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Abstract

Convolutional Neural Networks (ConvNets) have suc-

cessfully contributed to improve the accuracy of regression-

based methods for computer vision tasks such as human

pose estimation, landmark localization, and object detec-

tion. The network optimization has been usually performed

with L2 loss and without considering the impact of out-

liers on the training process, where an outlier in this con-

text is defined by a sample estimation that lies at an ab-

normal distance from the other training sample estimations

in the objective space. In this work, we propose a re-

gression model with ConvNets that achieves robustness to

such outliers by minimizing Tukey’s biweight function, an

M-estimator robust to outliers, as the loss function for the

ConvNet. In addition to the robust loss, we introduce a

coarse-to-fine model, which processes input images of pro-

gressively higher resolutions for improving the accuracy of

the regressed values. In our experiments, we demonstrate

faster convergence and better generalization of our robust

loss function for the tasks of human pose estimation and age

estimation from face images. We also show that the com-

bination of the robust loss function with the coarse-to-fine

model produces comparable or better results than current

state-of-the-art approaches in four publicly available hu-

man pose estimation datasets.

1. Introduction

Deep learning has played an important role in the com-

puter vision field in the last few years. In particular, several

methods have been proposed for challenging tasks, such

as classification [22], detection [15], categorization [49],

segmentation [27], feature extraction [38] and pose estima-

tion [9]. State-of-the-art results in these tasks have been

achieved with the use of Convolutional Neural Networks

(ConvNets) trained with backpropagation [24]. Moreover,
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Figure 1: Comparison of L2 and Tukey′s biweight loss func-

tions: We compare our results (Tukey’s biweight loss) with the

standard L2 loss function on the problem of 2D human pose es-

timation (PARSE [48], LSP [19], Football [20] and Volleyball [3]

datasets). On top, the convergence of L2 and Tukey’s biweight

loss functions is presented, while on the bottom, the graph shows

the mean pixel error (MPE) comparison for the two loss functions.

For the convergence computation, we choose as reference error,

the smallest error using L2 loss (blue bars in bottom graph). Then,

we look for the epoch with the closest error in the training using

Tukey’s biweight loss function.

the majority of the tasks above are defined as classification

problems, where the ConvNet is trained to minimize a soft-

max loss function [9, 22]. Besides classification, ConvNets

have been also trained for regression tasks such as human

pose estimation [26, 44], object detection [42], facial land-

mark detection [41] and depth prediction [11]. In regres-

sion problems, the training procedure usually optimizes an

L2 loss function plus a regularization term, where the goal
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is to minimize the squared difference between the estimated

values of the network and the ground-truth. However, it is

generally known that L2 norm minimization is sensitive to

outliers, which can result in poor generalization depending

on the amount of outliers present during training [17]. With-

out loss of generality, we assume that the samples are drawn

from an unknown distribution and outliers are sample esti-

mations that lie at an abnormal distance from other training

samples in the objective space [28]. Within our context, out-

liers are typically represented by uncommon samples that

are rarely encountered in the training data, such as rare body

poses in human pose estimation, unlikely facial point posi-

tions in facial landmark detection or samples with impre-

cise ground-truth annotation. In the presence of outliers, the

main issue of using L2 loss in regression problems is that

outliers can have a disproportionally high weight and con-

sequently influence the training procedure by reducing the

generalization ability and increasing the convergence time.

In this work, we propose a loss function that is robust

to outliers for training ConvNet regressors. Our motivation

originates from Robust Statistics, where the problem of out-

liers has been extensively studied over the past decades, and

several robust estimators have been proposed for reducing

the influence of outliers in the model fitting process [17].

Particularly in a ConvNet model, a robust estimator can be

used in the loss function minimization, where training sam-

ples with unusually large errors are downweighted such that

they minimally influence the training procedure. It is worth

noting that the training sample weighting provided by the

robust estimator is done without any hard threshold between

inliers and outliers. Furthermore, weighting training sam-

ples also conforms with the idea of curriculum [5] and self-

paced learning [23], where each training sample has differ-

ent contribution to the minimization depending on its error.

Nevertheless, the advantage in the use of a robust estima-

tor, over the concept of curriculum or self-paced learning,

is that the minimization and weighting are integrated in a

single function.

We argue that training a ConvNet using a loss function

that is robust to outliers results in faster convergence and

better generalization (Fig. 1). We propose the use of Tukey’s

biweight function, a robust M-estimator, as the loss function

for the ConvNet training in regression problems (Fig. 4).

