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Abstract

In this paper, we address the problem of estimating noise

level from a single image contaminated by additive zero-

mean Gaussian noise. We first provide rigorous analysis on

the statistical relationship between the noise variance and

the eigenvalues of the covariance matrix of patches within

an image, which shows that many state-of-the-art noise es-

timation methods underestimate the noise level of an image.

To this end, we derive a new nonparametric algorithm for

efficient noise level estimation based on the observation that

patches decomposed from a clean image often lie around a

low-dimensional subspace. The performance of our method

has been guaranteed both theoretically and empirically.

Specifically, our method outperforms existing state-of-the-

art algorithms on estimating noise level with the least exe-

cuting time in our experiments. We further demonstrate that

the denoising algorithm BM3D algorithm achieves optimal

performance using noise variance estimated by our algo-

rithm.

1. Introduction

Noise level is an important parameter to many algo-

rithms in different areas of computer vision, including im-

age denoising [3, 5, 6, 7, 16], optical flow [12, 26], image

segmentation [1, 4] and super resolution [9]. However, in

real world situations the noise level of particular images

can be unavailable and is required to be estimated. So far,

it still remains to be a challenge to accurately estimate the

noise level for different noisy images, especially for those

with rich textures. Therefore, a robust noise level estimation

method is highly demanded.

One important noise model widely used in different com-

puter vision problems, including image denoising, is the

additive, independent and homogeneous Gaussian noise

model, where “homogeneous” means that the noise vari-

ance is a constant for all pixels within an image and does

not change over the position or color intensity of a pixel.

The goal of noise level estimation is to estimate the un-

known standard deviation σ of the Gaussian noise with a

single observed noisy image.

The problem of estimating noise level from a single im-

age is fundamentally ill-posed. During last decades, numer-

ous noise estimating methods [2, 17, 13, 20, 24] have been

proposed. However, all of these methods are based on the

assumption that the processed image contains a sufficient

amount of flat areas, which is not always the case for natu-

ral image processing. Recently, new algorithms have been

proposed in [19, 23] with state-of-the-art performance. The

authors of [19, 23] claim that these methods can accurately

estimate the noise level of images without homogeneous ar-

eas. However, these methods suffer from the following two

weaknesses. Firstly, as concluded in [19], the convergence

and performance of selecting low-rank patches is not the-

oretically guaranteed and does not have high accuracy em-

pirically. Secondly, as theoretically explained in Sec. 2.2 of

this paper, both [19] and [23] underestimate the noise level

for processed images, since they take the smallest eigen-

value of the covariance of selected low-rank patches as their

noise estimation result.

To tackle these problems, we propose a new algorithm

for noise level estimation. Our work is based on the obser-

vation that patches taken from the noiseless image often lie

in a low-dimensional subspace, instead of being uniformly

distributed across the ambient space. This property has been

widely used in subspace clustering methods [8, 29]. The

low-dimensional subspace can be learned by the method of

Principal Component Analysis (PCA) [14]. As analyzed in

2.1, the noise variance can be estimated from the eigenval-

ues of redundant dimensions. In this way, the problem of

noise level estimation is reformulated to the issue of select-

ing redundant dimensions for PCA. This problem has been

investigated as a model selection problem in the fields of

statistics and signal processing, including [10, 15, 21, 28].

However, these methods focus on using less latent compo-

nents to represent observed signals. As a result, their meth-
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Figure 1. An example to illustrate that patches of a clean image lie in a low-dimension subspace. (a) The clean image. (b) The noisy image

with noise σ = 50. (c) The eigenvalues of clean image and noisy image, where the red curve represents the eigenvalues of clean image

and the blue curve represents the eigenvalues of noisy image.

ods always consider signals components as noises resulting

in the overestimation of image noise. In this paper, we pro-

pose an effective method to solve this issue with the statis-

tical property that the eigenvalues of redundant dimensions

are random variables following a same distribution, which

is demonstrated in Sec. 2.2. As proved in Sec. 2.3, the pro-

posed method is expected to achieve the accurate noise esti-

mation when the number of principal dimensions is smaller

than a threshold.

