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Figure 1: From a monocular RGB-D sequence (background), we estimate a low-dimensional parametric model of body shape

(left), detailed 3D shape (middle), and a high-resolution texture map (right).

Abstract

We accurately estimate the 3D geometry and appearance

of the human body from a monocular RGB-D sequence of a

user moving freely in front of the sensor. Range data in each

frame is first brought into alignment with a multi-resolution

3D body model in a coarse-to-fine process. The method

then uses geometry and image texture over time to obtain

accurate shape, pose, and appearance information despite

unconstrained motion, partial views, varying resolution, oc-

clusion, and soft tissue deformation. Our novel body model

has variable shape detail, allowing it to capture faces with

a high-resolution deformable head model and body shape

with lower-resolution. Finally we combine range data from

an entire sequence to estimate a high-resolution displace-

ment map that captures fine shape details. We compare our

recovered models with high-resolution scans from a pro-

fessional system and with avatars created by a commercial

product. We extract accurate 3D avatars from challenging

motion sequences and even capture soft tissue dynamics.

1. Introduction

Accurate 3D body shape and appearance capture is use-

ful for applications ranging from special effects, to fashion,

to medicine. High-resolution scanners can capture human

body shape and texture in great detail but these are bulky

and expensive. In contrast, inexpensive RGB-D sensors are

proliferating but are of much lower resolution. Scanning a

full body from multiple partial views requires that the sub-

ject stands still or that the system precisely registers deform-

ing point clouds captured from a non-rigid and articulated

body. We propose a novel method that estimates body shape

with the realism of a high-resolution body scanner by al-

lowing a user to move freely in front of a single commodity

RGB-D sensor.

Several previous methods have been proposed for 3D

full-body scanning using range data [9, 10, 21, 23, 28, 30,

32, 34], but our method provides a significant increase in

detail, realism, and ease of use as illustrated in Fig. 1. We

work with RGB-D sequences from a single camera (Fig. 1,

background). We exploit both depth and color data to com-

bine information across an entire sequence to accurately es-

timate pose and shape from noisy sensor measurements. By

allowing people to move relative to the sensor, we obtain

data of varying spatial resolution. This lets us estimate a

high-resolution detail for regions such as the face. By track-

ing the person we are able to cope with large portions of the

body being outside the sensor’s field of view.

To achieve this, we develop a new parametric 3D body

model, called Delta, that is based on SCAPE [6] but con-

tains several important innovations. First, we define a para-

metric shape model at multiple resolutions that enables the

estimation of body shape and pose in a coarse-to-fine pro-

cess. Second, we define a variable-detail shape model that
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models faces with higher detail; this is important for realis-

tic avatars. Figure 1 (left) shows the high resolution body

shape estimated from the sequence. Third, Delta combines

a relatively-low polygon count mesh with a high-resolution

displacement map to capture realistic shape details (Fig. 1

middle). Finally, Delta also includes a high-resolution tex-

ture map that is estimated from the sequence (Fig. 1 right).

Optimization is performed in three stages. Stage 1 es-

timates the body shape and pose in each frame by first

fitting a low-resolution body and using this to initialize a

higher-resolution model. Stage 2 uses the variable-detail

shape model at the highest resolution and simultaneously

estimates the texture map, a single body shape, and the pose

at every frame to minimize an objective function containing

both shape and appearance terms. We improve accuracy by

solving for the shape and color of a textured avatar that,

when projected into all the RGB images, minimizes an ap-

pearance error term. Stage 3 uses the estimated body shape

and pose at every frame to register the sequence of point

clouds to a common reference pose, creating a virtual high-

resolution scan. From this we estimate the displacement

map used in Fig. 1 (middle).