Tukey’s biweight loss function weights the training samples

based on their residuals (notice that we use the terms resid-

ual and error interchangeably, even if the two terms are not

identical, with both standing for the difference between the

true and estimated values). Specifically, samples with un-

usually large residuals (i.e. outliers) are downweighted and

consequently have small influence on the training proce-

dure. Similarly, inliers with insignificant residuals are also

downweighted in order to prevent instabilities around local

minima. Therefore, samples with residuals that are not too

high or too small (i.e. inliers with significant residuals) have

the largest influence on the training procedure. In our Con-

vNet training, this influence is represented by the gradient

magnitude of Tukey’s biweight loss function, where in the

backward step of backpropagation, the gradient magnitude

of the outliers is low, while the gradient magnitude of the

inliers is high except for the ones close to the local mini-

mum. In Tukey’s biweight loss function, there is no need

to define a hard threshold between inliers and outliers. It

only requires a tuning constant for suppressing the residu-

als of the outliers. We normalize the residuals with the me-

dian absolute deviation (MAD) [46], a robust approxima-

tion of variability, in order to preassign the tuning constant

and consequently be free of parameters.

To demonstrate the advances of Tukey’s biweight loss

function, we apply our method to 2D human pose estima-

tion in still images and age estimation from face images.

In human pose estimation, we propose a novel coarse-to-

fine model to improve the accuracy of the localized body

skeleton, where the first stage of the model is based on an

estimation of all output variables using the input image, and

the second stage relies on an estimation of different subsets

of the output variables using higher resolution input image

regions extracted using the results of the first stage. In the

experiments, we evaluate our method on four publicly avail-

able human pose datasets (PARSE [48], LSP [19], Foot-

ball [20] and Volleyball [3]) and one on age estimation [12]

in order to show that: 1. the proposed robust loss func-

tion allows for faster convergence and better generalization

compared to the L2 loss; and 2. the proposed coarse-to-fine

model produces comparable to better results than the state-

of-the-art for the task of human pose estimation.

2. Related Work

In this section, we discuss deep learning approaches for

regression-based computer vision problems. In addition, we

review the related work on human pose estimation, since

it comprises the main evaluation of our method. We refer

to [37] for an extended overview of deep learning and its

evolution.

Regression-based deep learning. A large number of

regression-based deep learning algorithms have been re-

cently proposed, where the goal is to predict a set of in-

terdependent continuous values. For instance, in object and

text detection, the regressed values correspond to a bound-

ing box for localisation [18, 42], in human pose estima-

tion, the values represent the positions of the body joints

on the image plane [26, 34, 44], and in facial landmark de-

tection, the predicted values denote the image locations of

the facial points [41]. In all these problems, a ConvNet has

been trained using an L2 loss function, without consider-

ing its vulnerability to outliers. It is interesting to note that

some deep learning based regression methods combine the

L2-based objective function with a classification function,

which effectively results in a regularization of L2 and in-

creases its robustness to outliers. For example, Zhang et

al. [50] introduce a ConvNet that is optimized for landmark
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Figure 2: Our Results Our results on 2D human pose estimation

on the PARSE [48] dataset.

detection and attribute classification, and they show that the

combination of softmax and L2 loss functions improves the

network performance when compared to the minimization

of L2 loss alone. Wang et al. [47] use a similar strategy

for the task of object detection, where they combine the

bounding box localization (using an L2 norm) with object

segmentation. The regularization of the L2 loss function

has been also addressed by Gkioxari et al. [16], where the

function being minimized comprises a body pose estimation

term (based on L2 norm) and an action detection term. Fi-

nally, other methods have also been proposed to improve the

robustness of the L2 loss to outliers, such as the use of com-

plex objective functions in depth estimation [11] or multiple

L2 loss functions for object generation [1]. However, to the

best of our knowledge, none of the proposed deep learning

approaches handles directly the presence of outliers during

training with the use of a robust loss function, like we pro-

pose in this paper. Robust estimation methods, within our

context, can be found in the literature for training artificial

neural networks [32] or Hopfield-Tank networks [10], but

not for deep networks. For instance, a smoother function

than L2, using a logcosh loss, has been proposed in [32] or

a Conditional Density Estimation Network (CDEN) in [31].