Thus, the contributions of this paper can be summarized

as below:

• The statistical relationship between the noise level σ2

and the eigenvalues of covariance matrix of patches is

firstly estimated in this paper.

• A nonparametric algorithm is proposed to estimate

the noise level σ2 from the eigenvalues in polynomial

time, whose performance is theoretically guaranteed.

As demonstrated empirically, our method is the most

robust and can achieve best performance for noise level

estimation in most cases. Moreover, our method con-

sumes least executing time and is nearly 8 times faster

than [19, 23].

The rest of the article is organized as following. Based

on the patch-based model, we propose our method in Sec.

2. In Sec. 3, we present the comparison of the experimental

results with discussions. Finally, the conclusion and some

future works are presented in Sec. 4.

2. Our Method: Theory and Implementation

An observable image I can be decomposed into a num-

ber of patches Xs = {xt}st=1 ∈ R
r×s. Given a multi-

channel image I with size M × N × c, Xs contains s =
(M − d+ 1)(N − d+ 1) patches of size d× d× c, whose

left-top corner positions are taken from set {1, . . . ,M−d+
1} × {1, . . . , N − d+ 1}. To simplify the following calcu-

lations, all patches are further rearranged into vectors with

r = cd2 elements in this paper. For any arbitrary vector xt

in the observable set Xs, it can be decomposed as:

xt = x̂t + et, (1)

where x̂t ∈ R
r×1 is the corresponding noise-free image

patch lying in the low-dimensional subspace, et ∈ R
r×1

denotes the additive noise and E(x̂T
t et) = 0. As I is con-

taminated by Gaussian noise N(0, σ2) with zero-mean and

variance σ2, et follows a multivariate Gaussian distribution

Nr(0, σ
2I) with mean 0 and covariance matrix σ2I. With

such setting, estimating noise level of an image with the set

of patches Xs is equivalent to estimating the noise level σ2

of the dataset Xs.

2.1. Eigenvalues

As illustrated in Fig.1 (c), most eigenvalues of the

clean image are 0, which confirms our previous discussion:

"patches taken from clean image often lie in a single low-

dimensional subspace". However, it can be observed that

most eigenvalues of the noisy image surround the true noise

variance 50 instead of being 50 exactly. Thus, it is still diffi-

cult to obtain an accurate noise estimation from eigenvalues

directly. To investigate the relationship between eigenval-

ues and noise level comprehensively, we first formulate the

calculation of eigenvalues from another perspective.

Assume that clean patches lie in m-dimensional linear

subspace, where m is a predefined positive integer with

m ≪ r, we can formulate equation (1) as follows:

xt = Ayt + et. (2)

A ∈ R
r×m denotes the dictionary matrix spanning the m-

dimension subspace with constraint ATA = I and yt ∈
R

m×1 denotes the projection point of xt on the subspace

spanned by A. PCA has been widely used to infer the lin-

ear model described in equation (2), where A consists of

the m eigenvectors with the m largest eigenvalues of the

covariance matrix Σx = 1
s

∑s
t=1(xt − µ)(xt − µ)T with

µ = 1
s

∑s
t=1 xt.
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Given an additional matrix U ∈ R
(r−m)×r, we define a

rotation matrix R = [A,U ] which satisfies RTR = I. R

can be effectively solved by the eigen-decomposition of the

covariance matrix Σx, just as PCA. Thus, equation (2) can

be rewritten as:

xt = R

[

yt,

0

]

+ et, (3)

where 0 means the column vector with size (r−m)×1 and

each element as 0. Multiplying RT on both size of equation

(3) leads to the following equation:

RTxt =

[

yt,

0

]

+RT et =

[

yt +AT et,

UT et

]

. (4)

It can be observed that the noise component et has been

separated from the observable xt by the rotation matrix R,

and concentrates on (m + 1)-th column to r-th column in

the vector RTxt. Based on the Gaussian properties, nt =
UT et is an random variable following Gaussian distribution

Nr−m(0, σ2I)
As R consists of the eigenvectors of Σx, it satisfies

ΣxR = RΦ, (5)

where Φ ∈ R
r×r is a diagonal matrix with the eigenvalues

as its diagonal elements. Thus, the covariance matrix of

RTxt can be calculated as:

1

s

s
∑

t=1

(RTxt)(R
Txt)

T =
1

s

s
∑

t=1

RTxtx
T
t R

= RTΣxR

=











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λr











,

(6)

which states that i-th eigenvalue λi is also the variance cal-

culated on i-th dimension of vector RTxt. From equation

(4), we can find that the variances on the principal dimen-

sions are expected to be larger than σ, and the variances

calculated on the redundant dimensions are expected to be

equal to σ. Given λ1 ≥ λ2 ≥ . . . ≥ λr, we can represent

S = {λi}ri=1 with S1

⋃S2, where S1 = {λi}mi=1 denotes

the variance on principal dimensions and S2 = {λi}ri=m+1

denotes the variance on redundant dimensions.

Let nt[i] denote the i-th element of the vector nt =
UT et, the eigenvalues in the subset S2 is denoted as

λi =
1

s

s
∑

t=1

nt[i]
2, ∀i ∈ {m+ 1,m+ 2, . . . , r}, (7)

where nt[i] is a random variable following Gaussian distri-

bution N(0, σ2). As a function of random variables, each

eigenvalue λi ∈ S2 is itself a random value and can be

viewed as an estimation of the noise variance σ2.

2.2. Variance of Finite Gaussian Variables

Both [19] and [23] assumed the minimum eigenvalue λr

to be the estimation of noise variance σ2. However, as

shown in their experiments, their noise estimation results

are consistently smaller than the true noise variance σ2. In

this section, we will give a brief theoretical analysis of this

phenomena.

Recall that the eigenvalues of redundant dimensions is

the variance of finite Gaussian variables, which is demon-

strated in Sec. 2.1, we first prove the following lemma that

the eigenvalues of redundant dimensions can be viewed as

the realizations of a special Gaussian distribution under cer-

tain conditions.

Lemma 1. Given a set of random variable {nt[i]}st=1 with

each element following Gaussian distribution N(0, σ2) in-

dependently, the distribution of the noise estimation σ̂2
i =

1
s

∑s
t=1 nt[i]

2 converges to the distribution of N(σ2, 2σ4

s )
when s is large.

Proof. Since nt[i] is generated from the Gaussian distribu-

tion N(0, σ2), it can be proved that the random variable
nt[i]
σ follows the standard normal distribution N(0, 1). By

the definition of Chi-squared distribution, we get

s
∑

t=1

(
nt[i]

σ
)2 ∼ χ2

s.

Combined with equation (7), we can obtain

s

σ2
σ̂2
i ∼ χ2

s.

From the properties of Chi-square distribution,

χ2
s − s√
2s

d→ N(0, 1) (8)

as s → ∞. Then we have

√
s
σ̂2
i − σ2

√
2σ2

d→ N(0, 1),

which implies that the noise estimation σ̂2
i also converges to

a Gaussian distribution when s is large based on the prop-

erty of Gaussian distribution. Let w =
√
s
σ̂2

i
−σ2

√
2σ2

, then

σ̂2
i = σ2 +

√
2σ2

√
s
w. Consequently, we can write the proba-

bility distribution function (pdf) of σ̂2
i as below

σ̂2
i ∼ N(σ2,

2σ4

s
). (9)

Lemma 1 can be further demonstrated empirically by

Monte Carlo simulation, where the sample variance is es-

timated 106 times repeatedly. In each trial, s = 103 sam-

ples are drawn from a normal distribution N(0, σ2) with
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Figure 2. The simulation results for the variance estimation, which

shows that the distribution of the variance can be well approxi-

mated by a Gaussian distribution.

σ2 = 502. The histogram of the sample variance estima-

tions of all trials is drawn in Fig.2, whose result is coin-

cided with Lemma 1 and states that the histogram of noise

variance σ̂2
i can be effectively approximated by a Gaussian

distribution.

