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Abstract

Many computer vision problems can be posed as learn-

ing a low-dimensional subspace from high dimensional da-

ta. The low rank matrix factorization (LRMF) represents a

commonly utilized subspace learning strategy. Most of the

current LRMF techniques are constructed on the optimiza-

tion problem using L1 norm and L2 norm, which mainly

deal with Laplacian and Gaussian noise, respectively. To

make LRMF capable of adapting more complex noise, this

paper proposes a new LRMF model by assuming noise as

Mixture of Exponential Power (MoEP) distributions and

proposes a penalized MoEP model by combining the pe-

nalized likelihood method with MoEP distributions. Such

setting facilitates the learned LRMF model capable of auto-

matically fitting the real noise through MoEP distributions.

Each component in this mixture is adapted from a series

of preliminary super- or sub-Gaussian candidates. An Ex-

pectation Maximization (EM) algorithm is also designed to

infer the parameters involved in the proposed PMoEP mod-

el. The advantage of our method is demonstrated by ex-

tensive experiments on synthetic data, face modeling and

hyperspectral image restoration.

1. Introduction

Many computer vision, machine learning, data mining

and statistical problems can be formulated as the problem

of extracting the intrinsic low dimensional subspace from

input high-dimensional data. The extracted subspace tends

to deliver the refined latent knowledge underlying data and

thus has a wide range of applications including structure

from motion [28], face recognition [33], collaborative filter-

ing [14], information retrieval [7], social networks [5], ob-

ject recognition [29], layer extraction [12] and plane-based

pose estimation [27].

Low rank matrix factorization (LRMF) is one of the most

∗Corresponding author.
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Figure 1. From left to right: Original hyperspectral image (HSI),

reconstructed image, two extracted noise images with their his-

tograms by the proposed methods. (Top: EP0.2 noise image and

histogram. Bottom: EP1.8 noise image and histogram).

commonly utilized techniques for subspace learning. Giv-
en a data matrix Y ∈ Rm×n with entries yijs, the LRMF
problem can be mathematically formulated as

min
U,V

||W ⊙ (Y −UV
T )||, (1)

where W is the indicator matrix with wij = 0 if yij is

missing and 1 otherwise, and U ∈ Rm×r and V ∈ Rn×r

are low-rank matrices (r < min(m,n)). The operator ⊙
denotes the Hadamard product (the component-wise multi-

plication) and || · || corresponds to a certain noise measure.

Under the assumption of Gaussian noises, it is natural

to utilize the L2 norm (Frobenius norm) as the noise mea-

sure, which has been extensively studied in LRMF litera-

tures [26, 3, 23, 1, 35, 24, 32, 22]. However, it has been

recognized in many real applications that methods con-

structed on this model are sensitive to outliers and non-

Gaussian noise. In order to introduce robustness, the L1-

norm-based models have attracted much attention recently

[13, 8, 37, 15, 25, 11]. However, the L1 norm is only opti-

mal for Laplace-like noise and still very limited for handling

various types of noise encountered in real problems. Taking

the hyper-spectral image for example, it has been investigat-

ed in [34] that there are mainly two kinds of noise existing,
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i.e., sparse noise (stripe and deadline) and Gaussian-like

noise, as depicted in Figure 1. The stripe noise is produced

by the non-uniform sensor response which conducts the de-

viation of gray values of the original image continuously

towards one direction. This noise always very sparsely ap-

pears in edges and texture areas of an image. The deadline

noise, which is induced by some damaged sensor, results

in the pixel value of the corresponding column to be 0 or

very small value. The Gaussian-like noise is induced by

some random disturbation during the transmission process

of hyper-spectral signals. It is easy to see that such kind of

complex noise cannot be well fit by either Laplace or Gaus-

sian, which means that neither L1 norm nor L2 norm LRMF

models are proper for this type of data.

Very recently, some novel models were presented to ex-

pand the availability of LRMF under more complex noise.

The key idea is assuming the noise follows a more compli-

cated mixture of Gaussians (MoG) [19], which is expected

to better fit real noises, since the MoG constructs an uni-

versal approximator to any continuous density function in

theory [17]. However, this method still cannot finely adap-

t real data noises. MoG can only approximate a complex

distribution, e.g. Laplace, when the number of components

goes to infinity, while in applications only a finite number

of components can be specified. Besides, it also lacks a the-

oretically sound manner to properly select this number of

Gaussian mixture. Moreover, the real noise might contain

super- or sub-Gaussian components, which are beyond the

representative ability of the current MoG.