Human pose estimation The problem of human pose es-

timation from images can be addressed by regressing a

set of body joint positions. It has been extensively stud-

ied from the single- and multi-view perspective, where

the standard ways to tackle the problem are based on

part-based models [2, 4, 13, 35, 39, 48] and holistic ap-

proaches [8, 14, 29]. Most of the recent proposals using

deep learning approaches have extended both part-based

and holistic models. In part-based models, the body is

decomposed into a set of parts and the goal is to infer

the correct body configuration from the observation. The

problem is usually formulated using a conditional random

field (CRF), where the unary potential functions include,

for example, body part classifiers, and the pairwise poten-

tial functions are based on a body prior. Recently, part-

based models have been combined with deep learning for

2D human pose estimation [9, 33, 43], where deep part de-

tectors serve as unary potential functions and also as image-

based body prior for the computation of the pairwise po-

tential functions. Unlike part-based models, holistic pose

estimation approaches directly map image features to body

poses [14, 29]. Nevertheless, this mapping has been shown

to be a complex task, which ultimately produced less com-

petitive results when compared to part-based models. Holis-

tic approaches have been re-visited due to the recent ad-

vances in the automatic extraction of high level features us-

ing ConvNets [26, 34, 44]. More specifically, Toshev et

al. [44] have proposed a cascade of ConvNets for 2D hu-

man pose estimation in still images. Furthermore, temporal

information has been included to the ConvNet training for

more accurate 2D body pose estimation [34] and the use of

ConvNets for 3D body pose estimation from a single im-

age has also been demonstrated in [26]. Nevertheless, these

deep learning methods do not address the issue of the pres-

ence of outliers in the training set.

The main contribution of our work is the introduction

of Tukey’s biweight loss function for regression problems

based on ConvNets. We focus on 2D human pose estima-

tion from still images (Fig. 2), and as a result our method

can be classified as a holistic approach and is close to the

cascade of ConvNets from [44]. However, we optimize a

robust loss function instead of the L2 loss of [44] and em-

pirically show that this loss function leads to more efficient

training (i.e faster convergence) and better generalization

results.

3. Robust Deep Regression

In this section, we introduce the proposed robust loss

function for training ConvNets on regression problems. In-

spired by M-estimators from Robust Statistics [6], we pro-

pose the use of Tukey’s biweight function as the loss to be

to be minimized during the network training.

The input to the network is an image x : Ω → R and

the output is a real-valued vector y = (y1, y2, . . . , yN )
of N elements, with yi ∈ R. Given a training dataset

{(xs,ys)}
S
s=1 of S samples, our goal is the training of a

ConvNet, represented by the function φ(.), under the mini-

mization of Tukey’s biweight loss function with backprop-

agation [36] and stochastic gradient descent [7]. This train-

ing process produces a ConvNet with learnt parameters θ

that is effectively a mapping between the input image x and

output y, represented by:

ŷ = φ(x;θ), (1)

where ŷ is the estimated output vector. Next, we present

the architecture of the network, followed by Tukey’s bi-

weight loss function. In addition, we introduce a coarse-

to-fine model for capturing features in different image reso-

lutions for improving the accuracy of the regressed values.

3.1. Convolutional Neural Network Architecture

Our network takes as input an RGB image and regresses

a N -dimensional vector of continuous values. As it is pre-

sented in Fig. 3, the architecture of the network consists of

five convolutional layers, followed by two fully connected

layers and the output that represents the regressed values.
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Network Architecture Coarse-to-Fine Model

Figure 3: Network and cascade structure: Our network consists of five convolutional layers, followed by two fully connected layers.

We use relative small kernels for the first two layers of convolution due to the smaller input image in comparison to [22]. Moreover, we

use a small number of filters because we have observed that regression tasks required fewer features than classification [22]. The last three

images (Coarse-to-Fine Model) on the right show the C = 3 image regions and respective subsets of ŷ used by the cascade of ConvNets

in the proposed coarse-to-fine model.

The structure of our network is similar to Krizhevsky’s [22],

but we use smaller kernels and fewer filters in the convo-

lutional layers. Our fully connected layers are smaller as

well, but as we demonstrate in the experimental section, the

smaller number of parameters is sufficient for the regression

tasks considered in this paper. In addition, we apply local

contrast normalization, as proposed in [22], before every

convolutional layers and max-pooling after each convolu-

tional layer in order to reduce the image size. We argue that

the benefits of max-pooling, in terms of reducing the com-

putational cost, outweighs the potential negative effect in

the output accuracy for regression problems. Moreover, we

use dropout [40] in the fourth convolutional and first fully

connected layers to prevent overfitting. The activation func-

tion for each layer is the rectified linear unit (ReLU) [30],

except for the last layer, which uses a linear activation func-

tion for the regression. Finally, we use our robust loss func-

tion for training the network of Fig. 3.

