ Pn
r ((x, y)) ⇒

{

|(x∗ − x)| mod n = 0

|(y∗ − y)| mod n = 0
(3)

The pixel colors for Pn
r (pi) are not determined from image

Ii, but from a smoothed version of Ii that we call Ini . This

is similar to using image pyramids and using Pr on a higher

pyramid level. The difference is that Ini has the full image

resolution and that pi is an actual pixel position on the full

resolution, which effectively prevents upsampling errors.

As Ini only has to be calculated once we can afford to use

an expensive low pass filter without noticeable difference in

overall processing speed. In practice, we downsample Ii
by a factor of n with area based downsampling, before up-

sampling it again with Lanczos interpolation [11] to obtain

Ini . We always start with n = 2k. Our full Flow Field ap-

proach first initializes only each nth pixels pn
1
= (xn, yn)1

with xn mod n = 0 and yn mod n = 0 (see Figure 4).

Initialization is performed similar to the basic approach:

F (pn
1
) = argminp2∈L

(

Ed

(

Pn
r (p

n
1
), Pn

r (p2)
)

)

− pn
1

(4)

Note that the kd-tree samples L are identical to those of

a) b)

c) d)

e) f)

Figure 5. a) Flow Field obtained with k = 3 with b) as only

initialization (black pixels in b) are set to infinity). It shows the

powerfulness of our hierarchical propagation. c) Like a) but with

kd-tree initialization. The 3 marked details are preserved due to

their availability in the coarse level d). e) like c) but without hi-

erarchies (basic approach). Details are not preserved. f) ground

truth. Note: As correspondence estimation is impossible in oc-

cluded areas and as orientation we blacked such areas out.

the basic approach. We still use non-subsampled patches

Pr(pi) for the WHT vectors for an accurate initialization.

After initialization we perform propagation and random

search similar to the basic approach. Except that we only

propagate between points pn
1

i.e. (xn − n, yn)1, (xn, yn −
n)1 → (xn, yn)1 etc. (see Figure 4) and that we use

Rn = R ∗ n as maximum random search distance. Af-

ter determining F (pn
1
) using patches Pn, we determine

F (pm
1
),m = 2k−1 in the same way using patches Pm.

Hereby, the samples F (pn
1
) are used as seeds instead of kd-

tree samples. Positions pm
1

that are not part of pn
1

receive

an initial flow value in the first propagation step of the hier-

archy level k − 1. This approach is repeated up to the full

resolution F (p1
1
) = F (p1) (see Figure 2 and 4).

Propagation and random search (with small enough R)

are usually too local in flow space to introduce new out-

liers, while propagations of lower hierarchy levels are likely

to remove most outliers persisting in higher levels, since re-

sistant outliers are often not resistant on all levels. Thus,

hierarchy levels serve as effective outlier sieves (see videos

in supplementary material). Also, matching patches Pn
r

is mostly significantly more robust than matching patches

Pr∗n if r is sufficiently large. Deformations affect smoothed

patches e.g. less, as smoothing allows more matching in-

accuracy for a good match. Still, we obtain accurate flow

values as we are iteratively increasing the resolution.

In contrast to ordinary multi scale approaches, our hi-

erarchical approach is non-local in the image space. Fig-

ure 5 a) demonstrates how powerful this non-locality is. The

Flow Field is only initialized by two flow values with a flow

offset of 52 pixels to each other (Figure 5 b)). This is more
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than the random search step of all hierarchy levels together

can traverse. Thus, the orange flow is a propagation barrier

for the violet flow (Like gray pixels in Figure 3 a)). Any-

how, our approach manages to distribute the violet flow and

similar flows determined by random search throughout the

whole image. We originally performed the experiment to

prove that the flow can be propagated into the arms starting

from the body, but our approach even can obtain the flow

for nearly the whole image with such poor initialization.