For the issue of noise estimation, the number of decom-

posed patches s = (M − d + 1)(N − d + 1) is typically

large enough. Let d = 8 by default, an observed image with

resolution 512× 512 has s = (512− 8+1)2 = 255025 de-

composed patches, which means that there are 255025 sam-

ples for the estimation of the eigenvalue of each redundant

dimension. As illustrated in Fig.2, 1000 samples are large

enough for the satisfaction of equation (8). Thus, from the

equation (7) with lemma 1, we can derive that the eigenval-

ues of redundant dimensions {λi}ri=m+1 are the realizations

of Gaussian distribution N(σ2, 2σ4

s ).

Let Φ(x) = 1√
2π

∫ x

−∞ e−t2/2dt denote the cumulative

distribution function of a standard Gaussian distribution,

Blom [25, 27] has proven the following theorem.

Theorem 1. Given n independent random variables

x1, x2, . . . , xn generated from the normal distribution

N(σ2, ν2) with order x1 ≥ x2 ≥ . . . ≥ xn, then the

expected value of xi can be approximated by E(xi) ≈
σ2 +Φ−1(n−α+1−i

n−2α+1 )ν with α = 0.375.

In both [19] and [23], researchers chose the minimum

eigenvalues as their noise estimation. However, the eigen-

values in S2 follow the Gaussian distribution. Based on

theorem 1, we can obtain that the expectation of the min-

imum eigenvalue is σ2 + νΦ−1( 1−α
m−r−2α+1 ) with ν = 2σ4

s .

Since points in the decomposed set Xs lie around a low-

dimension subspace, the number of redundant dimensions

m − r is larger than 1 naturally, we obtain m − r − α >

1 − α and 1−α
m−r−2α+1 < 0.5. Finally, we obtain σ2 +

νΦ−1( 1−α
m−r−2α+1 ) < σ2. It can be seen that the smallest

eigenvalue is essentially smaller than the noise level when

the number of redundant dimension is larger than 1. The

results given by [19, 23] tend to be more inaccurate as the

number of redundant dimensions increases.

Figure 3. The histogram of eigenvalues of Fig.1 (b). It can be ob-

served that the eigenvalues follow a Gaussian distribution, despite

several large outliers.

2.3. Dimension Selection

As discussed earlier, more accurate estimation can be ob-

tained by taking all elements in the S2 into consideration

and the problem of underestimating noise variance can be

avoided. Fig.3 draws the histogram of eigenvalues calcu-

lated from the noisy image, Fig.1 (b), which consists of the

eigenvalues of redundant dimensions and some upper out-

liers. However, the number of redundant dimensions is not

known previously. In this section, we propose a new algo-

rithm for dimension selection which is illustrated in Alg.1.

The number of principal dimensions is estimated by indi-

cating whether there are upper outliers in the S2 or not.

Starting with the initial status with S1 = ∅ and S2 = S ,

we remove the largest value in S2 until there are not any

outliers in S2 based on our criterion. A theoretical bound

is provided to guarantee its performance, as stated in the

following theorem.

Theorem 2. If ∀xt ∈ Xs lie in a m-dimension subspace,

and m satisfies the following condition

m < r − (1− 2α)δ(β) + α

1− δ(β)
, (10)

where δ(β) = Φ
(

(1 + 1
β )Φ

−1(0.5 + β
2 )
)

is a function

with respect to β = m
r . Then, for the mean vector µ of

the dataset S , the following two statements hold.

1 . µ is expected to be larger than the median value of S
when there are any upper outliers in the dataset S or

m > 0.

2 . µ is expected to be equal to the median value of S
when there are no upper outliers in the dataset S or

m = 0.

Proof.

For the 1st Statement

If ∀xt ∈ Xs lie in a m-dimension subspace, then there are

m outliers in the set of eigenvalues S . Thus, the expected
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mean µ of the set S can be given as

Eµ = σ2 +
1

r

m
∑

i=1

(Eλi − σ2)

≥ σ2 + β(Eλm − σ2)

= σ2 + βνΦ−1(
r −m− α

r −m− 2α+ 1
),

(11)

where ν =
√
2σ2

√
s

.