3.2. Robust Loss Function

The training process of the ConvNet is accomplished

through the minimization of a loss function that measures

the error between ground-truth and estimated values (i.e. the

residual). In regression problems, the typical loss function

used is the L2 norm of the residual, which during back-

propagation produces a gradient whose magnitude is lin-

early proportional to this difference. This means that esti-

mated values that are close to the ground-truth (i.e. inliers)

have little influence during backpropagation, but on the

other hand, estimated values that are far from the ground-

truth (i.e. outliers) can bias the whole training process given

the high magnitude of their gradient, and as a result adapt

the ConvNet to these outliers while deteriorating its perfor-

mance for the inliers. Recall that we consider the outliers

to be estimations from training samples that lie at an abnor-

mal distance from other sample estimations in the objective

space. This is a classic problem addressed by Robust Statis-

tics [6], which is solved with the use of a loss function that

weights the training samples based on the residual magni-

tude. The main idea is to have a loss function that has low

values for small residuals, and then usually grows linearly

or quadratically for larger residuals up to a point when it

saturates. This means that only relatively small residuals

(i.e. inliers) can influence the training process, making it

robust to the outliers that are mentioned above.

There are many robust loss functions that could be used,

but we focus on Tukey’s biweight function [6] because of

its property of suppressing the influence of outliers during

backpropagation (Fig. 4) by reducing the magnitude of their

gradient close to zero. Another interesting property of this

loss function is the soft constraints that it imposes between

inliers and outliers without the need of setting a hard thresh-

old on the residuals. Formally, we define a residual of the

ith value of vector y by:

ri = yi − ŷi, (2)

where ŷi represents the estimated value for the ith value of

y, produced by the ConvNet. Given the residual ri, Tukey’s

biweight loss function is defined as:

ρ(ri) =

{

c2

6

[

1− (1− ( ri
c
)2)3

]

, if |ri| ≤ c
c2

6
, otherwise

, (3)

where c is a tuning constant, which if is set to c = 4.6851,

gives approximately 95% asymptotic efficiency as L2 min-

imization on the standard normal distribution of residuals.

However, this claim stands for residuals drawn from a distri-

bution with unit variance, which is an assumption that does

not hold in general. Thus, we approximate a robust mea-

sure of variability from our training data in order to scale

the residuals by computing the median absolute deviation

(MAD) [17]. MAD measures the variability in the training

data and is estimated as:

MADi = median
k∈{1,...,S}

( ∣

∣

∣

∣

ri,k − median
j∈{1,...,S}

(ri,j)

∣

∣

∣

∣

)

, (4)

for i ∈ {1, ..., N} and the subscripts k and j index the train-

ing samples. The MADi estimate acts as a scale parameter

on the residuals for obtaining unit variance. By integrating

MADi to the residuals, we obtain:

rMAD

i =
yi − ŷi

1.4826×MADi

, (5)
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where we scale MADi by 1.4826 in order to make MADi

an asymptotically consistent estimator for the estimation of

the standard deviation [17]. Then, the scaled residual rMAD
i

in Eq. (5) can be directly used by Tukey’s biweight loss

function Eq. (3). We fix the tuning constant based on MAD
scaling and thus our loss function is free of parameters. The

final objective function based on Tukey’s loss function and

MADi estimate is given by:

E =
1

S

S
∑

s=1

N
∑

i=1

ρ
(

rMAD

i,s

)

. (6)

We illustrate the functionality of Tukey’s biweight loss

function in Fig. 4, which shows the loss function and its

derivative as a function of sample residuals in a specific

training problem. This is an instance of the training for

the LSP [19] dataset that is further explained in the experi-

ments.