Figure 5 c) shows that we can even find tiny objects with

our hierarchical approach: The 3 marked objects are well

persevered in c) due to their availability in the coarse level

d). Remarkably, these objects are only preserved when us-

ing hierarchical matching. Our basic approach without hier-

archies only preserves parts of the upper object (a butterfly)

riddled with outliers, although its seeds are a superset of the

seed of the hierarchical approach – but it fails in avoiding

resistant outliers. Our hierarchical approach preserves tiny

objects due to unscaled WHTs (initialization) and since the

image gradients around tiny objects create local minima in

Ed, even for huge patches Pn
r . This is sufficient as lower

minima (resistant outliers) are successfully avoided by our

search strategy. Our visual tests showed that our approach

with k = 3 in general preserves tiny objects and other de-

tails better than our basic approach. With too large k (> 3)

tiny objects are due to lack of seeds not that well preserved.

3.3. Data Terms

In our paper we consider two data terms:

1. Census transform [36]. It is computationally cheap, il-

lumination resistant and to some extend edge aware.

We use the sum of census transform errors over all

color channels in the CIELab color space for Ed.

2. Patch based SIFT flow [22]. A SIFT flow pixel usually

has S = 3 channels. The colors are determined by first

calculating the 128 dimensional SIFT vector for each

pixel and then reducing it by PCA to S dimensions.

The error between Sift Flow colors is determined by

the L2 distance. For the images Ini we found it advan-

tageous to smooth the Sift Flow images as described in

Section 3.2 and to not use larger SIFT features instead.

WHTs are still calculated in the CIELab color space.

3.4. Outlier Filtering

A common approach of outlier filtering is to perform a

forward backward consistency check. We found that the

robustness can be improved by a consistency check between

two Flow Fields with different patch radii, as outliers often

diverge into different directions. Practically, we calculate

a backward flow for two patch radii r and r2 and delete a

pixel if it is not consistent to both backward flows i.e. if

|F (p1) + F b
j (p1 + F (p1))| < ǫ, j ∈ 1, 2 (5)

is not fulfilled for one of the two backward flows F b
j . For a

3 way check an additional forward flow could be added, but

for a 2 way check an extra backward flow performs better

(see supplementary material for an explanation).

After the consistency check many of the remaining out-

liers form small regions that were originally connected to

removed outliers. Thus, we remove these regions as fol-

lows: First, we segment the partly outlier filtered Flow Field

into regions. Neighboring pixels belong to the same region

if the difference between their flow is below 3 pixels.3 Then,

we test for regions with less than s pixels if it is possible for

that region to add at least one outlier that was removed by

the consistency check with the same rule. If this is possible,

we found a small region that was originally connected to an

outlier and we remove all points in that region.

3.5. Sparsification and Dense Optical Flow

To fill the gaps created by outlier filtering we use the

edge preserving interpolation approach proposed by Revaud

et al. [26] (EpicFlow). We found that EpicFlow does not

work very well with too dense samples. Thus, we select

one sample in each 3x3 region in the outlier filtered Flow

Field if the region still contains at least e samples. This is

our last consistency check. We found that even after region

based filtering most remaining outliers are in sparse regions

where most flow values were removed. The sample that is

selected is the sample for which the sum of both forward

backward consistency check errors is the smallest.

4. Evaluation

We evaluate our approach on 3 optical flow datasets:

• MPI-Sintel [8]: It is based on an animated movie

and contains many large motions up to 400 pixels per

frame. The test set consists of two versions: clean

and final. Clean contains realistic illuminations and

reflections. Final additionally adds rendering effects

like motion, defocus blurs and atmospheric effects.

• Middlebury [2]: It was created for accurate optical

flow estimation with relatively small displacements.

Most approaches can obtain an endpoint error (EPE)

in the subpixel range.

• KITTI [13]: It was created from a platform on a driv-

ing car and contains images of city streets. The mo-

tions can become large when the car is driving.

In Section 4.1 we perform experiments to analyze our ap-

proach and compare it to ANNF. In Section 4.2 we present

our results in the public evaluation portals of the introduced

datasets. For simplicity, we use k = 3 and R = 1 which we

3 Only the flow differences between neighboring pixels count. The flow

values of a region can vary by an arbitrary offset.
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Figure 6. The left 4 columns show example results. Images is the average of both input images. For ANNF we use [16] in a fair way (see

text). FF means Flow Fields. OM means that the ground truth occlusion map is added (black pixels, it is incomplete at image boundaries).

