
Adaptive Hashing for Fast Similarity Search

Fatih Cakir Stan Sclaroff

Department of Computer Science

Boston University, Boston, MA

{fcakir,sclaroff}@cs.bu.edu

Abstract

With the staggering growth in image and video datasets,

algorithms that provide fast similarity search and com-

pact storage are crucial. Hashing methods that map the

data into Hamming space have shown promise; however,

many of these methods employ a batch-learning strategy

in which the computational cost and memory requirements

may become intractable and infeasible with larger and

larger datasets. To overcome these challenges, we propose

an online learning algorithm based on stochastic gradient

descent in which the hash functions are updated iteratively

with streaming data. In experiments with three image re-

trieval benchmarks, our online algorithm attains retrieval

accuracy that is comparable to competing state-of-the-art

batch-learning solutions, while our formulation is orders

of magnitude faster and being online it is adaptable to the

variations of the data. Moreover, our formulation yields im-

proved retrieval performance over a recently reported on-

line hashing technique, Online Kernel Hashing.

1. Introduction

While the current ease of collecting images and videos

has made huge repositories available for the computer vi-

sion community, it has also challenged researchers to ad-

dress the problems associated with such large-scale data. At

the core of these problems lies the challenge of fast similar-

ity search and the issue of storing these massive collections.

One promising strategy for expediting similarity search in-

volves mapping the data items into Hamming space via a set

of hash functions where linear search is fast and often sub-

linear solutions perform well. Furthermore, the resulting bi-

nary representations allow compact indexing structures with

a very low memory footprint.

Relatively early work in this domain include the data-

independent Locality Sensitive Hashing and its variants

[3, 5, 13] in which the retrieved nearest neighbors of a query

are ensured to be within a scale of the true neighbors. Many

subsequent studies have utilized training data to learn the

hash functions. These data-dependent methods can be cat-

egorized as unsupervised, semi-supervised and supervised

techniques. Ignoring any label information, unsupervised

studies [23, 24, 7] are often used to preserve a metric-

induced distance in the Hamming space. When the goal is

the retrieval of semantically similar neighbors, supervised

methods [12, 19, 18, 17] have shown to outperform these

unsupervised techniques. Finally, semi-supervised methods

like [22] leverage label information while constraining the

solution space with the use of unlabeled data.

Although data-dependent solutions tend to yield higher

accuracy in retrieval tasks than their data-independent coun-

terparts, the computational cost of the learning phase is a

critical issue when large datasets are considered. Large

scale data are the norm for hashing applications, and as

datasets continue to grow and include variations that were

not originally present, hash functions must also accom-

modate this deviation. However, this may necessitate re-

training from scratch for many data-dependent solutions

employing a batch learning strategy. To overcome these

challenges, we propose an online learning algorithm in

which the hash functions are updated swiftly in an itera-

tive manner with streaming data. The proposed formula-

tion employs stochastic gradient descent (SGD). SGD algo-

rithms provide huge memory savings and can provide sub-

stantial performance improvements in large-scale learning.

The properties of SGD have been extensively studied [1, 14]

and SGD has been successfully applied to a wide variety

of applications including but not limited to; tracking [10],

recognition [15], learning [21] etc.

Despite its feasibility and practicality, it is not straight-

forward to apply SGD for hashing. Please observe the setup

in Fig. 1. Considering semantic based retrieval, an appro-

priate goal would be to assign the same binary vector to

instances sharing the same label. The two hash functions of

form f = sgn(wT
x) are ample to yield perfect empirical

Mean Average Precision (mAP) scores based on Hamming

rankings for the synthetic dataset in Fig. 1. However, in an

online learning framework where pairs of points are avail-

able at each iteration, f2 will produce identical mappings

11044

Figure 1: A setup in R
2 with four classes and two hash functions f1 and f2. The feature space is divided into four regions

and a binary code is assigned to instances of each class. Given the circled pair of points sampled from two distinct classes

C1 and C2, the hash function f2 assigns the same bit. Correcting this ‘error’ will give rise to the case where identical binary

codes are assigned to different classes, a far cry from what is desired.

for a pair sampled from the two distinct classes C1 and C2,

but it will be erroneous to “correct” this hashing. Simply

put, the collective effort of the hash functions towards the

end goal can lead to difficulty in assessing which hash func-

tions to update or whether to update any at all.