3.3. Coarse­to­Fine Model

We adopt a coarse-to-fine model, where initially a single

network φ(.) of Eq. (1) is trained from the input images to

regress all N values of ŷ, and then separate networks are

trained to regress subsets of ŷ using the output of the sin-

gle network φ(.) and higher resolution input images. Effec-

tively, the coarse-to-fine model produces a cascade of Con-

vNets, where the goal is to capture different sets of features

in high resolution input images, and consequently improve

the accuracy of the regressed values. Similar approaches

have been adopted by other works [11, 43, 44] and shown

to improve the accuracy of the regression. Most of these ap-

proaches refine each element of ŷ independently, while we

employ a different strategy of refining subsets of ŷ. We ar-

gue that our approach constrains the search space more and

thus facilitates the optimization.

More specifically, we define C image regions and sub-

sets of ŷ that are included in theses regions (Fig. 3). Each

image region x
c, where c ∈ {1, ..., C}, is cropped from the

original image x based on the output of the single ConvNet

of Eq. (1). Then the respective subset of ŷ that falls in

the image region c is transformed to the coordinate sys-

tem of this region. To define a meaningful set of regions,

we rely on the specific regression task. For instance, in 2D

human pose estimation, the regions can be defined based

on the body anatomy (e.g. head and torso or left arm and

shoulder); similarly, in facial landmark localization the re-

gions can be defined based on the face structure (e.g. nose

and mouth). This results in training C additional ConvNets

{φc(.)}Cc=1 whose input is defined by the output of the sin-

gle ConvNet φ(.) of Eq. (1). The refined output values from

the cascade of ConvNets are obtained by:

ŷref = diag(z)−1

C
∑

c=1

φc (xc;θc, ŷ(lc)) , (7)

where lc ⊂ {1, 2, . . . , N} indexes the subset c of ŷ, the

vector z ∈ N
N has the number of subsets in which each

element of ŷ is included and θ
c are the learnt parameters.

Every ConvNet of the cascade regresses values only for the

dedicated subset lc, while its output is zero for the other

elements of ŷ. To train the ConvNets {φc(.)}Cc=1 of the

cascade, we extract the training data based on the output of

the single ConvNet φ(.) of Eq. (1). Moreover, we use the

same network structure that is described in Sec. 3.1 and the

same robust loss function of Eq. (6). Finally, during infer-

ence, the first stage of the cascade uses the single ConvNet

φ(.) to produce ŷ, which is refined by the second stage of

the cascade with the ConvNets {φc(.)}Cc=1 of Eq. (7). The

predicted values ŷref of the refined regression function are

normalized back to the coordinate system of the image x.

Tukey’s biweight loss function and the derivative

Residuals

-20 -10 0 10 20
0

1

2

3

4

Residuals

-15 -5 5 15
-1.5

-0.5

0.5

1.5

Figure 4: Tukey’s biweight loss function: Tukey’s biweight loss

function (left) and its derivative (right) as a function of the training

sample residuals.

3.4. Training Details

The input RGB image to the network has resolution

120 × 80, as it is illustrated in Fig. 3. Moreover, the input

images are normalized by subtracting the mean image esti-

mated from the training images1. We also use data augmen-

tation in order to regularize the training procedure. To that

end, each training sample is rotated and flipped (50 times)

as well as a small amount of Gaussian noise is added to the

ground-truth values y of the augmented data. Furthermore,

the same training data is shared between the first cascade

stage for training the single ConvNet φ(.) and second cas-

cade stage for training the ConvNets {φc(.)}Cc=1. Finally,

the elements of the output vector of each training sample

are scaled to the range [0, 1]. Concerning the network pa-

rameters, the learning rate is set to 0.01, momentum to 0.9,

dropout to 0.5 and the batch size to 230 samples.

The initialisation of the ConvNets’ parameters is per-

formed randomly, based on an unbiased Gaussian distriub-

tion with standard deviation 0.01, with the result that many

outliers can occur at the beginning of training. To prevent

this effect that could slow down the training or exclude sam-

ples at all from contributing to the network’s parameter up-

date, we increase the MAD values by a factor of 7 for the

first 50 training iterations (around a quarter of an epoch).

Increasing the variability for a few iterations helps the net-

work to quickly reach a more stable state. Note that we have

empirically observed that the number of iterations needed

1We have also tried the normalization based on the division by the stan-
dard deviation of the training data, but we did not notice any particular
positive or negative effect in the results.
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Figure 5: Comparison of L2 and Tukey′s biweight loss func-

tions:In all datasets (PARSE [48], LSP [19], Football [20] and Vol-

leyball [3]), Tukey′s biweight loss function shows, on average,

faster convergence and better generalization than L2. Both loss

functions are visualised for the same number of epochs.

for this MAD adjustment does not play an important role

in the whole training process and thus these values are not

hard constraints for convergence.