In this paper, we propose a new LRMF method with a

more general noise model to address the aforementioned is-

sues. Specifically, we embed the noise into a mixture distri-

bution of a series of sub- and super-Gaussians (i.e., general

exponential power (EP) distributions), and formulate LRM-

F as a penalized MLE model, called PMoEP model. Then

we design an expectation maximization (EM) algorithm to

estimate the parameters involved in the model, and prove its

convergence. The new method is not only capable of adap-

tively fitting complex real noise by EP noise components

with proper parameters, but also able to learn the number

of noise components from data, and thus can better recover

the true low-rank matrix from corrupted data as verified by

extensive experiments.

The rest of the paper is organized as follows: the relat-

ed work regarding LRMF is introduced in Section 2. The

PMoEP model and the corresponding EM algorithm are p-

resented in Section 3. Experimental results are shown in

Section 4. Finally, conclusions are drawn in Section 5.

Throughout the paper, we denote scalars, vectors, matrices

as the non-bold letters, bold lower case letters, and bold up-

per case letters, respectively.

2. Related Work

The L2 norm LRMF with missing data has been studied

for decades. Gabriel and Zamir [9] proposed a weighted

SVD method as the early attempts to solve the L2 norm

LRMF with missing data. They used alternated minimiza-

tion to find the principal subspace of the data. Srebro and

Jaakkola [26] proposed the Weighted Low-rank Approxi-

mation (WLRA) algorithm to enhance efficiency of LRMF

calculation. Buchanan and Fitzgibbon [3] further proposed

a regularized model that adds a regularization term and then

adopts the modified Levenberg-Marquardt (LM) algorithm

to estimate the subspaces. However, it cannot handle large-

scale problems due to the infeasibility of computing the

Hessian matrix over a large number of variables. Okatani

and Deguchi [23] showed that a Wiberg marginalization s-

trategy on U and V can provide a better and robust initial-

ization and proposed the Wiberg algorithm that updates U
via least squares while updates V by a Gauss-Newton step

in each iteration. Later, the Wiberg algorithm was extend-

ed to a damped version to achieve better convergence by

Okatani et al. [24]. Aguiar et al. [1] deduced a globally op-

timal solution to L2-LRMF with missing data under the as-

sumption that the missing data has a special Young diagram

structure. Zhao and Zhang [35] formulated the L2-LRMF

as a constrained model to improve its stability in real ap-

plications. Wen et al. [32] adopted the alternating strategy

to solve the L2-LRMF problem. Mitra et al. [22] proposed

an augmented Lagrangian method to solve the L2-LRMF

problem for higher accuracy. However, all of these methods

minimize the L2 norm or its variations and is only optimal

for Gaussian-like noise.

To make subspace learning method less sensitive to out-

liers, some robust loss functions have been investigated. For

example, De la Torre and Black [6] adopted the Geman-

McClure function and then used the iterative reweighted

least square (IRLS) method to solve the induced optimiza-

tion problem. In the last decade, the L1 norm has become

the most popular robust loss function. Ke and Kanade [13]

replaced the L2 norm with the L1 norm for LRMF for the

first time, and then solved the optimization by alternated

convex programming (ACP) method. Kwak [15] later pro-

posed to maximize the L1 norm of the projection of da-

ta points onto the unknown principal directions instead of

minimizing the residue. Eriksson and Hengel [8] experi-

mentally showed that the ACP approach does not converge

to the desired point with high probability, and thus intro-

duced the L1 Wiberg approach to address this issue. Zheng

et al. [37] added more constraints to the factors U and V

for L1 norm LRMF, and solved the optimization by ALM,

which improved the performance in structure from motion

application. Within the probabilistic framework, Wang et

al. [30] proposed probabilistic robust matrix factorization

(PRMF) that modeled the noise as a Laplacian distribution,
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which has been later extended to fully Bayesian settings

by Wang and Yeung [31]. However, these methods opti-

mize the L1 norm and thus are only optimal for Laplace-like

noise.

Beyond Gaussian or Laplace, other types of noise as-

sumptions have also been attempted. Lakshminarayanan et

al. [16] assumed that the noise is drawn from a student-t

distribution. Babacan et al. [2] proposed a Bayesian meth-

ods for low-rank matrix estimation modeling the noise as a

combination of sparse and Gaussian. To handle more com-

plex noise, Meng and De la Torre [19] modeled the noise

as a MoG distribution for LRMF, and later was extended to

the Bayesian framework by Chen et al. [4] and to RPCA by

Zhao et al. [36]. Although better than traditional methods,

these methods are still very limited in dealing with complex

noise in real scenarios.