Filtered FF is after outlier filtering (deleted pixels in black). FF+Epic is EpicFlow applied on our Flow Fields. EpicFlow is the original

EpicFlow. Right column: a) Our approach fails in the face of the right person (outlier) and at its back (blue samples too far right). Still our

EPE is smaller due to more preserved details. b) The marked bright green flow is not considered due to too strong outlier filtering. This

makes a huge difference here. c) We show that our Flow Fields (bottom left) perform much better in presence of blur than ANNF (top left).

have found to perform well based on a few incoherent tests

(and Table 1 and 2 for k), l = 8 equivalent to [16] and r = 8
and r2 = 6 as runtime tradeoffs for the census transform.

Only ǫ (±1), e (±1), s (±50) and r = r2 + 1 for SIFT flow

were tuned coherently on all training frames. ǫ, e and s are

set to 5, 4 and 50 for MPI-Sintel, to 1, 7 and 50 for Mid-

dleburry and to 1, 9 and 150 for KITTI, respectively. If not

mentioned differently we use the census transform as data

term. For EpicFlow applied on Flow Fields we use their

standard parameters which are tuned for their Deep Match-

ing features [32]. For a fair comparison we use the same

parameters (tuning ǫ, e, s for ANNF does not affect our re-

sults), data term and WHTs in CIELab space for the ANNF

approach [16] (the original approach performs even worse).

This includes ANNF results in Section 4.1 and in Figure 1

and 6. More details regarding parameter selection and more

experiments can be found in our supplementary material.

Visual results are shown in Figure 6. EpicFlow can pre-

serve considerably more details with our Flow Fields than

with the original Deep Matching features. Even in failure

cases like in Figure 6 a) (right column), our approach often

still achieves a smaller EPE thanks to more preserved de-

tails. Note that the shown failure cases also happen to the

original EpicFlow. Despite more details our approach in

general does not incorporate more outliers. The occasional

removal of important details like the one marked in Figure 6

b) remains an issue – even for our improved outlier filtering

approach. The marked detail is important as the flow of

the very fast moving object is different on the left (brighter

green). Still, we can in general preserve more details than

the original EpicFlow. Figure 6 c) shows that our approach

also performs well in presence of motion and defocus blur.
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4.1. Experiments

In the introduction we claimed that our Flow Fields are

better suited for optical flow estimation than ANNF and

contain significantly fewer outliers. To prove our statement

quantitatively we compare our Flow Fields with different

number of hierarchy levels k to the state-of-the-art ANNF

approach presented in [16]. We also compare to the real

NNF calculated in several days on the GPU. The compari-

son is performed in Table 1 with 4 different measures:

• The percentage of flows with an EPE below 3 pixels.

• The EPE bounded to a maximum of 10 pixels for each

flow value (EPE10). Outliers in correspondence fields

can have arbitrary offsets, but the difficulty to remove

them does not scale with their EPE. Local outliers can

even be more harmful since they are more likely to

pass the consistency check. The EPE10 considers this.

• The real endpoint error (EPE) of the raw correspon-

dence fields. It has to be taken with care (see EPE10).

• The EPE after outlier filtering (like in Section 3.4) and

utilizing EpicFlow to fill the gaps (Epic).

All 4 measures are determined in non-occluded areas only,

as it is impossible to determine data based correspondences

in occluded areas. As can be seen, we can determine nearly

90% of the pixels on the challenging MPI-Sintel training

dataset with an EPE below 3 pixels, relying on a purely data

based search strategy which considers each position in the

image as possible correspondence. With weighted median

filtering (weighted by matching error) this number can even

be improved further, but the distribution is unfavorable for

EpicFlow (it probably removes important details similar to

some regularization methods). In contrast, more hierarchy

levels up to the tested k = 3 have a positive effect on the

EPE as they successfully can provide the required details.

Bao et al. [3] also used hierarchical matching in their ap-

proach to speed it up. However, despite joined bilateral up-

sampling combined with local patch matching in a 3x3 win-

dow they found that the quality on Middlebury drops clearly

due to hierarchical matching. As can be seen in Table 2 this

is not the case for our approach. As expected from the ex-

periment in Figure 5 the quality even rises. Note that the

Epic result does not rise much as EpicFlow is not designed

for datasets like Middlebury with EPEs in the subpixel area.