In this study, we thus propose an SGD based solution

for hashing. Being online, our method is amenable to sub-

sequent variations of the data. Moreover, the method is

orders of magnitude faster than state-of-the-art batch solu-

tions while attaining comparable retrieval accuracy on three

standard image retrieval benchmarks. We also provide im-

proved retrieval accuracy over a recently reported online

hashing method [9].

The remainder of the paper is organized as follows. Sec-

tion 2 gives the framework for our method. In Section 3

we report experiments followed by concluding remarks in

Section 4.

2. Adaptive Hashing

In this section, we first define the notation and the feature

representation used in our formulation. We then devise an

online method for learning the hash functions via Stochastic

Gradient Descent (SGD), along with an update strategy that

selects the hash functions to be updated and a regularization

formulation that discourages redundant hash functions.

2.1. Notation and Feature Representation

We are given a set of data points X = {x1, . . . ,xN}
in which each point is in a d−dimensional feature space,

i.e., x ∈ R
d. In addition, let S denote a similarity matrix

in which its elements sij ∈ {−1, 1} define non-similarity

or similarity for pairs xi and xj , respectively. S can be de-

rived from a metric defined on R
d or from label information

if available. Let H denote the Hamming space. In hashing,

the ultimate goal is to assign binary codes to instances such

that their proximity in feature space R
d, as embodied in S,

are preserved in Hamming space H. A collection of hash

functions {f1, f2, . . . , fb} is utilized for this purpose where

each function f : Rd → {−1, 1} accounts for the genera-

tion of one bit in the binary code.

Following [18, 9], we use hash functions of the form

f(x) = sgn(wTφ(x)− w0) (1)

where φ(x) = [K(x1,x), . . . ,K(xm,x)]
T

is a non-linear

mapping, K(·, ·) is a kernel function and points x1, . . . ,xm

are uniformly sampled from X beforehand. This kernelized

representation has shown to be effective [13] especially for

inseparable data while also being efficient when m≪ N .

For compact codes, maximizing the entropy of the hash

functions has shown to be beneficial [23, 22]. This im-

plies
∫

f(x)dP (x) = 0 and we approximate it by set-

ting the bias term w0 to be 1
N

∑N
i=1 w

Tφ(xi). f(x) can

then be compactly written as sgn(wTψ(x)) where ψ(x) =

φ(x) − 1
N

∑N
i=1 φ(xi). Finally, the binary code of x

is computed and denoted by f(x) = sgn(WTψ(x)) =
[f1(x), ..., fb(x)]

T where sgn is an element-wise operation

and W = [w1, ...,wb] ∈ R
d×b with d now denoting the

dimensionality of ψ(x).

After defining the feature representation, hashing stud-

ies usually approach the problem of learning the param-

eters w1, ...,wb by minimizing a certain loss measure

[12, 19, 18] or through optimizing an objective function and

subsequently inferring these parameters [23, 24]. In the next

section, we will present our SGD based algorithm for learn-

ing the hash functions. From this perspective, we assume

the pairs of points {xi,xj} arrive sequentially in an i.i.d

manner from an underlying distribution and the similarity

indicator sij is computed on the fly.

1045

2.2. Learning Formulation

Following [17], which compared different loss functions,

we employ the squared error loss:

l(f(xi), f(xj);W) = (f(xi)
T
f(xj)− bsij)

2
(2)

where b is the length of the binary code. This loss

function is mathematically attractive for gradient compu-

tations and has been empirically shown to offer superior

performance [18]. If F = [f(x1), ..., f(xN)]T =
[

sgn(WTψ (x1)), . . . , sgn(WTψ (xN))
]T

=

sgn(
(

WTΦ
)T

) where Φ = [ψ(x1), ...,ψ(xN)] then

learning the hash function parameters can be formulated as

the following least-squares optimization problem

min
W∈Rm×b

J(W) =
∑

ij

l(f(xi), f(xj);W) =
∥

∥FTF − bS
∥

∥

2

F

(3)