Let k = r − m denote the number of eigenvalues of

redundant dimensions, it can be indicated that there are k

variables following the Gaussian distribution N(σ2, ν2) in

dataset S , as proved in lemma 1. For an arbitrary sample

drawn from Gaussian distribution N(σ2, ν2), it is smaller

than the value Eµ with the probability Φ(Eµ−σ2

ν ). Thus, in

dataset S , the expected number of samples that is smaller

than Eµ can be denoted as

kΦ(
Eµ− σ2

ν
)

≥kΦ

(

βΦ−1(
k − α

k − 2α+ 1
)

) (12)

Based on the definition of Φ(x), we can get 1−δ(β) > 0.

Thus, the given condition (10) is equivalent to

k − α

k − 2α+ 1
> δ(β)

m
k − α

k − 2α+ 1
> Φ

(

(1 +
1

β
)Φ−1(0.5 +

β

2
)

)

m

Φ

(

β

1 + β
Φ−1(

k − α

k − 2α+ 1
)

)

>
1 + β

2

m

kΦ

(

βΦ−1(
k − α

k − 2α+ 1
)

)

>
r

2
. (13)

As Φ(x) is an increasing function, Eµ is larger than the me-

dian value of the set S when β > 0.

For the 2nd Statement

When β = 0, there exist no outliers in the dataset S since

N(σ2, ν2) is a symmetric function and the mean value is

expectedly to be the median value of the dataset S abso-

lutely.

In summary, we can conclude that we can decide whether

there exists no outliers in S by checking if µ is its median

value, when there are more than
(1−2α)δ(β)+α

1−δ(β) redundant di-

mensions in the dataset S , whose eigenvalues follow Gaus-

sian distribution N(σ2, ν2).

Figure 4. The blue line plots the function k = (1−2α)δ(β)+α

1−δ(β)
and

the brown line plots the function k = 192(1− β). It indicates

the relationship between k and β when the patch size is 8. The

intersection point of these two curves is 65%, which means that

we only require 192(1− β) = 67 elements following Gaussian

distribution N(σ2, ν) for accurate estimation of noise variance σ2

As illustrated in Fig.4, the dimension of subspace must

be smaller than a threshold when estimating its mean value.

In this paper, the patch size is set as 8 by default, then the

dimension r of X = {xt}st=1 is 192. As shown in Fig.4,

our method is expected to achieve the accurate mean value

of Gaussian distribution when the dimension of subspace is

smaller than m = 192 × (1− β) = 67. During the proce-

dure, the statements described in theorem 2 always hold as

the number of random variables k don’t change during the

procedure, while β → 0 along with the decreasing of the

number of outliers m, which leads to a lower requirement

of the number k.

2.4. Implementation and Time Complexity

The core idea of our method is to obtain the accurate

noise variance by removing the eigenvalues of principal

dimensions S1 from S . As shown in Alg.1, we first de-

compose the observed image I into the set of patches with

patch size d, and calculate the eigenvalues S = {λi}ri=1 of

the decomposed dataset Xs. Initialized with S1 = ∅ and

S2 = S , our method use the difference between the mean

value µ and the median value ϕ of the subset S2 to indicate

whether there are outliers in the subset S2 or not. If µ 6= ϕ,

the largest value in S2 is taken out and put into the subset

S1. This procedure will stop until the condition µ = ϕ is

achieved. The MATLAB version of the source code is in-

cluded in the supplementary file.

According to the steps described in Alg.1, we can ana-

lyze the time complexity of our method step by step. The

complexity of generating sets X with s r−dimensional

samples from the observed image I is O(sr). Calculat-

ing the mean vector µ and covariance matrix Σ of the

dataset X are O(sr) and O(sr2) respectively. The eigen-

decomposition of Σ is O(r3). Finally, the sorting process in
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the 4th step consumes O(r2) and the checking procedure in

the 5− 9the steps take O(r2). Thus, the time complexity of

our method is O(sr2+r3), which means that our algorithm

is very fast and can be solved in polynomial time.

Algorithm 1 Estimating Image Noise Level

Require: Observed Image I ∈ R
M×N×c, Patch Size d.

1: Generating dataset X = {xt}st=1, which contains s =
(M − d + 1)(N − d + 1) patches with size r = cd2

from the image I .