3. LRMF with MoEP noise

In this section, we first propose a new LRMF model with

MoEP noise, called PMoEP model, and then design an EM

algorithm to solve it.

3.1. PMoEP model

In LRMF, from a generative perspective, each element
yij(i = 1, 2, . . . ,m, j = 1, 2, . . . , n) of the data matrix Y
can be modeled as

yij = uiv
T
j + eij , (2)

where ui and vi are the ith row of U and V, respectively,
and eij is the noise in yij . Instead of assuming the noise
obeys MoG distributions, we assume that the noise eij fol-
lows mixture of Exponential Power (EP) distributions:

P(eij) =

K
∑

k=1

πkfpk (eij ; 0, ηk), (3)

where πk is the mixing proportion with πk ≥ 0 and
∑K

k=1 πk = 1, K is the number of the mixture components

and fpk
(eij ; 0, ηk) denotes the kth EP distribution with pa-

rameter ηk and pk(pk > 0). Let p = [p1, p2, . . . , pK ],
in which each pk can be variously specified. As defined
in [21], the density function of the EP distribution (p > 0)
with zero mean is

fp(e; 0, η) =
pη

1
p

2Γ( 1
p
)
exp{−η|e|p}, (4)

where η is the precision parameter, p is the shape parame-

ter and Γ(·) is the gamma function. By changing the shape

parameter p, the EP distribution describes both leptokurtic

(0 < p < 2) and platykurtic (p > 2) distributions. In par-

ticular, we obtain the Laplace distribution with p = 1, the

Gaussian distribution with p = 2 and the Uniform distribu-

tion with p → ∞ (see Figure 2). Therefore, MoG is special

case of MoEP. By setting η = 1/(pσp), the EP distribution

(4) can be equivalently written as EP (e; 0, pσp).
In our model, we assume that each noise eij is equipped

with an indicator variable zij = [zij1, zij2, . . . , zijK ]T ,

where zijk ∈ {0, 1} and
∑K

k=1 zijk = 1. zijk = 1 im-

plies that the noise eij is drawn from the kth EP distribu-
tion. zij obeys a multinomial distribution zij ∼ M(π),
where π = [π1, π2, . . . , πK ]T . Then we have:

P(eij |zij) =

K
∏

k=1

fpk (eij ; 0, ηk)
zijk , (5)

P(zij ;π) =
K
∏

k=1

π
zijk
k . (6)

Denoting E = (eij)m×n, Z = (zij)m×n and Θ =
{π,η,U,V} with η = [η1, η2, . . . , ηK ]T , the complete
likelihood function can be written as

P(E,Z;Θ) =
∏

i,j∈Ω

K
∏

k=1

[πkfpk (eij ; 0, ηk)]
zijk , (7)

where Ω is the index set of the non-missing entries in Y.
Then the log-likelihood function is

l(Θ) = log P(E;Θ) = log
∑

Z

P(E,Z;Θ), (8)

and the complete log-likelihood function is

l
C(Θ) = log P(E,Z;Θ)

=
∑

i,j∈Ω

K
∑

k=1

zijk[log πk + log fpk (eij ; 0, ηk)]. (9)

As aforementioned in introduction, determining the
number of components K is an important problem for the
mixture model. Here we adopt an effective method pro-
posed by Huang et al. [10] for this aim of selecting EP mix-
ture number, and construct the following penalized MoEP
(PMoEP) model:

max
Θ

{

l
C
P (Θ) = l

C(Θ)− P (π;λ)
}

, (10)

where

P (π;λ) = nλ

K
∑

k=1

Dk log
ǫ+ πk

ǫ
, (11)

with ǫ being a very small positive number (ǫ = 10−6 or

o(n−
1
2 log−1 n)), λ being a tuning parameter (λ > 0), and

Dk being the number of free parameters for the kth compo-

nent.

3.2. EM algorithm

In this subsection, we propose an EM algorithm to

solve our PMoEP model (10). We assume that Θ(t) =
{π(t),η(t),U(t),V(t)} is the estimate at the tth iteration.

1495



−5 −4 −3 −2 −1 0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

x

P
(x

)

Exponential Power distribution

p=0.5
p=1
p=1.5
p=2
p=3
p=oo

Figure 2. The probability density function of EP distributions.