The method extracts more information from monocu-

lar RGB-D sequences than previous approaches with fewer

constraints on the user’s motion. The resulting model is

realistic, detailed and textured, making it appropriate for

many applications. We estimate models from a wide variety

of challenging sequences and obtain reliable body pose es-

timates in situations where the Kinect pose estimation fails,

e.g. when the person turns around or large parts of the body

are out of the frame. We visually and quantitatively com-

pare our models with scans acquired using a high-resolution

scanning system and with avatars created using a commer-

cial product. Moreover, we show how our approach cap-

tures the dynamics of full-body soft tissue motion.

2. Related Work

Shape reconstruction can be roughly divided into model-

free and model-based approaches. Here we focus on meth-

ods that capture 3D body shape. Model-free methods reg-

ister multiple depth frames, from different viewpoints, to

obtain a complete scan. Model-based approaches fit the

shape and pose parameters of a body model to multiple

partial views. Many systems use multiple high-quality

cameras and controlled lighting environments to capture

the complex, dynamic, and detailed geometry of non-rigid

human motion (e.g. [11, 13, 20, 31, 33]). The avail-

ability of consumer depth cameras, however, motivates

more “lightweight” capture systems with fewer constraints.

While some approaches employ multiple devices [12, 32,

35], we focus on methods that use a single RGB-D sensor.

Model-free systems like KinectFusion [18, 26] create

detailed 3D reconstructions of rigid scenes, including high-

quality appearance models [38], in real time from a moving

RGB-D sensor. Several body scanning methods draw inspi-

ration from KinectFusion [10, 21, 30, 36]. Such methods

are not ideal for human body scanning because the user ei-

ther must hold still while an operator moves the sensor, ro-

tate in front of the device while trying to maintain a roughly

rigid pose, or be rotated on a turntable. Partial data cap-

tured from different viewpoints is merged to produce a sin-

gle mesh, using non-rigid registration to correct for small

changes in shape between views.

Full-body scanning presents special challenges. If the

object is small, like a hand or face, then it is easy for the

sensor to see all of it (from one side) at once. For exam-

ple, Li et al. [19] reconstruct non-rigid surface deforma-

tions from high-resolution monocular depth scans, using a

smooth template as a geometric prior. Zollhöfer et al. [39]

capture an initial template of small objects or body parts,

acquired with a custom RGB-D camera, and then continu-

ously reconstruct non-rigid motions by fitting the template

to each frame in real time. Recently, [25] extends KinectFu-

sion to capture dynamic 3D shapes including partial views

of moving people. They only show slow and careful mo-

tions, do not use or capture appearance, and do not perform

a quantitative analysis of the recovered shapes.

Less effort has been devoted to reconstruct the motion of

full human bodies, including their soft tissue deformations.

Several methods recover 3D deformable objects (including

humans) from dynamic monocular sequences but test only

on synthetic bodies [8, 22], or with high-quality scan sys-

tems for small volumes [8]. Helten et al. [16] estimate a

personalized body shape model from two Kinect depth im-

ages and then use it to track the subject’s pose in real time

from a stream of depth images. The system fails when the

subject does not face the camera or when parts of the body

are outside the recording volume of the Kinect.

Model-based techniques [9, 34] fit pose and shape pa-

rameters to multiple frames in order to recover complete

models from partial data. Perbet et al. [28] learn a mapping

from depth images to initial body shape and pose parame-

ters. They then refine a parametric model by fitting it to a

single depth scan. Zhang et al. [37] register several Kinect

scans of a subject in multiple poses and use these registra-

tions to train a personalized body model, that is then fit to

dynamic data. While model-based methods can handle a

wider range of poses than model-free methods, their use of

a low-dimensional shape space smooths out high-frequency

geometry (e.g. subject-specific face details).

To capture full-body appearance from the Kinect, cur-

rent methods average RGB information from different

views [10] and blend texture between views [21, 30, 32, 37].

Existing methods capture only low-resolution texture. In

contrast, we estimate a high-resolution texture map that

combines images from multiple views, different poses, and
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Figure 2: Delta body model. (a) Average male and female shapes at resolutions 1 and 2 (6890 and 863 vertices respectively).