Even with the ground truth it does not perform much better

than with our approach. Our upsampling strategy requires

11 patch comparisons while [3] requires 9 comparisons and

joined bilateral upsampling. However, in contrast to their

upsampling strategy ours is non-local which means that we

can easily correct inaccuracies and errors from a coarser

level (the non-locality is demonstrated in Figure 5 a)).

Method ≤ 3 pixel EPE10 EPE Epic

k = 3+median 92.17% 0.91 4.41 2.13

k = 3 89.20% 1.30 6.04 2.04

k = 2 88.79% 1.36 8.84 2.08

k = 1 86.88% 1.57 14.65 2.27

k = 0 79.13% 2.29 32.51 2.81

ANNF [16] 68.05 % 3.38 59.11 3.41

NNF 60.20 % 4.18 110.30 - 4

Original EpicFlow - 2.48

Table 1. Comparison of different correspondence fields on a rep-

resentative subset (2x every 10th frame) on non-occluded regions

of the MPI-Sintel training set (clean and final). See text for details.

Method ≤ 1 pixel EPE3 EPE Epic

Ground truth 100% 0.0 0.0 0.214

k = 3 87.08 % 0.499 1.16 0.239

k = 2 86.81% 0.508 2.32 0.240

k = 0 81.93% 0.670 12.33 0.240

Original EpicFlow - 0.380

Table 2. Comparison of our approach with different hierarchy lev-

els on the Middlebury training dataset to demonstrate that the qual-

ity does not suffer from hierarchical matching like in [3]. Note that

the Epic result is biased to the value in the first row.
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Figure 7. Percentage of removed outliers versus percentage of re-

moved inliers, for an outlier threshold of 5 pixels (We vary ǫ).

Outlier Filtering Figure 7 shows the percentage of out-

liers that are removed versus the percentage of inliers that

are removed by different consistency checks on the MPI-

Sintel training set. Both the 2x consistency check as well

as the region filter increase the amount of removed outliers

for a fixed inlier ratio. We also considered using the match-

ing error Ed for outlier filtering, but there is no big gain to

achieve (see supplementary material).

4.2. Results

MPI-Sintel Our results compared to other approaches on

MPI-Sintel can be seen in Table 3. We clearly outperform

the original EpicFlow as well as all other approaches. We

can reduce the EPE on final by nearly 0.5 pixels and nearly

0.4 pixels on clean. Most of this advance is obtained in

the non-occluded area but EpicFlow also rewards our bet-

4No backward flow calculated
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ter input in the occluded areas. On clean we can reduce

the EPE in non-occluded areas to only 1.056 pixels, which

is far from the performance of most other approaches. On

final we can drastically reduce the error of fast motions of

more than 40 pixels (s40+). Our approach also performs

well close to occlusion boundaries (d0-10).

Middlebury On Middlebury we obtain an average rank

of 38.0 (EpicFlow: 52.2) and an average EPE of 0.33

(EpicFlow: 0.39). Our rank is either exactly the same as

EpicFlow (e.g. 69 on Army) or better (e.g. 4 instead of

53 on Urban). As already discussed in Section 4.1 the EPE

rank that can be obtained with EpicFlow on Middlebury is

limited, as EpicFlow is not designed for such datasets. Nev-

ertheless, we can improve the result on some datasets.

KITTI On KITTI patch based approaches seem to either

perform poorly [9], use scale robust features [25] or special

techniques like plane fitting [3]. We think this is because

image patches of walls and the street are undergoing strong

scale changes and deformations (due to high view angle).

With the census transform our results are good for an un-

modified patch based approach but not state-of-the-art (see

supplementary material). However, as our approach allows

to exchange data terms as easily as parameters we use the

more deformation and scale robust SIFT flow data term to

obtain the results on KITTI presented in Table 4.5 We use

small patches with r = 3 and r2 = 2 as the benefit of SIFT

to be scale and deformation robust is otherwise destroyed.

Due to the small patch sizes we use S = 12 and S2 = 18
for the 2. consistency check as runtime tradeoffs. As can

be seen, we just missed the best approach by 0.01% in > 3

pixel nocc. Our approach only fails slightly in >3 pixel all.