where ‖ · ‖F is the Frobenius norm. In [18], this problem is

solved in a sequential manner, by finding a parameter vector

w at each iteration. Instead, we would like to minimize it

via online gradient descent, where at each iteration a pair

{xi,xj} is chosen at random, and parameter W is updated

according to the following rule

W t+1 ←W t − ηt∇W l(f(xi), f(xj);W
t) (4)

where the learning rate ηt is a positive real number. To com-

pute∇W l, we approximate the non-differentiable sgn func-

tion with the sigmoid σ(x) = 2/(1 + e−x)− 1. Assuming

vg = w
T
g ψ(xi) and ug = w

T
g ψ(xj), the derivative of l

with respect to wfg is

∂l(xi,xj,W)
∂wfg

= 2[σ(WTψ(xi))
T
σ(WTψ(xj))− bsij]×

[σ(vg)
∂σ(ug)
∂ug

∂ug

∂wfg
+ σ(ug)

∂σ(vg)
∂vg

∂vg

∂wfg
]

(5)

where
∂σ(ug)
∂ug

= 2e−ug

(1+e−ug)
2 and

∂ug

∂wfg
= ψf (xj)

1.

Subsequently, we obtain ∂l/∂W = OP + QR where

O = [ψ(xi), . . . ,ψ(xi)] ∈ R
m×b and P =

diag[σ(u1)∂σ(v1)/∂v1, . . . , σ(ub)∂σ(vb)/∂vb] ∈ R
b×b

2. UpdatingW solely based on the squared error loss would

be erroneous since this function incurs a penalty if the Ham-

ming distance between non-similar (similar) points is not

maximized (minimized). As illustrated in Fig. 1, a perfect

retrieval can still be achieved when this criterion is not sat-

isfied. Thus, an additional step before applying Eq. 4 is

required to determine what parameters to update, as will be

described next.

1 ∂σ(vg)

∂vg
and

∂vg

∂wfg
are similarly evaluated.

2Q and R are obtained by replacing xi with xj in O and by swapping

ug and vg in R.

2.3. Update Strategy

The squared error function in Eq. 2 is practically con-

venient and performs well, but its gradient may be nonzero

even when there is no need for an update (e.g., the case

shown in Fig. 1). Thus, at each step of online learning, we

need to decide whether or not to update any hash function

at all and if so, we seek to determine the amount and which

of the hash functions need to be corrected. For this purpose,

we employ the hinge-like loss function of [19, 9] defined as

lh(f(xi), f(xj)) =

{

max(0, dH − (1− α)b) sij = 1
max(0, αb− dH) sij = −1

(6)

where dH ≡ ‖f(xi)− f(xj)‖H is the Hamming distance

and α ∈ [0, 1] is a user-defined parameter designating the

extent to which the hash functions may produce a loss.

If lh = 0 then we do not perform any update, otherwise,

⌈lh⌉ indicates the number of bits in the binary code to

be corrected. In determining which of the ⌈lh⌉ functions

to update, we consider updating the functions for which

the hash mappings are the most erroneous. Geometri-

cally, this corresponds to the functions for which similar

(dissimilar) points are incorrectly mapped to different

(identical) bits with a high margin. Formally, let Λ =
{

max
(

|f1(xi)|
‖w1‖

,
|f1(xj)|
‖w1‖

)

, . . . ,max
(

|fb(xi)|
‖wb‖

,
|fb(xj)|
‖wb‖

)}

where w = [w, w0]
T . We select the hash functions to be

updated by sorting set Λ in descending order and identi-

fying the indices of the first ⌈lh⌉ elements that incorrectly

map {xi,xj}.

2.4. Regularization

Decorrelated hash functions are important for attaining

good performance with compact codes and also for avoid-

ing redundancy in the mappings [22]. During online learn-

ing, the decision boundaries may become progressively cor-

related, subsequently leading to degraded performance. In

order to alleviate this issue, we add an orthogonality regu-

larizer to Eq. 1. This provides an alternative to strictly con-

straining the hashings to be orthogonal, which may result

in mappings along directions that have very low variance in

the data. Eq. 1 then becomes

l(f(xi), f(xj);W) = (f(xi)
T
f(xj)−Bsij)

2

+λ
4

∥

∥WTW − I
∥

∥

2

F

(7)

where λ is the regularization parameter. Consequently,

∂l/∂W is now equal to OP +QR+ λ(WWT − I)W .