In the E step, we compute the conditional expectation of

zijk given eij by the Bayes’ rule and get

γ
(t+1)
ijk =

π
(t)
k fpk

(yij − u
(t)
i (v

(t)
j )T )|0, η

(t)
k )

∑K

l=1 π
(t)
l fpl

(yij − u
(t)
i (v

(t)
j )T )|0, η

(t)
l ))

. (12)

Then, it is easy to construct the so-called Q function:

Q(Θ,Θ
(t)) =

∑

i,j∈Ω

K
∑

k=1

γ
(t+1)
ijk [log fpk (eij ; 0, ηk) + log πk]

− nλ

K
∑

k=1

Dk log
ǫ+ πk

ǫ
.

(13)

In the M-step, we update Θ by maximizing the Q func-
tion. To obtain the update for π, we need to introduce a La-

grange multiplier τ to enforce the constraint
∑K

k=1 πk = 1
and then maximize the following Lagrange function:

∑

i,j∈Ω

K
∑

k=1

γ
(t+1)
ijk log πk − nλ

K
∑

k=1

Dk log
ǫ+ πk

ǫ

+ τ(
∑

k

πk − 1).

(14)

By taking the first derivative of (14) with respect to πk and
setting it to zero, we get

π
(t+1)
k = max

{

0,
1

1− λD̂

[

∑

i,j∈Ω γ
(t+1)
ijk

|Ω|
− λDk

]}

, (15)

where D̂ =
∑K

k=1 Dk = 2K. To obtain the update equa-
tion of η, we take the first derivative of Q with respect to
ηk, and find the zero point:

η
(t+1)
k =

Nk

pk
∑

i,j∈Ω γ
(t+1)
ijk |yij − u

(t)
i (v

(t)
j )T |pk

, (16)

where Nk =
∑

i,j∈Ω γ
(t+1)
ijk . To obtain an estimate for

U,V, it is natural to maximize the following function:

∑

i,j∈Ω

K
∑

k=1

γ
(t+1)
ijk log fk(yij − u

(t)
i (v

(t)
j )T ; η

(t+1)
k ). (17)

Obviously, maximizing (17) is equivalent to solving 1

min
U,V

K
∑

k=1

||W(k) ⊙ (Y −UV
T )||pkpk , (18)

where the element w(k)ij of W(k) ∈ Rm×n is

w(k)ij =

{

(η
(t+1)
k γ

(t+1)
ijk )

1
pk , i, j ∈ Ω

0, i, j /∈ Ω
.

To solve (18), we resort to augmented Lagrange multipliers
(ALM) technique. Let L = UVT , (18) is then equivalent
to

min
U,V

K
∑

k=1

||W(k) ⊙ (Y − L)||pkpk

s.t L = UV
T
.

(19)

Then the augmented Lagrangian function can be written as:

L(U,V,L,Y, ρ) =
K
∑

k=1

||W(k) ⊙ (Y − L)||pkpk+

〈Λ,L−UV
T 〉+

ρ

2
||L−UV

T ||2F ,

(20)

where Λ ∈ Rm×n is the Lagrangian multiplier and ρ > 0
is a penalty parameter. Now we shall alternatively optimize
U,V,L,Λ, ρ. At the (s + 1)th iteration, the optimization
process is















(U(s+1),V(s+1),L(s+1)) = argmin
U,V,L

L(U,V,L,Λ(s), ρ(s)),

Λ
(s+1) = Λ

(s) + ρ(s)(L(s+1) −U
(s+1)(V(s+1))T ),

ρ(s+1) = αρ(s),

where α is a positive value. The first subproblem can be

optimized alternately as follows.
(1) Update U,V. The following subproblem needs to be

solved:

min
U,V

||L(s) +
1

ρ(s)
Λ

(s) −UV
T ||2F , (21)

which can be efficiently solved by SVD method.
(2) Update L. It is easy to see that we need to optimize

a series of subproblems for (i, j) ∈ Ω with the following
form:

min
eij

∑

k

ηkγijk|yij − lij |
pk +

ρ(s)

2
l
2
ij

+ ((Λ(s))ij − ρ
(s)

uiv
T
j )lij .