Color coding illustrates the segmentation into parts and the blend weights. (b) High-resolution texture map, U . (c) High-

resolution displacement map, D. (d) Estimated body shape represented with 10 low-res shape basis vectors, 20 full-body

high-res and 20 head basis vectors, personalized shape S, and S with the displacement map. (e) Textured model reposed.

varying distances from the sensor. We also use this texture

to improve pose and shape estimation.

3. Body Model

We extend the BlendSCAPE body model introduced

in [17], which is a version of the original SCAPE model [6].

We go beyond previous work to introduce a multi-resolution

body model, variable detail in the shape space of the body

parts, and a displacement map to capture fine shape de-

tail. These changes allow us to capture realistic body

shape while keeping optimization tractable by progressively

adding detail. These improvements, together with a texture

map as in [7], comprise our Delta body model (Fig. 2).

Multi-resolution mesh. We take an artist-designed tri-

angulated template mesh and decimate it using Qslim [14]

to construct a low-resolution version with a known map-

ping between low and high resolution. Let T ∗
1 and T ∗

2 be

the high- and low-resolution templates with 6890 and 863
vertices respectively. The meshes have artist-designed seg-

mentations and blend weights as illustrated in Fig. 2(a).

Like SCAPE, Delta factorizes the deformations that

transform a template mesh, T ∗
{1,2}, into a new body shape

and pose. These pose- and shape-dependent deformations

are represented by 3 × 3 deformation matrices. Each body

part can undergo a rotation represented as a 3-element axis-

angle. The rotations for the whole body are stacked into

a 72-element pose vector θ, which is independent of mesh

resolution. Pose-dependent deformations are modeled as in

BlendSCAPE as a weighted linear function of the pose pa-

rameters. We train these linear functions from a database

of approximately 1800 high-quality scans of 60 people that

are all aligned (registered) to the template at the high res-

olution. The low-resolution pose-dependent deformations

are trained with decimated meshes generated from the high-

resolution model to ensure model compatibility.

SCAPE represents the body shape of different people

in a low-dimensional deformation space. We register T ∗
1

to 3803 scans of subjects from the US and EU CAESAR

datasets [29] and normalize the pose. We vectorize all the

deformation matrices representing the shape of a subject.

We compute the mean deformation, µ1, across all subjects

and use principal component analysis (PCA) to compute a

low-dimensional linear subspace of deformations. Then a

body shape at resolution 1 is a function of a vector of linear

coefficients, β:

S1(β) =

N∑

i=1

βiB1,i + µ1, (1)

where B1,i is the ith principal component at resolution 1,

βi is a scalar coefficient, and N << 3803 is the dimension-

ality of the subspace. In Delta, we additionally learn a low-

resolution shape subspace with directions B2,i and mean µ2

trained to follow the direction of the components B1,i, such

that the shape coefficients are shared across resolutions. We

learn separate shape spaces for men and women. Figure 2(a)

shows the male and female mean shapes at both resolutions.

Given a set of shape deformations, S(β), and a pose, θ,

the Delta model produces a mesh, M(S(β),θ), by applying

the deformations to the triangles of the template, rotating

the triangles of each part, applying pose-dependent defor-

mations, and solving for a consistent mesh (see [6, 17]).

Variable detail model. We want to capture body shape

as well as fine head detail since accurate reconstruction of

the face is important for a realistic avatar. However, cap-

turing fine face detail with a full-body model would require

many principal components, B1,i. Because estimating body

and face shape from low-resolution RGB-D data is chal-

lenging, we want to keep the dimensionality low.

To address this, Delta uses a second, head-specific and

overcomplete shape space. We simply build a second PCA

model for head identity deformations (i.e. across subjects,

not facial expressions). We do this by setting to zero, for

each shape vector, all the elements corresponding to non-

head triangles and then performing PCA. We then represent
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the body and head with different levels of shape fidelity in

one linear equation:

S1(β) =

N∑

i=1

βiB1,i + µ1 +

K∑

j=1

βN+jH1,j (2)

where H1,j are the principal components of head shape

at resolution 1, βN+1 . . . βN+K are the head shape coef-

ficients. H1,j are vectors of the same size as B1,i but with

zeros in all areas but the head. Note that the same idea could

be applied just to face triangles or to other body parts.