The objective function in Eq. 7 is non-convex, and solv-

ing for the global minimum is difficult in practice. To get

around this, a surrogate convex function could considered

for which a global minimum can be found [20] and con-

vergence of learning can be analyzed. However, because of

the strong assumptions that must be made, use of a convex

1046

input : Streaming pairs {(xt
i,x

t
j)}

T
t=1, α, λ, ηt

Initialize W0;

for t← 1 to T do

Compute binary codes f(xt
i), f(x

t
j) and

similarity indicator sij ;

Compute loss lh(f(xi), f(xj)) according to

Eq. 6 ;

if ⌈lh⌉ 6= 0 then

Compute ∇W l(xi,xj ,W
t) ∈ R

d×b;

Compute and sort Λ;

j ← the incorrect first ⌈lh⌉ indices of

sorted Λ;

∇W l(:, j)← 0;

W t+1 ←
W t − ηt∇W l(xi,xj ,W

t)// Update;

else

W t+1 ←W t

end

end

Algorithm 1: Adaptive hashing algorithm based on

SGD for fast similarity search

surrogate can lead to poor approximation quality in repre-

senting the “real problem,” resulting in inferior performance

in practice [4, 2]. In the computer vision literature, many

have advocated for direct minimization of non-convex ob-

jective functions, oftentimes using stochastic gradient de-

scent (SGD), e.g., [11, 8, 6], yielding state-of-the-art results.

In this work, we wish to faithfully represent the actual adap-

tive hashing learning task; therefore, we eschew the use of a

convex surrogate for Eq. 7 and directly minimize via SGD.

We summarize our adaptive hashing algorithm in Alg. 1.

We find that directly minimizing Eq. 7 via SGD yields ex-

cellent performance in adaptively learning the hashing func-

tions in our experiments.

3. Experiments

For comparison with [9] we evaluate our approach on the

22K LabelMe and PhotoTourism-Half Dome datasets. In

addition, we also demonstrate results on the large-scale Tiny

1M benchmark. We compare our method with five state-

of-the-art solutions; Kernelized Locality Sensitive Hashing

(KLSH) [13], Binary Reconstructive Embeddings (BRE)

[12], Minimal Loss Hashing (MLH) [19], Supervised Hash-

ing with Kernels (SHK) [18] and Fast Hashing (FastHash)

[16]. These methods have outperformed earlier supervised

and unsupervised techniques such as [3, 24, 23, 22]. In

addition, we compare our approach against Online Kernel

Hashing (OKH) [9].

3.1. Evaluation Protocol

We consider two large-scale retrieval schemes: one

scheme is based on Hamming ranking and the other is based

on hash lookup. The first scheme ranks instances based on

Hamming distances to the query. Although it requires a lin-

ear scan over the corpus it is extremely fast owing to the

binary representations of the data. To evaluate retrieval ac-

curacy, we measure Mean Average Precision (mAP) scores

for a set of queries evaluated at varying bit lengths (up to

256 bits). The second retrieval scheme, which is based on

hash lookup, involves retrieving instances within a Ham-

ming ball; specifically, we set the Hamming radius to 3

bits. This procedure has constant time complexity. To quan-

tify retrieval accuracy under this scheme, we compute the

Average Precision. If a query returns no neighbors within

the Hamming ball, it is considered as zero precision. We

also report mAP with respect to CPU time. Furthermore,

when comparing against OKH we also report the cumula-

tive mean mAP and area under curve (AUC) metric. For

all experiments, we follow the protocol used in [18, 9] to

construct training and testing sets.

All experiments were conducted on a workstation with

2.4 GHz Intel Xeon CPU and 512 GB RAM.

3.2. Datasets

22K LabelMe The 22K LabelMe dataset has 22,019

images represented as 512-dimensional Gist descriptors.

As pre-processing, we normalize each instance to have

unit length. The dataset is randomly partitioned into

two: a training and testing set with 20K and 2K samples,

respectively. A 2K subset of the training points is used as

validation data for tuning algorithmic parameters, while

another 2K samples are used to learn the hash functions;

the remaining samples are used to populate the hash table.