4. Experiments

We evaluate Tukey’s biweight loss function for the prob-

lem of 2D human pose estimation from still images. For that

purpose, we have selected four publicly available datasets,

namely PARSE [48], LSP [19], Football [20] and Volley-

ball [3]. All four datasets include sufficient amount of data

for training the ConvNets, except for PARSE which has

only 100 training images. For that reason, we have merged

LSP and PARSE training data, similar to [19], for the eval-

uation on the PARSE dataset. For the other three datasets,

we have used their training data independently. In all cases,

we train our model to regress the 2D body skeleton as a

set of joints that correspond to pixel coordinates (Fig. 8).

We assume that each individual is localized within a bound-

ing box with normalized body pose coordinates. Our first

assumption holds for all four datasets, since they include

cropped images of the individuals, while for the second we

have to scale the body pose coordinates in the range [0, 1].
Moreover, we introduce one level of cascade using three

parallel networks (C = 3) based on the body anatomy for

covering the following body parts: 1) head - shoulders, 2)

torso - hands, and 3) legs (see Fig. 3). In the first part of

the experiments, a baseline evaluation is presented, where

Tukey’s biweight and the standard L2 loss functions are

compared in terms of convergence and generalization. We

also present a baseline evaluation on age estimation from

face images [12], in order to the show generalization of our

robust loss in different regression tasks. Finally, we com-

pare the results of our proposed coarse-to-fine model with

state-of-the-art methodologies in human pose estimation.

Experimental setup: The experiments have been con-

ducted on an Intel i7 machine with a GeForce GTX 980

graphics card. The training time varies slightly between

the different datasets, but in general it takes 2-3 hours to

train a single ConvNet. This training time scales linearly

for the case of the cascade. Furthermore, the testing time

of a single ConvNet is 0.01 seconds per image. Regard-

ing the implementation of our algorithm, basic operations

of the ConvNet such as convolution, pooling and normal-

ization are based on MatConvNet [45].

Evaluation metrics: We rely on the mean pixel error

(MPE) to measure the performance of the ConvNets. In

addition, we employ the PCP (percentage of correctly esti-

mated parts) performance measure, which is the standard

metric used in human pose estimation [13]. We distin-

guish two variants of the PCP score according to the lit-

erature [35]. In strict PCP score, the PCP score of a limb,

defined by a pair of joints, is considered correct if the dis-

tance between both estimated joint locations and true limb

joint locations is at most 50% of the length of the ground-

truth limb, while the loose PCP score considers the average

distance between the estimated joint locations and true limb

joint locations. During the comparisons with other meth-

ods, we explicitly indicate which version of the PCP score

is used (Table 1).

4.1. Baseline Evaluation

In the first part of the evaluation, the convergence and

generalization properties of Tukey’s biweight loss functions

are examined using the single ConvNet φ(.) of Eq. (1),

without including the cascade. We compare the results of

the robust loss with L2 loss using the same settings and

training data of PARSE [48], LSP [19], Football [20] and

Volleyball [3] datasets. To that end, a 5-fold cross valida-

tion has been performed by iteratively splitting the training

data of all datasets (none of the datasets includes by de-

fault a validation set), where the average results are shown

in Fig. 5. Based on the results of the cross validation which

is terminated by early stopping [25], we have selected the

number of training epochs for each dataset. After train-

ing by using all training data for each dataset, we have

compared the convergence and generalization properties of

Tukey’s biweight and L2 loss functions. For that purpose,

we choose the lowest MPE of L2 loss and look for the epoch

with the closest MPE after training with Tukey’s biweight

loss function. The results are summarized in Fig. 1 for each

dataset. It is clear that by using Tukey’s biweight loss, we

obtain notably faster convergence (note that on the PARSE

dataset it is 20 times faster). This speed-up can be very use-

ful for large-scale regression problems, where the training

time usually varies from days to weeks. Besides faster con-

vergence, we also obtain better generalization, as measured

by the error in the validation set, using our robust loss (see

Fig. 1). More specifically, we achieve 12% smaller MPE er-

ror using Tukey’s biweight loss functions in two out of four

datasets (i.e PARSE and Football), while we are around 8%
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Figure 6: Comparison of L2 and Tukey′s biweight loss func-

tions on age estimation: Comparsion of our results (Tukey’s bi-

weight loss) with the L2 loss function on apparent age estima-

tion from face images [12]. On left, the convergence of the loss

functions is presented, while on the right, the mean absolute error

(MAE) in years is presented for both loss functions. For the con-

vergence computation, we choose as reference error, the smallest

error using L2 loss and then look for the epoch with the closest

error in the training using Tukey’s biweight loss.

better with LSP and Volleyball datasets.