In practice we only use the head shape model at resolu-

tion 1 with N = K = 20 components. Achieving compa-

rable face fidelity with full-body components would require

many more components (i.e. more than 40) and would make

optimization more difficult. Furthermore, to capture the

face detail using a full-body model, PCA would also cap-

ture body shape detail unnecessary for many applications.

Note that head/face shape is correlated with body shape

and this is represented in the full-body shape basis, B1,i.

This is useful because we capture people moving around

in front of the sensor and their face may be out of view or

they may have their back to the sensor. In these scenarios,

the full-body space helps the optimization keep track of the

head. Then, when the face is in view, the head space allows

us to capture more detail.

Resolution 2 only captures rough body shape and pose.

Consequently we do not use a detailed head shape model

and use only 10 principal components, B2,i, i = 1 . . . 10.

This allows a coarse-to-fine fitting approach.

A low-dimensional shape space smooths out personal-

ized shape details. To capture more detail, at the finest

level, we allow the shape to deform away from the low-

dimensional space to better fit scan data. We denote this

personalized shape by S, dropping the dependency on the

coefficients β. Figure 2(d) summarizes the levels of detail.

Fine detail. For efficient rendering and inference, a tem-

plate mesh should have a low polygon count. To capture

realistic detail we use a high-resolution 2D texture map, U ,

and a displacement map, D (Fig. 2(b,c)). U is 2048× 2048
texels while D is 512× 512. Note that we define these only

for the high-resolution model.

The final Delta model, M(S,θ, U,D), deforms the body

mesh, rotates the parts, applies pose-dependent deforma-

tions, and finally applies the displacement and texture maps.

4. Method

Input data. We use a Kinect One, which provides 512×424
depth images and 1920 × 1080 RGB images, at 30fps. We

compute depth and RGB camera calibration parameters us-

ing a customized version of [3]. For each frame t, the sensor

produces a depth image Zt and a RGB image It. Given the

camera calibration, we process Zt to obtain a point cloud,

P t, with one 3D point per depth pixel. For each sequence,

we acquire a background shot. We denote the background

point cloud and color image by Pbg and Ibg , respectively.

Stage 1 – Pose and shape estimation in low-dimensional

space. Stage 1 subdivides the initial sequence, of length n,

into short intervals of n′ = 3 consecutive frames and esti-

mates the body shape and pose in each interval in a coarse-

to-fine manner. Given an interval extending from frame t to

frame t′ = t+ n′ − 1, we solve for the pose parameters for

each frame {θi}t
′

i=t and the shape vector βt minimizing:

argmin
{θi}t′

i=t
,βt

λS

∑

i

ES(M(Sj(β
t),θi);P i, Pbg)+ (3)

λvelEvel({θ
i}) + λθ

∑

i

Eθ(θ
i) + λβEβ(β

t)

where we first set j = 2 and solve for the shape S2(β
t),

which is approximated with 10 principal components.

The geometric term ES penalizes the distance in 3D be-

tween P i and the surface of M(Sj(β
t),θi). We compute

ES over model surface points visible from the camera, con-

sidering also the background:

ES(M(Sj(β
t),θi);P i, Pbg) =

∑

v∈P i

ρ

(
min
x∈V

||v − x||

)

(4)

where V is the set of visible points on the union of meshes

M(Sj(β
t),θi) and Pbg , and ρ is a robust penalty func-

tion [15], useful when dealing with noisy Kinect data (e.g.,

to ignore outliers at object boundaries). Evel encourages

smooth pose changes within the interval:

Evel({θ
i}) =

∑

t<i<t′

||2θi − θi−1 − θi+1||2. (5)

Eθ(θ
i) is a prior on pose. We compute the mean µθ and

covariance Σθ of the poses from 39 subjects across more

than 700 mocap sequences from the CMU dataset [4] and

penalize the squared Mahalanobis distance between θi and

this distribution. The shape prior Eβ penalizes the squared

Mahalanobis distance between βt and the distribution of

CAESAR shapes with mean µ1 and covariance Σβ .