The l2 norm is used in determining the nearest neighbors.

Specifically, xi and xj are considered similar pairs if their

Euclidean norm is within the smallest 5% of the 20K

distances. S is constructed accordingly and the closest 5%

distances of a query are also used to determine its true

neighbors.

Half Dome This dataset contains a series of patches

with matching information obtained from the Photo

Tourism reconstruction of Half Dome. The dataset includes

107,732 patches in which the matching ones are assumed

to be projected from the same 3D point into different

images. We extract Gist descriptors for each patch and as

previously, we normalize each instance to have unit length.

The dataset is then partitioned into a training and testing

set with 105K and 2K samples, respectively. A 2K subset

of the training samples is used as validation data for tuning

algorithmic parameters, while another 2K samples from

the training set are used to learn the hash functions, and

1047

the remaining training samples are then used to populate

the hash table. The match information associated with the

patches is used to construct the matrix S and to determine

the true neighbors of a query.

Tiny 1M For this benchmark, a set of million images

are sampled from the Tiny image dataset in which 2K

distinct samples are used as test, training and validation

data while the rest is used for populating the hash table.

The data is similarly preprocessed to have unit norm

length. Similarly to the 22K LabelMe benchmark, the l2
norm is used in determining the nearest neighbors, where

xi and xj are considered similar pairs if their Euclidean

distance is within the smallest 5% of the 1M distances. S
is constructed accordingly and the closest 5% distances of

a query are also used to determine its true neighbors.

As described in the next section, when evaluating our

method against OKH, the online learning process is contin-

ued until 10K, 50K and 25K pairs of training points are ob-

served for the LabelMe, Half Dome and Tiny1M datasets,

respectively. This is done to provide a more detailed and fair

comparison between the OKH online method and our online

method for adaptively learning the hashing functions.

3.3. Comparison with Online Hashing [9]

Fig. 2 gives comparison between our method and OKH.

We report mAP and cumulative mean mAP values with re-

spect to iteration number for 96 bit binary codes. We also

report the Area Under Curve (AUC) score for the latter

metric. As stated, the parameters for both methods have

been set via cross-validation and the methods are initialized

with KLSH. The online learning is continued for 10K, 50K

and 25K points for the LabelMe, Half Dome and Tiny1M

datasets. The experiments are repeated five times with

different randomly chosen initializations and orderings of

pairs. Ours and Oursr denote the un-regularized and regu-

larized versions of our method, respectively.

Analyzing the results, we do not observe significant im-

provements in performance for the 22K LabelMe dataset.

Our method has a benign AUC score increase with respect

to OKH. On the other hand, the performance improvements

for the Half Dome and Tiny 1M datasets are much more

noticeable. Our method converges faster in terms of iter-

ations and shows a significant boost in AUC score (0.67

compared to 0.60 for Half Dome and 0.43 compared to 0.40

for Tiny 1M, specifically). Although both methods perform

similarly at the early stages of learning, OKH yields infe-

rior performance as the learning process continues com-

pared to our method. Moreover our technique learns bet-

ter hash functions in achieving higher retrieval accuracy for

both the Halfdome and Tiny 1M benchmarks. The regular-

ization also has a positive albeit slight effect in improving

the performance. This validates a former claim that the reg-

Figure 3: Sample pictures from the 22K LabelMe, Half-

dome and Tiny 1M datasets.

ularization term alleviates the possible gradual correlation

among hash functions as the algorithm progresses and thus

helps in avoiding inferior performance.

3.4. Comparison with Batch Solutions

We also conducted experiments to compare our online

solution against leading batch methods. For these compar-

isons, we show performance values for hash codes of vary-

ing length, in which the number of bits is varied from 12

to 256. All methods are trained and tested with the same

data splits. Specifically, as a standard setup, 2K training

points are used for learning the hash functions for both

batch and online solutions. Thus, for online techniques, the

performance scores reported in the tables and figures are de-

rived from an early stage of the algorithm in which both our

method and OKH achieve similar results, as will be shown.

This is different when reporting mAP values with respect to

CPU time, where the online learning is continued for 10K

(LabelMe), 50K (Halfdome), and 25K (Tiny1M) pairs of

points as is done in Section 3.3. The mAP vs CPU time fig-

ures is thus important to demonstrate a more fair compari-

son. Other algorithmic parameters have been set via cross

validation. Finally, Ours describe our regularized method.