2: µ =
∑s

t=1 xt

3: Σ = 1
s

∑s
t=1(xt − µ)(xt − µ)T

4: Calculating the eigenvalues {λi}ri=1 of the covariance

matrix Σ with r = d2 and order λ1 ≥ λ2 ≥ . . . ≥ λr

5: for i = 1:r do

6: τ = 1
r−i+1

∑r
j=i λj

7: if τ is the median of the set {λj}rj=i then

8: σ =
√
τ and break

9: end if

10: end for

11: return noise level estimation σ

3. Results and Discussions

To evaluate the performance of the proposed method, we

apply it on two benchmark datasets respectively: TID2008

[22] and BSDS500 test set [1]. To further evaluate its per-

formance on real noisy images, we apply our method on

100 noisy images of a static scene captured by a commer-

cial digital camera under low-light condition. We compare

its performance with two state-of-the-art methods [19, 23],

whose source codes can be downloaded from their home-

page 1 2. For a fair comparison, all the methods are im-

plemented in the environment of Matlab R2013a (Intel

Core(TM) i7 CPU 920 2.67GHz× 4). For [19] and [23],

we use the default parameters reported in their papers. As

[19] estimates the noise level for each channel separately

when handling colorful image, the final noise level estima-

tion is obtained by averaging the noise level estimation of

each channel. The effectiveness of our approach is finally

evaluated by using the automatically estimated noise level

as input parameter to the denoising algorithm of BM3D on

both synthetic and real noisy images.

3.1. Parameter Configurations

As described in Alg. 1, the patch size d is the only free

parameter required to be pre-specified. In this section, we

mainly discuss the influence of d on the performance of our

method.

1http://www.ok.ctrl.titech.ac.jp/res/NLE/AWGNestimation.html
2http://physics.medma.uni-heidelberg.de/cms/projects/132-pcanle

For patch size defined as r = cd2, there is a trade-off be-

tween the statistical significance of the result and the prac-

tical executing time. As there exist correlation between

pixels for images with texture, the patch size should be

large enough to represent the texture patterns. Moreover,

larger patch size d will lead to a higher β value, which can

be observed in Fig.4. It means that larger patch size can

handle higher proportion of outliers. However, the patch

size d cannot be arbitrary large, since larger patch size d

will lead to smaller sample size s of the generated dataset

X = {xt}st=1, which will be contradict with the assumption

made in Lemma 1 that s should be large enough. Moreover,

as described previously, the time complexity of our method

is related to the patch size r = cd2. A larger patch size

will lead to longer running time. In summary, the suitable

patch size should be chosen with the consideration of the

running speed and the assumption used in Lemma 1. In this

paper, the patch size d is chosen to be 8 by default for all

experiments.

3.2. Noise Level Estimation Results

We add synthetic white noise with different known vari-

ance to each testing image, and estimate the noise level in

the modified noisy image with different algorithms. As dis-

cussed below, three measurements are used for the evalua-

tion of our performance.

3.2.1 Performance Evaluation Criterion

Given the observed image I with noise variance σ, each

method can be considered as a function σ̂ = f(I) and the

optimal estimator should minimize the expected square er-

ror (MSE) which is defined as following:

E(f(I)− σ)2. (14)

No matter which method (function f ) we use, we can de-

compose the mean square error (MSE) (14) as below:

MSE = Bias2(f(I)) + Std2(f(I)), (15)

where Std(f(I)) =
√

E[f(I)− E(f(I))]2 denotes the ro-

bustness of an estimator f(I) and Bias(f(I)) = E|σ −
E(f(I))| denotes the accuracy of an estimator. Thus, in

this paper, we utilize the following three measurements to

evaluate the performance of different estimators,

• Bias: evaluate the accuracy of an estimator.

• Std: evaluate the robustness of an estimator.

•
√
MSE: evaluate the overall performance of an esti-

mator.

Note that smaller Bias, Std or
√
MSE value means better

performance.
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Figure 5. The performance of different methods on TID2008. Our method outperforms other two algorithms from the perspective of both

accuracy and robustness.