After solving for βt and the poses for the low-resolution

model, we use them as initialization and minimize (3) at

resolution 1. See Fig. 3 (b) and (c).

We minimize (3) for each frame in the sequence, start-

ing from the first frame and proceeding sequentially with

overlapping intervals, initializing each interval with the val-

ues optimized for the previous one. This gives a body

shape βt and three estimates of the pose at nearly every

frame. To output a single body shape from stage 1, we av-

erage the shape coefficients of the high-resolution models
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a b c d

Figure 3: Stage 1. Three input point clouds (a) and the

corresponding low- (b) and high-resolution (c) models ob-

tained after optimizing objective (3). Also shown is the final

output of stage 1 – a consistent high-resolution shape (d).

(Fig. 3). We similarly average the three estimated poses at

each frame; this works well since the estimates tend to be

very similar.

Stage 2 – Appearance-based refinement. Given the initial

guess from above we now solve for a more detailed body

shape that is no longer constrained to the PCA subspace.

From here on we only work at resolution 1. Let S be the

vector of body shape deformations we seek (no longer a

function of β). To compute S, we directly optimize ver-

tex positions of a freely deforming mesh, which we call an

“alignment”, T t. Alignments have the same topology as

T ∗
1 . As in [17], they are regularized towards the model, but

their vertices can deviate from it to better fit the data. We

optimize T t’s vertices together with model parameters:

argmin
{T t}n

t=1
,Θ,S,U

∑

t

λSES(T
t;P t, Pbg)+ (6)

∑

t

(λUEU (T
t, U ; It, Ibg) + λθEθ(θ

t))

∑

t

λcplEcpl(T
t, S,θt) + λshEsh(S)

where Θ = {θt}nt=1, the geometric term ES is as in Eq. (4)

and we add a photometric term, EU , plus a set of regular-

ization terms.

EU penalizes the discrepancy between the real image It

and the rendered image Ĩt = Ĩ(T t, U ; Ibg), obtained by

projecting T t, textured with U , over the background image

Ibg [7]. To mitigate problems due to shadowing we contrast-

normalize It and Ĩt with a Ratio-of-Gaussians filter Γ:

EU (T
t, U ; It, Ibg) = ||Γ(It)− Γ(Ĩ(T t, U ; Ibg))||

2
F (7)

where || · ||F is the Frobenius norm (cf. [7]).

Ecpl is a “coupling” term that encourages consistency

between T t and the posed mesh, M(S,θt), with shape S:

Ecpl(T
t, S,θt) =

∑

e∈V ′

||(AT t)e − (AM(S,θt))e||
2
F (8)

where AT t and AM(S,θt) are the edge vectors of the trian-

gles of T t and M(S,θt), respectively, e indexes edges and

V ′ = vis(AT t) restricts the summation to visible edges.

a b c d

Figure 4: Stage 2. Output shape S (b) and texture map U

(d). For comparison, S is rendered with U before optimiza-

tion (a) and after optimization (c).

a b c d e

Figure 5: Stage 3. (a) Reposed point cloud P∪ (subsampled

to 20000 points for visualization); (b) overlay P∪ / model

M(S,θref ); (c) model after minimizing (10); (d) after ap-

plying the displacement D; (e) after applying D and U .

Esh(S) =
∑

k,k′ ||Sk − Sk′ ||2F encourages smoothness

of the shape deformations, where Sk and Sk′ are the defor-

mation matrices for adjacent triangles k and k′, and || · ||F
is defined as in Eq. (7). Eθ(θ

t) is defined as above.