We additionally present a comparison between Tukey’s

biweight and L2 loss functions on age estimation from face

images [12], to demonstrate the generalization of our ro-

bust loss. In this task, we simplify the network by removing

the second convolutional layer and the first fully connected

layer. Moreover, we set the number of channels to 8 for all

layers and the size of the remaining fully connected to 256.

We randomly chose 80% of the data with available anno-

tation (2476 samples) for training and the rest for testing.

In the training data, we perform augmentation and 5-fold

cross validation, as in human pose estimation. Our results

are summarized in Fig. 6, which shows faster convergence

and better performance compared to L2 loss.

4.2. Comparison with other Methods

In this part, we evaluate our robust loss function using

the coarse-to-fine model represented by the cascade of Con-

vNets (Fig. 3), presented in Sec. 3.3, and compare our re-

sults with the state-of-the-art from the literature, on the four

aforementioned body pose datasets (PARSE [48], LSP [19],

Football [20] and Volleyball [3]). For the comparisons, we

use the strict and loose PCP scores, depending on which

evaluation metric was used by the state-of-the-art. The re-

sults are summarized in Table 1, where the first row of each

evaluation shows our result using a single ConvNet φ(.) of

Eq. (1) and the second row, the result using the cascade of

ConvNets {φc(.)}Cc=1 of Eq. (7), where C = 3.

PARSE: This is a standard dataset to assess 2D human

pose estimation approaches and thus we show results from

most of the current state-of-the-art, as displayed in Table 1a.

While our result is 68.5% for the full body regression using

a single ConvNet, our final score is improved by around

5% with the cascade. We achieve the best score in the full

body regression as well as in most body parts. Closer to our

performance is another deep learning method by Ouyang

et al. [33] that builds on part-based models and deep part

detectors. The rest of the compared methods are also part-

PARSE LSP Football

Figure 7: Model refinement: Our results before (top row)

and after (bottom row) the refinement with the cascade for the

PARSE [48], LSP [19] and Football [20] datasets. We train C = 3
ConvNets for the cascade {φc(.)}Cc=1, based on the output of the

single ConvNet φ(.).

based, but our holistic model is simpler to implement and at

the same time is shown to perform better (Fig. 2 and 7).

LSP: In LSP dataset, our approach shows a similar per-

formance, compared to the PARSE dataset, using a single

ConvNet or a cascade of ConvNets. In particular, the PCP

score using one ConvNet increases again by around 5%
with the cascade of ConvNets, from 63.9% to 68.8% for

the full body evaluation (Table 1b). The holistic approach

of Toshev et al. [44] is also a cascade of ConvNets, but it

relies on L2 loss and different network structure. On the

other hand, the Tukey’s biweight loss being minimized in

our network brings better results in combination with the

cascade. Note also that we have used 4 ConvNets in total

for our model in comparison to the 29 networks used by

Toshev et al. [44]. Moreover, considering the performance

with respect to body parts, the best PCP scores are shared

between our method and the one of Chen & Yuille [9]. The

part-based model of Chen & Yuille [9] scores best for the

full body, head, torso and arms, while we obtain the best

scores on the upper and lowers legs. We show some results

on this dataset in Fig. 7 and 8.

Football: This dataset has been introduced by Kazemi

et al. [20] for estimating the 2D pose of football players.

Our results (Table 1c) using one ConvNet are almost opti-

mal (with a PCP score of 95.8%) and thus the improvement

using the cascade is smaller. However, it is worth noting

that effective refinements are achieved with the use of the

cascade of ConvNets, as demonstrated in Fig. 7 and 8.

Volleyball: Similar to the Football dataset [20], our re-

sults on the Volleyball dataset are already quite competitive

using one ConvNet (Table 1d), with a PCP score of 81.7%.