However, note that interpolation into the occluded areas is

performed by EpicFlow. There might be better interpolation

methods for the specific application of planar street scenes.

Compared to the original EpicFlow we are much better. In-

deed, our approach is currently the only one with top per-

formance on Sintel clean and final, as well as KITTI.

Interesting is that although we have to use very small

patches on KITTI, our hierarchical approach (with enlarged

but blurred patches) still works very well. This demon-

strates that the concept of hierarchical matching works even

in challenging cases when matching large patches fails.

Runtime Our approach including EpicFlow requires 18s

for a frame in MPI-Sintel running on the CPU.6 By using

patches with r = 6 and no second consistency check we can

reduce the total time to 10s with an EPE increase of only

0.13 on final (training set) and even a decrease of 0.02 on

clean as smaller patches perform better here. On KITTI our

5 Our approach with SIFT flow also outperforms EpicFlow on the MPI-

Sintel and Middlebury training sets (but less). See supplementary material.
6In detail: 3× 0.4s for kd-tree initialization, 2× 5s+ 1× 3s for the

three Flow Fields, 0.1s for outlier filtering and 3.5s for EpicFlow.

Method (Final) EPE all EPE nocc. EPE occ. d0-10 s40+

Flow Fields 5.810 2.621 31.799 4.851 33.890

EpicFlow [26] 6.285 3.060 32.564 5.205 38.021

TF+OFM [20] 6.727 3.388 33.929 5.544 39.761

SparseFlowFused[28] 7.189 3.286 38.977 5.567 44.319

DeepFlow [32] 7.212 3.336 38.781 5.650 44.118

NFF-Local [9] 7.249 2.973 42.088 4.896 44.866

Method (Clean) EPE all EPE nocc. EPE occ. d0-10 s40+

Flow Fields 3.748 1.056 25.700 2.784 23.602

EpicFlow [26] 4.115 1.360 26.595 3.660 25.859

PH-Flow [35] 4.388 1.714 26.202 3.612 27.997

NNF-Local[9] 5.386 1.397 37.896 2.722 36.342

Table 3. Results on MPI-Sintel. Bold results are the best, under-

lined the 2. best. (n)occ = (non) occluded. d0-10 = 0 - 10 pixels

from occlusion boundary. s40+ = motions of more than 40 pixels.

Method Rank >3 pixel

nocc.

>3 pixel

all

EPE

nocc.

EPE all

PH-Flow [35] 1 5.76 % 10.57 % 1.3 px 2.9 px

Flow Fields 2 5.77 % 14.01 % 1.4 px 3.5 px

NLTGV-SC [25] 3 5.93 % 11.96 % 1.6 px 3.8 px

DDS-DF [31] 4 6.03 % 13.08 % 1.6 px 4.2 px

TGV2ADCSIFT [5] 5 6.20 % 15.15 % 1.5 px 4.5 px

EpicFlow [26] 13 7.88 % 17.08 % 1.5 px 3.8 px

Table 4. Results on KITTI test set. The table rank is the original

rank excluding non optical flow methods. nocc. = Non-occluded.

approach with SIFT flow needs 23 seconds per image (13

seconds without PCA). The best approach PPR-Flow needs

800s and the third best NLTGV-SC 16s, but on the GPU.

5. Conclusion and Future Work

In this paper we presented a novel correspondence field

approach for optical flow estimation. We showed that our

Flow Fields are clearly superior to ANNF and better suited

than state-of-the-art descriptor matching approaches, re-

garding optical flow estimation. We also presented ad-

vanced outlier filtering and demonstrated that we can ob-

tain promising optical flow results, utilizing a state-of-the-

art optical flow algorithm like EpicFlow. With our results,

we hope to inspire the research of dense correspondence

field estimation for optical flow. So far, sparse descriptor

matching techniques are much more popular as too little ef-

fort was spent in improving dense techniques.

In future work, more advanced data terms can be tested.

Thanks to intensive research mainly in stereo estimation

there are nowadays e.g. many improvements for the census

transform [10, 25, 24, 33]. These can probably be used to

further improve our approach. Promising is also to estimate

patch deformations by random search [15]. It is known that

this works well for patch normals in 3D reconstruction [1].
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