We use the shape and pose vectors obtained in stage 1 as

initialization when minimizing (6). To initialize the appear-

ance, U , we leverage shape and poses estimated in stage

1. As in [7], we blend (average) color from all frames on

a per-texel basis, weighting each contribution according to

the angle between surface normal and viewing direction.

This works well except for the face, which has a lot of

high-frequency detail. Stage 1 may not produce precise

head poses because the model resolution is low, leading to

blurred face detail. To address this we use an average face

per gender computed from a training set in the face region

of U and minimize (6) over the head pose parameters only.

We then alternate between optimizing (6) with respect

to Θ and {T t}nt=1, S and U . For U we compute an aver-

age texture map given {T t}nt=1 and Θ as described above.

Note the alignments are allowed to deviate from S and thus

can capture more pose-specific shape detail and produce a

sharper texture map. Figure 4 shows the shape, S, and tex-

ture map, U , estimated in stage 2.

Stage 3 – High-resolution displacement mapping. Stage

3 uses the alignments from the previous stage to “repose”

all the point clouds in the sequence, {P t}nt=1, and to “fuse”
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Figure 6: Shape evaluation for Seq. 1. Comparison between ground-truth scans (a) in green, our estimated models (b)

in blue, and BodySnap models (d) in red for 4 subjects. Heat maps (c) and (e) beside each model show the scan-to-model

registration error for our method and BodySnap, respectively (blue means 0mm, red means ≥ 1cm).

them in a common reference frame, thus obtaining a single

high-resolution (but noisy) point cloud P∪ (Fig. 5). To do

this, we define a mapping between mesh local surface ge-

ometry and the 3D world. Consider a point cloud P t and

the corresponding alignment T t. We express each point v

of P t according to an orthonormal basis, defined at its clos-

est point x on T t. The basis vectors are the surface normal

at x and two orthogonal vectors tangential to the surface at

x, chosen according to [24]. We denote by ∆(v, T t) the

projection of v according to the basis defined by T t, and by

∆−1 its inverse – from local surface geometry to 3D world.

As a common reference frame, we use the mesh,

M(S,θref ), obtained using shape S from stage 2, posed

according to a reference pose θref (note that the choice of

θref is arbitrary). We compute P∪ (Fig. 5(a)) by reposing

all point clouds in the sequence according to θref :

P∪ = ∪t(∪v∈P t∆−1(∆(v, T t),M(S,θref ))). (9)

The resolution of P∪ is far beyond the resolution of our

body model or any of the individual point clouds. We now

use P∪ to estimate a highly detailed body shape in two

steps. First, we use it to refine shape S by minimizing:

argmin
T∪,S

λSES(T
∪;P∪) + λcplEcpl(T

∪, S;θref ) (10)

where T∪ is an alignment for the point cloud P∪, and ES ,

Ecpl are defined as above. With respect to (6), now we ex-

ploit all frames simultaneously during shape optimization.

The level of detail we recover from P∪ is bounded by

our mesh resolution. In a final step, we transfer the high-

resolution details of P∪ to our model computing a displace-

ment map D. Let texel y in D be associated to the surface

point xy on the model. We compute the set of all points p

in P∪ such that xy = argminx∈M(S,θref )
||x − p||2, and

p is closer than 1cm to xy . After computing for each p

its projection ∆(p,M(S,θref )), we take the median along

the normal at xy and assign this to y. Displacement maps

substantially enhance high-frequency shape details (Fig. 5).

Optimization. We minimize objective (3) using Powell’s

dogleg method [27] with Gauss-Newton Hessian approxi-

mation. We compute function gradients using the Chumpy

auto-differentiation package [2]. In stage 2, minimizing (6)

with respect to {T t}nt=1 and {θt}nt=1 corresponds to solv-

ing n independent registration subproblems. We use dogleg

within the OpenDR framework [23], proceeding coarse to

fine in image space (we increase the RGB resolution from

a quarter to half and then to full resolution). We solve for

the shape S via linear least squares. An analogous approach

is used to minimize (10) iteratively with respect to T∪ and

S. Note that we minimize (10) using 107 points sampled

uniformly at random from P∪.