(22)

Let qij = yij − lij , (22) is equivalent to

min
qij

1

2

[

(−uiv
T
j + yij +

1

ρ(s)
(Λ(s))ij)− qij

]2

+
1

ρ(s)

∑

l

ηlγijl|qij |
pl ,

(23)

1The p-norm of a matrix is defined as ||X||p = (
∑

i,j |xij |
p)

1
p .
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Let wij = −uiv
T
j + yij +

1
ρ(s) (Λ

(s))ij . Then, we should

solve |Ω| such subproblems:

min
qij

1

2
(wij − qij)

2 +
1

ρ

K
∑

l=1

ηlγijl|qij |
pl . (24)

In order to solve (24), we take the first derivative with re-

spect to sij and then adopt the well-known Newton method

to find its zero point.

Remark: If fk is specified as the density of a Gaussian
distribution, the PMoEP model degenerates to the penal-
ized MoG (PMoG) model. The optimization process of the
PMoG model is almost the same as the PMoEP except min-
imizing (18). In this case, the optimization problem (18)
becomes

min
U,V

||W ⊙ (Y −UV
T )||22, (25)

and then any off-the-shelf weighted L2 norm LRMF

method can be adopted to solve it.

We then summarize the EM algorithm in Algorithm 1.

Algorithm 1 EM Algorithm for PMoEP LRMF

Input:

Data Y = {yij}m×n. Initialize Θ(t) =
{π(t),η(t),U(t),V(t)}, the number of components

Kstart, preset candidates p = [p1, . . . , pKstart
], tol-

erance ǫ and t = 0.

Output:

Parameter Θ̂, the number of final components K̂ and

posterior probability γ = {γijk}m×n×K̂ .

1: repeat

2: (E step): Update the posterior probability γ
(t) by

(12).

3: (M step for π ): Update parameter π(t) by (15), and

remove the component with π
(t)
k = 0.

4: (M step for η ): Update parameters η(t) by (16).

5: (M step for U,V): Update U(t),V(t) by maximizing

(18) using ALM strategy (19)-(24).

6: until converge;

The convergence property of standard EM algorithm for

maximizing non-penalized log-likelihood function has been

discussed in many literatures [18]. Here, we will show the

convergence property of the EM algorithm for maximizing

penalized log-likelihood function by the following theorem.

Theorem 1. Let lGP (Θ) = l(Θ) − P (π;λ), where l(Θ) is

defined in (8). If we assume that {Θ(t)} is the sequence gen-
erated by Algorithm 1 and the sequence of likelihood values
{lGP (Θ

(t))} is bounded above, then there exits a constant l⋆

such that

lim
t→∞

l
G
P (Θ

(t)) = l
⋆
, (26)

where

Θ
(t) = argmax

Θ

{

Ω(Θ|Θ(t−1)) + P (π(t−1);λ)− P (π;λ)
}

,

(27)

and

Ω(Θ|Θ(t−1)) =
∑

Z

P(Z|E;Θ(t−1)) log
P(E,Z;Θ)

P(E,Z;Θ(t−1))
.

(28)

The proof of Theorem 1 can be found in the supplemen-

tary materials. The theorem actually indicates that the pe-

nalized likelihod lGP (Θ
(t)) is not decreased after an EM it-

eration.

3.3. Selection of Tuning Parameter λ

So far, the tuning parameter λ is treated as fixed in Algo-
rithm 1. In real applications, one needs to select a good one
among many condidates. For standard LASSO and SCAD
penalized regression, there are many ways to select a proper
λ, such as cross-validation and Bayesian information crite-
rion(BIC). Following [10] , we consider the modified BIC
criteria defined as

BIC(λ) =
∑

i,j∈Ω

log {

K̂
∑

k=1

π̂kfk(eij ; η̂k)} −
1

2
(

K̂
∑

k=1

Dk) log |Ω|.

(29)

and then select λ̂ by

λ̂ = argmax
λ

BIC(λ), (30)

where |Ω| is the number of the observations, K̂ is the esti-

mate of the number of components, π̂k is the estimate of

parameter πk and η̂k is the estimate of parameter ηk for

maximizing (10) with a given λ.

4. Experiments

To evaluate the performance of the proposed PMoEP and

its special case PMoG, we conducted a series of synthetic

and real experiments including face modeling and hyper-

spectral image restoration. Several state-of-the-art method-

s, including MoG [19], CWM [20], Damped Wiberg (D-

W) [24], RegL1ALM [37] and Singular Value Decompo-

sition (SVD) were considered for comparison. All experi-

ments were implemented in Matlab R2012a on a PC with

3.40GHz CPU and 8GB RAM.