On this dataset, the refinement step has a negative impact to

our results (Table 1d). We attribute this behaviour to the in-

terpolation results of the cropped images, since the original

images have low resolution (last row of Fig. 8).
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HeadTorsoUpperLowerUpperLower Full

Method Legs Legs Arms Arm Body

L2 loss 69.2 93.6 77.3 69.0 50.4 27.8 61.1

Ours 78.5 95.6 82.0 75.6 61.5 36.6 68.5

Ours (cascade) 91.7 98.1 84.2 79.3 66.1 41.5 73.2

Andriluka et al. [2] 72.7 86.3 66.3 60.0 54.6 35.6 59.2

Yang&Ramanan [48] 82.4 82.9 68.8 60.5 63.4 42.4 63.6

Pishchulin et al. [35] 77.6 90.7 80.0 70.0 59.3 37.1 66.1

Johnson et al. [19] 76.8 87.6 74.7 67.1 67.3 45.8 67.4

Ouyang et al. [33] 89.3 89.3 78.0 72.0 67.8 47.8 71.0

(a) PARSE Dataset The evaluation metric on PARSE dataset [48]

is the strict PCP score.

HeadTorsoUpperLowerUpperLower Full

Method Legs Legs Arms Arm Body

L2 loss 68.2 90.4 77.0 67.7 51.9 26.6 60.5

Ours 72.0 91.5 78.0 71.2 56.8 31.9 63.9

Ours (cascade) 83.2 92.0 79.9 74.3 61.3 40.3 68.8

Toshev et al. [44] - - 77.0 71.0 56.0 38.0 -

Kiefel&Gehler [21] 78.3 84.3 74.5 67.6 54.1 28.3 61.2

Yang&Ramanan [48] 79.3 82.9 70.3 67.0 56.0 39.8 62.8

Pishchulin et al. [35] 85.1 88.7 78.9 73.2 61.8 45.0 69.2

Ouyang et al. [33] 83.1 85.8 76.5 72.2 63.3 46.6 68.6

Chen&Yuille [9] 87.8 92.7 77.0 69.2 69.2 55.4 75.0

(b) LSP Dataset The evaluation metric on LSP dataset [19] is the

strict PCP score.

HeadTorsoUpperLowerUpperLower Full

Method Legs Legs Arms Arm Body

L2 loss 96.7 99.4 98.8 97.8 95.4 84.5 94.8

Ours 97.1 99.7 99.0 98.1 96.2 87.1 95.8

Ours (cascade) 98.3 99.7 99.0 98.1 96.6 88.7 96.3

Yang&Ramanan [48] 97.0 99.0 94.0 80.0 92.0 66.0 86.0

Kazemi et al. [20] 96.0 98.0 97.0 88.0 93.0 71.0 89.0

(c) Football Dataset The evaluation metric on Football dataset

[20] is the loose PCPscore.

HeadTorsoUpperLowerUpperLower Full

Method Legs Legs Arms Arm Body

L2 loss 89.3 96.6 90.4 91.8 68.2 50.1 78.7

Ours 90.4 97.1 86.4 95.8 74.0 58.3 81.7

Ours (cascade) 89.0 95.8 84.2 94.0 74.2 58.9 81.0

Yang&Ramanan [48] 76.1 80.5 52.4 70.5 40.7 33.7 56.0

Belagiannis et al. [3] 97.5 81.4 65.1 81.2 54.4 19.3 60.2

(d) Volleyball Dataset The evaluation metric on Volleyball dataset

[3] is the loose PCP score.

Table 1: Comparison with related work: We compare our re-

sults (Tukey’s biweight loss) using one ConvNet (second row) and

the cascade of ConvNets (third row). We also provide the scores

of the training using the L2 loss (first row). The scores of the other

methods are the ones reported in their original papers.

5. Conclusion

We have introduced Tukey’s biweight loss function for

the robust optimization of ConvNets in regression-based

problems. Using 2D human pose estimation and age esti-

mation from face images as testbed, we have empirically

Figure 8: Additional results: Samples of our results on 2D hu-

man pose estimation are presented for the LSP [19] (first row),

Football [20] (second row) and Volleyball [3] (third row) datasets.

shown that optimizing with this loss function, which is ro-

bust to outliers, results in faster convergence and better gen-

eralization compared to the standard L2 loss, which is a

common loss function used in regression problems. We

have also introduced a cascade of ConvNets that improves

the accuracy of the localization in 2D human pose estima-

tion. The combination of our robust loss function with the

cascade of ConvNets produces comparable or better results

than the state-of-the-art methods in four public human pose

estimation datasets.
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