Table 1 shows mAP values for the 22K LabelMe bench-

mark. Analyzing the results, we observe that while BRE

performs the best in most cases, our method surpasses other

batch solutions especially when # of bits is> 96, e.g., for 96

and 128 bit binary codes our method achieves 0.64 and 0.67

mAP values, respectively, surpassing SHK, MLH, FastHash

KLSH. More importantly, these results are achieved with

drastic training time improvements. For example, it takes

only ∼ 4 secs to learn the hash functions that give retrieval

accuracy that is comparable with state-of-the-art batch so-

lutions that take at best 600 secs to train.

Results for the hash lookup based retrieval scheme are

shown in Fig. 4 (center-right). Here, we again observe

that the online learning techniques demonstrate similar hash

lookup precision values and success rates. Not surprisingly

1048

(a) (b)

(c) (d)

(e) (f)

Figure 2: Mean average precision and its cumulative mean with respect to iteration number for comparison with OKH [9].

Ours and Oursr denote the unregularized and regularized versions of our method, respectively. (Top row) 22K LabelMe

dataset. (Middle row) Half dome dataset. (Bottom row) Tiny 1M dataset.

both the precision values and success rates drop near zero

for lengthier codes due to the exponential decrease of in-

stances in the hash bins. With fewer bits the hash lookup

precision is also low, most likely due to the decrease in

hashing quality with small binary codes. This suggests that

implementers must appropriately select the Hamming ball

radius and the code size for optimal retrieval performance.

Similarly, Table 2 reports mAP at varying numbers of

bits for the Halfdome dataset. We observe that SHK per-

forms the best for most cases while our method is a close

runner-up, e.g., SHK achieves 0.74 and 0.79 mAP values

compared to our 0.66 and 0.76 for 96 and 128 bits, respec-

tively. Again, our method achieves these results with hash

functions learned orders of magnitude faster than SHK and

all other batch methods. Though KLSH also has a very

low training time it demonstrates poor retrieval performance

1049

Method Mean Average Precision (Random ∼ 0.05)
Training time

(seconds)

12 bits 24 bits 48 bits 96 bits 128 bits 256 bits 96 bits

BRE [12] 0.26 0.48 0.58 0.67 0.70 0.74 929

MLH [19] 0.31 0.37 0.46 0.59 0.61 0.63 967

SHK [18] 0.39 0.48 0.56 0.61 0.63 0.67 1056

FastHash [16] 0.40 0.49 0.56 0.61 0.63 0.66 672

KLSH [13] 0.31 0.42 0.48 0.56 0.59 0.64 5×10
−4

OKH [9] (@2K) 0.32 0.43 0.53 0.63 0.67 0.73 3.7

Ours (@2K) 0.33 0.43 0.54 0.64 0.67 0.71 3.8

Table 1: Mean Average Precision for the 22K LabelMe dataset. For all methods, 2K points are used in learning the hash

functions.

Figure 4: Results for the 22 LabelMe dataset. (Left) Mean Average Precision (at 96 bits) with respect to CPU time in which

for OKH and our method, the online learning is continued for 10K pairs of points. (Center) Mean hash lookup precision with

Hamming radius 3. (Right) Hash lookup success rate.

Method Mean Average Precision (Random ∼ 1×10
−4)

Training time

(seconds)

12 bits 24 bits 48 bits 96 bits 128 bits 256 bits 96 bits

BRE [12] 0.003 0.078 0.40 0.62 0.69 0.80 1022

MLH [19] 0.012 0.13 0.38 0.62 0.67 0.80 968

SHK [18] 0.024 0.23 0.46 0.74 0.79 0.87 631

FastHash [16] 0.024 0.16 0.43 0.69 0.75 0.84 465

KLSH [13] 0.012 0.05 0.11 0.28 0.33 0.40 5 ×10
−4

OKH [9] (@2K) 0.022 0.18 0.45 0.69 0.73 0.81 6

Ours (@2K) 0.024 0.18 0.47 0.66 0.76 0.83 7.8

Table 2: Mean Average Precision for the Halfdome dataset. For all methods, 2K points are used in learning the hash functions.