4.1. Synthetic experiments

Similar to [19, 36], several synthetic experiments were

designed to compare the proposed methods with other pop-

ular ones under different noise settings. For each exper-

iment, we first randomly generated 30 low rank matrices

with size 40 × 20 and rank 4. Each of these matrices was

generated by the multiplication of two low-rank matrices

Ugt ∈ R40×4 and Vgt ∈ R20×4, i.e., Ygt = UgtV
T
gt.
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Then, we randomly specified 20% of entries in Ygt as miss-

ing data and further added different types of noise in the

non-missing entries as follows: (1) Gaussian noise: 80%

of the entries were corrupted with N (0, 0.04). (2) Sparse

noise: 10% of the entries were corrupted with uniformly

distributed noise between [-20,20]. (3) EP noise: 80% of

the entries were corrupted with EP (0, 0.2pp), p = 0.2. (4)

Mixture noise: 20% of the entries were corrupted with u-

niformly distributed noise between [-5,5], 20% are contam-

inated with Gaussian noise N (0, 0.04) and the remaining

40% are corrupted with Gaussian noise N (0, 0.01). We de-

note the noisy matrix as Yno. Six measures were utilized

for performance assessment:

C1 = ||W ⊙ (Yno − ŨṼ
T )||1, C2 = ||W ⊙ (Yno − ŨṼ

T )||2,

C3 = ||Ygt − ŨṼ
T ||1, C4 = ||Ygt − ŨṼ

T ||2,

C5 = subspace(Ugt, Ũ), C6 = subspace(Vgt, Ṽ),

where Ũ, Ṽ are the outputs of the corresponding competing

method, and subspace(U1,U2) denotes the angle between

subspaces spanned by the columns of U1 and U2. Note

that C1 and C2 are the optimization objective function for

L1 and L2 norm LRMF problems, while the latter four mea-

sures (C3 − C6) are more faithful to evaluate whether the

method recovers the correct subspaces.

In this set of experiments, to alleviate the local optimum

issue, we adopt the multiple random initialization strategy.

More specifically, for MoG, DW, CWM and RegL1ALM

methods, we first run with 20 random initializations for each

generated matrice and then select the best result with re-

spect to the objective value. For PMoG and PMoEP, the

experimental setting is almost the same with the other com-

peting methods except that for each random initialization,

we first provide a series of λs and then select the one with

the largest BIC as the result for this initialization. Finally,

we select the initialization with the largest likelihood value

as the result for this generated matrice. The performance of

each method on each simulation was evaluated as the aver-

age results over the 30 random generated matrices in terms

of the six measures, and the results are summarized in Table

1. Additionally, the average time of one run of each method

in all cases are also summarized in the table (For PMoEP

and PMoG, one run means λ is given).

For all the methods, we set the rank of the low-rank com-

ponent to 4 and adopt the random initialization strategy for

U and V. Particularly, for PMoG and PMoEP, two pa-

rameters Kstart and λ need suitable initializations. From

the extensive off-line experiments, we indeed find that the

Kstart should not be set too large (usually from 4 to 10)

and λ is uniformly selected from [0,0.3]. In addition, once

Kstart is initialized for PMoEP, the length of parameter

vector p = [p1, p2, . . . , pKstart
] in PMoEP is determined.

In these synthetic experiments, each element pk is selected

from 0.1 to 2.

PMoEP PMoG MoG [19] CWM [20] DW [24] RegL1ALM [37]