Pose and shape parameters in objective (3) are initialized

to the mean pose in CMU and the mean shape in CAESAR,

respectively. Since we use two different models for males

and females, we manually select the subject gender. Af-

terwards, the entire pipeline runs automatically. Optimiz-

ing (3) over three frames takes 4-5 minutes on a desktop

CPU; this is the only stage requiring sequential optimiza-

tion. Optimizing an alignment in (6) takes 3 minutes; op-

timizing (10) and computing D requires approximately 10
minutes. See also [5] for more details.

5. Experimental Evaluation

Data Acquisition. We captured 13 subjects (6 female

and 7 male) who gave informed written consent. Three sub-

jects did not give permission to show their face; these are

blurred. All subjects wore tight clothing; subjects with long

hair wore it tied back.

From each subject we captured at least four different se-

quences. In Seq. 1, subjects followed a scanning protocol

that involved rotating at different distances from the sensor,

walking towards it, and bending down for a face closeup.

Seq. 2 and 3 are dancing and an “arbitrary” motions (e.g.

simulating interactive videogame play), respectively. Note

that we do not use any prior information about the mo-

tion sequence during optimization. Sequence length ranged

from approximately 150 to 1100 frames. Many sequences

included fast motions; subjects significantly changed ori-

entation and distance with respect to the camera. To com-

pare with commercial software we captured an additional

“static” sequence (Seq. 4) of 8 frames, with the subject
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Figure 7: Shape consistency. Estimated shape (a) and

corresponding registration error (b) (blue means 0mm, red

means ≥ 1cm) for 6 sequences of the same subject. Images

(c) show the corresponding motion.

rotating by roughly 45 degrees between frames. For one

subject we captured an additional 9 challenging motion se-

quences. Most captures took place in a room with fairly

even lighting (Fig. 11). For one subject we captured 5 ad-

ditional sequences in a living room with uneven lighting

(Fig. 7 and 11). For all sequences we captured a background

RGB-D shot. See [5] for an overview of all sequences.

To enable the visual evaluation of our results, we applied

a high-frequency pattern, using black body makeup and a

woodcut stamp, on a dozen locations across the body (vis-

ible in Fig. 11). We used stamps on 11 subjects, and cap-

tured 2 subjects without the stamps to verify that the added

texture was not necessary for the accuracy of our method.

Shape Estimation. To evaluate the accuracy of our es-

timated body shapes, we captured all subjects in a static

A-pose (Fig. 6) with a full-body, 66-camera, active stereo

system (3dMD, Atlanta, GA). The system outputs high-

resolution scans (150000 vertices on average) that we take

as “ground truth”. We define the “registration error” of a

shape S in terms of the scan-to-model distance; i.e. we com-

pute the Euclidean distance between each scan vertex and

its closest point on the surface of model M(S,θopt), where

pose θopt is adjusted to minimize this distance. Note that we

evaluate S after optimizing objective (10) but before apply-

ing displacement maps D. We found visual improvement

but no significant numerical improvement after applying D.

For 7 subjects, we compared our results against the mod-

els produced by BodySnap (Body Labs Inc., New York,

NY) [1]. We ran it in “expert” mode, because it gave the

best results. BodySnap reconstructs a complete 3D body

model (with 43102 vertices) from 10 frames – the Seq. 4

protocol with 2 additional face closeups where the subject is

90cm from the device. Again we repose the result to match

the ground-truth scan. BodySnap average error over the 7
subjects is 3.40mm, while our algorithm achieved an aver-

age of 2.40mm on the same 7 subjects performing Seq. 4.

These results are shown for 4 subjects in Fig. 6, which

shows ground-truth scans, shape estimation and registration

error both for our algorithm and BodySnap. Despite good

overall accuracy, the latter captures fewer subject-specific

Figure 8: Motion capture. Poses estimated by Kinect (red

skeleton, top) and by our approach (bottom).

shape details (e.g. see large red patches in the heat maps

across the torso and on the head).