Figure 5: Results for the Halfdome dataset. (Left) Mean Average Precision (at 96 bits) with respect to CPU time in which

for OKH and our method, the online learning is continued for 50K pairs of points. (Center) Mean hash lookup precision with

Hamming radius 3. (Right) Hash lookup success rates.

1050

Method Mean Average Precision (Random)
Training time

(seconds)

12 bits 24 bits 48 bits 96 bits 128 bits 256 bits 96 bits

BRE [12] 0.24 0.32 0.38 0.47 0.50 0.59 669

MLH [19] 0.21 0.28 0.35 0.41 0.45 0.55 672

SHK [18] 0.24 0.30 0.36 0.41 0.42 0.45 3534

FastHash [16] 0.26 0.32 0.38 0.44 0.46 0.52 772

KLSH [13] 0.2 0.25 0.32 0.39 0.42 0.45 5×10
−4

OKH [9] (@2K) 0.23 0.28 0.36 0.44 0.47 0.55 1.9

Ours (@2K) 0.24 0.29 0.36 0.44 0.48 0.52 2.4

Table 3: Mean Average Precision for the Tiny 1M dataset. For all methods, 2K points are used in learning the hash functions.

Figure 6: Results for the Tiny 1M dataset. (Left) Mean Average Precision (at 96 bits) with respect to CPU time in which for

OKH and our method, the online learning is continued for 25K pairs of points. (Center) Mean hash lookup precision with

Hamming radius 3. (Right) Hash lookup success rates.

compared vs. other solutions. Fig. 5 (center-right) show re-

sults for the hash lookup precision and success rate in which

we observe similar patterns and values compared to state-

of-the-art techniques.

Table 3 reports mAP values for the large scale Tiny 1M

dataset. Here we observe that FastHash and BRE performs

best with compact codes and lengthier codes, respectively.

Our online technique performs competitively against these

batch methods. The hash lookup precision and success rates

for the online techniques are again competitive as shown in

Fig. 6 (center-right).

Figs. 4-6 (left) show mAP values of all the techniques

with respect to CPU time. The batch learners correspond

to single points in which 2K samples are used for learn-

ing. For the 22K LabelMe dataset, we observe no signifi-

cant difference in performance between our technique and

OKH. However, both of these online methods outperform

state-of-the-art (except for BRE) with computation time sig-

nificantly reduced. For the Halfdome and Tiny 1M bench-

marks, the OKH method is slightly faster than ours; how-

ever, in both benchmarks the accuracy of OKH degrades as

the learning process continues. Overall, our method demon-

strates higher retrieval accuracy compared to OKH and is

generally the runner-up method overall. Yet, our results are

obtained from hash functions learned orders of magnitude

faster compared to the state-of-the-art batch techniques.

4. Conclusion

In this study, we have proposed an algorithm based on

stochastic gradient descent to efficiently learn hash func-

tions for fast similarity search. Being online it is adaptable

to variations and growth in datasets. Our online algorithm

attains retrieval accuracy that is comparable with state-of-

the-art batch-learning methods on three standard image re-

trieval benchmarks, while being orders of magnitude faster

than competing state-of-the-art batch-learning methods. In

addition, our proposed formulation gives improved retrieval

performance over the only competing online hashing tech-

nique, OKH, as demonstrated in experiments.

Adaptive online hashing methods are essential for large-

scale applications where the dataset is not static, but con-

tinues to grow and diversify. This application setting

presents important challenges for hashing-based fast sim-

ilarity search techniques, since the hashing functions would

need to continue to evolve and improve over time. While

our results are promising, we believe further improvements

are possible. In particular, we would like to investigate

methods that can augment and grow the hash codes over

time, while at the same time not revisiting (or relearning)

hashes for previously seen items that are already stored in

an index.

1051

References

[1] L. Bottou and O. Bousquet. The tradeoffs of large scale

learning. In Proc. Advances in Neural Information Process-

ing Systems (NIPS), pages 161–168, 2008. 1

[2] R. Collobert, F. Sinz, J. Weston, and L. Bottou. Trading con-

vexity for scalability. In Proc. International Conf. on Ma-

chine Learning (ICML), 2006. 4

[3] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.