Sparse Noise

C1 8.32e+2 7.98e+2 8.03e+2 7.97e+2 1.05e+3 8.63e+2

C2 1.07e+4 1.06e+4 1.08e+4 9.97e+3 4.79e+3 5.96e+3

C3 3.23e+1 2.13e-12 1.57e+1 4.10e+2 5.62e+14 1.19e+6

C4 6.73e+1 2.42e-5 3.45e+1 9.69e+1 1.30e+7 4.26e+3

C5 1.40e-1 3.85e-8 3.30e-2 3.93e-1 1.47e+1 1.49e+1

C6 6.16e-2 2.33e-8 1.96e-6 1.13e-1 1.44e+1 1.45e+1

Gaussian Noise

C1 8.08e+1 7.83e+1 8.20e+1 7.71e+1 8.16e+1 7.35e+1

C2 1.65e+1 2.41e+1 1.67e+1 2.17e+1 1.67e+1 2.14e+1

C3 1.31e+1 2.48e+1 1.33e+1 2.24e+1 1.32e+1 2.03e+1

C4 7.89e+1 1.06e+2 7.90e+1 9.95e+1 7.86e+1 9.74e+1

C5 8.54e-2 1.17e-1 9.24e-2 1.22e-1 8.67e-2 1.10e-1

C6 5.82e-2 8.43e-2 6.30e-2 9.96e-2 5.77e-2 7.06e-2

EP Noise

C1 3.64e+2 3.19e+2 3.18e+2 3.30e+2 4.33e+2 3.53e+2

C2 1.29e+3 1.25e+3 1.02e+3 1.35e+3 6.49e+2 8.75e+2

C3 1.58e+2 3.28e+3 6.98e+4 1.99e+2 1.04e+7 6.66e+4

C4 2.40e+2 2.65e+2 3.52e+2 2.47e+2 2.57e+3 8.22e+2

C5 3.02e-1 4.21e-1 4.19e-1 3.62e-1 1.08e+1 1.14e+1

C6 2.02e-1 2.87e-1 3.28e-1 2.53e-1 9.05e-1 1.01e+1

Mixture Noise

C1 4.40e+2 4.38e+2 4.27e+2 4.31e+2 5.18e+2 4.26e+2

C2 1.27e+3 1.33e+3 1.28e+3 1.10e+3 8.26e+2 1.12e+3

C3 1.42e+2 1.90e+2 1.88e+2 3.77e+2 2.16e+8 1.45e+4

C4 1.68e+2 1.91e+2 1.84e+2 3.15e+2 7.08e+3 5.08e+2

C5 3.47e-1 3.90e-1 3.93e-1 5.41e-1 8.44e-1 7.96e-1

C6 1.79e-1 1.78e-1 1.62e-1 3.91e-1 7.46e-1 6.17e-1

Time(s) 2.34 0.28 0.46 0.062 0.352 0.11

Table 1. Performance evaluation on synthetic data. The best re-

sults in terms of the six criteria are highlighted in bold.

It is easy to observe from Table 1 that, the Damped

Wiberg method, which is a L2-norm-based method, per-

forms best or second best in the Gaussian noise case a-

mong all the competing methods. The MoG method per-

forms well across all kinds of noisy cases although it does

not always achieve the best performance. Additionally, the

PMoG method can not only overcome the drawback of the

selection of the number of components of MoG method,

but also obtain almost the same performance as the MoG

method under properly set parameters. Specifically, the P-

MoG performs best in the sparse noise case. In the mix-

ture noise cases, the proposed PMoEP method has almost

the best or second best performance in estimating a better

subspace from the noisy data. In particular, when the noise

obeys the EP distribution, this method always performs best

in term of criteria C3-C6.

The promising performance of our proposed PMoEP

method in these cases can be easily explained by Figure 3,

which compares the ground truth noises and the estimated

ones by the PMoEP method. It can be easily observed that

the estimated noise distributions well match the true ones.

4.2. Real data experiments

In this subsection, we use our PMoG and PMoEP meth-

ods in two real applications with complex noise, namely,

face modeling and hyperspectral image restoration. The

competing methods include MoG [19], CWM [20], DW

[24], RegL1ALM [37] and SVD.
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Figure 3. Visual comparison of the ground truth (denote by True)

noise probability density functions and those estimated (denote by

Est) by the PMoEP method in the synthetic experiments. The em-

bedded sub-figures depict the zoom-in of the indicated portions.

4.2.1 Face modeling experiments

This experiment aims to test the effectiveness of the PMoG

and PMoEP methods in face modeling applications. We

choose the first and the second subset of the Extended Yale

B database2, and each subset consists of 64 faces of one per-

son. The size of one face image is 192 × 168 and thus the

data matrices are with size 32256×64. Typical images used

for comparison are plotted in the first column of Figure 5.

We set the rank to 4 [19, 36] and adopt two ini-

tialization strategies, random and SVD, for all compet-

ing methods. Then we report the best result among the

initializations in terms of objective value. Addtional-

ly, for PMoG and PMoEP methods, we initialize Kstart

and provide a series of λ. Then, we use the modified

BIC criterion to select the λ corresponding the largest

BIC value. Specifically, for PMoG, Kstart is set to 6

and λ is selected from {0.01, 0.05, 0.12, 0.15, 0.18}; while

for PMoEP, Kstart is set to 4, the corresponding p =
[p1, p2, p3, p4] are set to [0.2, 0.3, 0.4, 0.5] and λ is chosen

from {0.0001, 0.005, 0.01, 0.05, 0.12, 0.24}. Figure 4 (a)

shows the choice of λ by the BIC for PMoEP. Figure 5 dis-

plays the reconstructed faces of all the methods.