The average registration error of our algorithm for Seq. 1

computed over all 13 subjects is 2.54mm. We found lit-

tle difference in accuracy between Seq. 1 results and those

from more free-form motions (Seq. 2 was 2.82mm, Seq. 3

was 3.23). This suggests that a practical system could be de-

signed around fun and engaging motions rather than a strict

protocol. Errors from more restricted sequences like Seq. 4

are also comparable, 2.45mm, while they miss facial detail

and cannot capture some occluded spots like the feet soles.

Figure 7 shows registration errors for one subject in 6
different sequences (2 captured in a living room). In all

cases the average registration error is below 4.21mm – i.e.

no more than 2mm worse than the error given by Seq. 4

(the left most in Fig. 7). Note that [21] and [37] report an

average alignment error of about 3mm and 2.45mm, respec-

tively, on a mannequin.

Motion Capture. Our approach is able to track motions

where the standard Kinect pose estimation fails (Fig. 8).

Tracking succeeds even in the presence of challenging

poses, with large portions of the body either outside of the

field of view or occluded.

Additionally, we capture the dynamics of soft tissue. Re-

call that we estimate alignments, {T t}nt=1, in (6). These are

constrained to be close to the model, M(S,θt), but can de-

viate to match depth and color data in each frame. Figure 9

shows 6 such alignments; soft tissue deformation is visible

on the chest and stomach. We believe that dynamic soft

tissue capture with Kinect is new. Note that this particular

sequence is special in the sense that we are using the model

extracted from Seq. 1 instead of estimating it from scratch,

as we do in the rest of the examples in this paper.

Appearance and Fine Geometric Detail. Figure 10

shows textured models recovered for all subjects using

Seq. 1, compared with ground-truth scans. The 3dMD scan-

ner captures texture with 22 synchronized color cameras
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Figure 10: High-resolution models. Comparison between 3dMD scans (green, on the left) and our models after displacement

mapping (beige, on the right) in terms of shape (top row) and texture (bottom row).

Figure 9: Soft tissue deformations. Shown with and with-

out texture (better seen in the video [5]). Note the shape

deformations in areas like the chest and stomach.

and LED light panels that produce smooth illumination. De-

spite the variety in subject appearance (skin tone, facial hair,

etc.), our method recovers realistic texture maps.

Figure 11 compares real Kinect images with synthetic

images rendered from our textured models over the back-

ground RGB shot. Note that, for each image, we use ap-

pearance models estimated from the sequence itself. The

synthesized results are difficult to distinguish from the real

data even in challenging sequences. In many cases, fine de-

tails (like the stamp pattern, with texture elements of the or-

der of 2mm) are reconstructed. Note that sharp texture maps

are reconstructed even when stamps are not used (Fig. 10).

6. Conclusion

We have presented a novel approach to estimate high-

resolution 3D shape and appearance of the human body

from monocular RGB-D sequences acquired with a sin-

gle sensor. Our approach leverages a new parametric,

multi-resolution body model, Delta, that combines a low-

dimensional shape space for the full body with a second,

head-specific, shape space. The model enables the estima-

tion of body shape and pose in a coarse-to-fine manner.

In future work, we plan to extend Delta to also cap-

Figure 11: Appearance estimation. In each frame we show

a real Kinect image (left half) and the corresponding syn-

thetic image (right half) rendered from our model.

ture more detailed hands and feet. Additionally, we could

incorporate a non-rigid face model to capture varying fa-

cial expressions. It would also be interesting to reconstruct

transient per-frame high-frequency details (as in [19, 39]).

Currently, our texture estimate simply blends contributions

from different RGB frames. By formulating camera blur

and pixel discretization in the appearance objective func-

tion, we might be able to extend super-resolution methods

to non-rigid bodies. Finally, our method is fully genera-

tive. We could likely improve inference speed by using a

fast discriminative method (e.g. the Kinect’s own pose esti-

mate) for initialization.
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