Locality-sensitive hashing scheme based on p-stable distri-

butions. In Proceedings of the twentieth annual symposium

on Computational geometry SCG, 2004. 1, 4

[4] T.-M.-T. Do and T. Artières. Regularized bundle methods for

convex and non-convex risks. Journal of Machine Learning

Research, 2012. 4

[5] A. Gionis, P. Indyk, and R. Motwani. Similarity search in

high dimensions via hashing. In Proceedings of the 25th

International Conference on Very Large Data Bases VLDB,

1999. 1

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In Proc. IEEE Conf. on Computer Vision and

Pattern Recognition (CVPR), 2014. 4

[7] Y. Gong and S. Lazebnik. Iterative quantization: A pro-

crustean approach to learning binary codes. In Proc. IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR),

2011. 1

[8] J. He, L. Balzano, and A. Szlam. Incremental gradient on the

grassmannian for online foreground and background separa-

tion in subsampled video. In Proc. IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR), 2012. 4

[9] L.-K. Huang, Q. Y. 0010, and W.-S. Zheng. Online hashing.

In International Joint Conferences on Artificial Intelligence

IJCAI, 2013. 2, 3, 4, 5, 6, 7, 8

[10] R. Kehl, M. Bray, and L. Van Gool. Full body tracking from

multiple views using stochastic sampling. In IEEE confer-

ence on Computer Vision and Pattern Recognition CVPR,

2005. 1

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Proc. Advances in Neural Information Processing Systems

(NIPS), 2012. 4

[12] B. Kulis and T. Darrell. Learning to hash with binary recon-

structive embeddings. In Proc. Advances in Neural Informa-

tion Processing Systems (NIPS), 2009. 1, 2, 4, 7, 8

[13] B. Kulis and K. Grauman. Kernelized locality-sensitive

hashing for scalable image search. In Proc. IEEE Interna-

tional Conf. on Computer Vision (ICCV), 2009. 1, 2, 4, 7,

8

[14] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Effiicient

backprop. In Neural Networks: Tricks of the Trade, This

Book is an Outgrowth of a 1996 NIPS Workshop, pages 9–

50, London, UK, UK, 1998. Springer-Verlag. 1

[15] Y. Lecun, F. J. Huang, and L. Bottou. Learning methods for

generic object recognition with invariance to pose and light-

ing. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2004. 1

[16] G. Lin, C. Shen, Q. Shi, A. van den Hengel, and D. Suter.

Fast supervised hashing with decision trees for high-

dimensional data. In Proc. IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), 2014. 4, 7, 8

[17] G. Lin, C. Shen, D. Suter, and A. van den Hengel. A general

two-step approach to learning-based hashing. In Proc. IEEE

International Conf. on Computer Vision (ICCV), 2013. 1, 3

[18] J. W. Liu, Wei and, R. Ji, Y.-G. Jiang, and S.-F. Chang. Su-

pervised hashing with kernels. In Proc. IEEE Conf. on Com-

puter Vision and Pattern Recognition (CVPR), 2012. 1, 2, 3,

4, 7, 8

[19] M. Norouzi and D. J. Fleet. Minimal loss hashing for com-

pact binary codes. In Proc. International Conf. on Machine

Learning (ICML), 2011. 1, 2, 3, 4, 7, 8

[20] S. Shalev-Shwartz. Online learning and online convex op-

timization. Journal Foundations and Trends in Machine

Learning, 2012. 3

[21] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Pri-

mal estimated sub-gradient solver for svm. In Proc. Interna-

tional Conf. on Machine Learning (ICML), 2007. 1

[22] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hash-

ing for large-scale search. IEEE Trans. Pattern Anal. Mach.

Intell. TPAMI, 2012. 1, 2, 3, 4

[23] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In

Proc. Advances in Neural Information Processing Systems

(NIPS), 2008. 1, 2, 4

[24] D. Zhang, J. Wang, D. Cai, and J. Lu. Self-taught hashing

for fast similarity search. In Proceedings of the 33rd interna-

tional ACM SIGIR conference on Research and development

in information retrieval SIGIR, 2010. 1, 2, 4

1052