From Figure 5, it is easy to observe that, the proposed

PMoEP and PMoG methods, as well as the other compet-

ing ones, can remove the cast shadows and saturations in

faces. However, our PMoEP method performs better than

other ones on faces with a large dark region. The reason

can be seen in Figure 6. Comparing with the PMoG and the

MoG methods, our PMoEP method is capable of modeling

more complex noise, as is shown in Figure 6. Specifically,

our proposed PMoEP method is more capable of extract-

ing significant cast shadow and saturation noises than the

2http://vision.ucsd.edu/ leekc/ExtYaleDatabase/ExtYaleB.html
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Figure 4. Using the Modified BIC to select the tuning parameter

λ of the PMoEP method. (a) Face modeling. (b) Hyperspectral

image restoration.

 Original face    PMoEP        PMoG           MoG      RegL1ALM      DW            CWM           SVD   

Figure 5. From left to right: original face images, recon-

structed faces by PMoEP, PMoG, MoG, RegL1ALM, Damped

Wiberg(DW), CWM and SVD.

         MoG                                       PMoEP

      Original face  Reconstructed

    Noise

Figure 6. From left to right: original faces, reconstructed faces and

extracted noise by MoG and PMoEP. The noise with positive and

negative values are depicted in yellow and blue.

MoG method. Therefore, our PMoEP method leads to the

best face reconstruction performance among all comparison

methods.

4.2.2 Hyperspectral Image Restoration experiments

A Hyperspectral Image (HSI) dataset called Urban3 is used

in experiment. This dataset contains 210 bands, each of

which is of size 307 × 307, and some bands are seriously

polluted by atmosphere and water or corrupted by the mix-

ture of sparse noise (stripes and deadlines) and Gaussian

noise [34], as shown in Figure 1. We reshape each band as

a vector, and stack all the vectors into a matrix, resulting in

the final data matrix with size 94249×210. All the methods

were implemented, except for the Damped Wiberg method

which encounters the “out of memory” problem.

In this experiment, we set the rank to 4 and use

3http://www.tec.army.mil/hypercube.
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     (c) RegL1ALM           (d)  CWM              (b) SVD

         (g) PMoEP            (f) PMoG          (e) MoG

      (a) Original HSI

Figure 7. (a) original band (206). (b)-(g) reconstructed bands by SVD, RegL1ALM, CWM, MoG, PMoG and PMoEP.

         SVD                             CWM                      RegL1ALM                                     MoG                                                           PMoG                                                          PMoEP     Original HSI

Figure 8. From left to right: original bands, and extracted noise by SVD, CWM, RegL1ALM, MoG, PMoG and PMoEP. The noises with

positive and negative values are depicted in yellow and blue, respectively. This figure should be viewed in color and the details are better

seen by zooming on a computer screen.

SVD as the initialization method for U and V. For P-

MoEP method, Kstart is set to 5, the corresponding p =
[p1, p2, p3, p4, p5] are set to [0.2, 0.5, 1, 1.8, 2] and λ is s-

elected from {0.0001, 0.005, 0.01, 0.05, 0.12, 0.24}. Simi-

larly, we utilize the modified BIC method to select the best λ
corresponding to the largest BIC value. Figure 4 (b) shows

the choice of λ by the BIC.

Our experimental results show that our method can gen-

erally improve the image quality of these HSIs. To show

more details, an example image located at a band of this H-

SI is illustrated in Figure 7. An area of interest is amplified

in the restored image obtained by all competing methods

for easy comparison. It can be easily seen that the image re-

stored by our PMoEP method better removes the noise, es-

pecially the strips noise, while the results obtained by other

competing ones contain evident stripe noise area. More-

over, our PMoEP method separates the noise information

more accurately. Specifically, PMoEP can properly discov-

er the two types of noise under this kind of HSI data: stripes

noise and Gaussian noise, while the other competing meth-

ods fail to do so, as is shown in Figure 8.

5. Conclusion

In this paper, we model the noise of the LRMF problem

as MoEP distributions and propose the penalized MoEP (P-

MoEP) model by applying the penalized likelihood method

to MoEP distributions. Compared with the current LRMF

methods, our PMoEP method can better fit data noise in a

wide variety of synthetic and real complex noise scenarios,

including face modeling and hyperspectral image restora-

tion. Additionally, our method is capable of automatically

learning the number of components from data, and thus fa-

cilitates to dealing with more complex applications. In fu-

ture, we will try to extend the PMoEP model to high-order

low rank tensor factorization problems and other practical

applications.
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