Method min t(s) t̄(s) max t(s)
Proposed 0.5409 0.5785 0.6435

Liu et al. 3.5541 4.1901 4.9197

Pyatykh et al. 3.3829 3.4462 5.0448

Table 1. Execution Time of the different methods on TID2008.

The proposed algorithm is the fastest.

3.2.2 Performance on TID2008

The TID2008 dataset has been widely used for the eval-

uation of full-reference image quality assessment metrics,

which contains 25 reference images without any compres-

sion. As described in [19, 23], the reference images from

TID2008 still contain a small level of noise. Thus, the

same experimental settings are applied in our experiments,

where each estimation result is corrected by the equation

σ2
corr = σ2

est − σ2
ref , with σ2

est being the estimation result

given by each method and σ2
ref denoting the inherent noise

contained in each reference image. To make a fair compar-

ison, we take the σ2
ref calculated by [23] for each reference

image.

As shown in Fig.5, the proposed algorithm outperforms

other two algorithms in most cases by removing the upper

outliers in the set of eigenvalues S . It can be observed that

[23] outperforms our method when σ2 = 25, but [23] is less

robust in this situation, as shown in Fig.5 (b). Note that the

results of [19, 23] shown in Fig.5 are coincident with the

results reported in their original papers.

Furthermore, the average execution time of either [23]

or [19] is nearly 4 seconds per image as both of them re-

quire to select low-rank patches during their procedure. In

comparison, the proposed method takes only 0.5 seconds

per image, which is almost 8 times faster than the previous

methods. The specific executing time of each algorithm can

be found in Tab. 1.

3.2.3 Performance on BSDS500

It has been argued that all images in the TID2008 dataset

contain small or large homogeneous areas [23]. To further

demonstrate the robustness of our method on images full of

textures, we compare the performance of different methods

on a more challenging dataset, 200 test images of BSDS500

[1]. Images in BSDS are achieved in different environments

and contain rich features. Fig.1 shows the image ♯77062 in

the test set of BSDS500, which contains rich texture infor-

mation and is hard to classify the homogeneous field for

noise estimation. To evaluate the performance of different

methods for a larger range of noise level, we synthesize 5

noisy images with different noise levels from σn = 10 to 50
for each image. As illustrated in Fig.6, our method outper-

forms other two algorithms under all three measurements

significantly. Moreover, we have compared our method

with Gavish’s work [10], our method achieves better per-

formance, e.g. on BSDS500 with σn = 50, the
√
MSE of

Gavish’s method is 1.612, while ours is 0.183.

3.2.4 Performance on the Real-world Dataset

Figure 7. (a) An example of the 100 images captured by Nikon

D5200. (b) An enlarged patch of this image. (c) The clean version

of this patch.

We further evaluate the performance of our method on

real-world noisy images. Following the experimental set-

ting in [18], we capture 100 images of a static scene under

low-light condition with Nikon D5200 (ISO 6400, exposure

time 1/20s and aperture f/5) and the mean of the 100 im-

ages is served as the clean image. With the clean image

and 100 noisy images, the noise variance of each image can

be easily estimated as the ground truth variance, e.g. the

ground truth σ of Fig.7 (a) is 5.9549. Then we apply both

our method and competitive ones on each of the 100 images
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Figure 6. The performance of different methods on the test dataset of BSDS500. Our method outperforms other two algorithms from the

perspective of both accuracy and robustness.

Method Bias Std
√

MSE

Proposed 0.1198 0.2234 0.2535

Liu et al. 3.3463 0.0957 3.3476

Pyatykh et al. 3.3919 0.0957 3.3932

Table 2. Performance of the different methods on the real-world

dataset. The proposed algorithm significantly outperforms others.

individually for noise estimation. Table 2 demonstrates the

experimental result and the proposed one significantly out-

performs the other two. It shows that our method is more

suitable for practical noise estimation applications.

3.3. Image Denoising Results

Image denoising is a very important preliminary step for

many computer vision methods. During last decades, im-

pressive improvements have been made in this area. How-

ever, the noise level σ is regarded as a known parameter in

many algorithms with good performance. BM3D [6] is one

of such algorithms which requires noise level as an input pa-

rameter. In this section, we apply our noise level estimation

algorithms in the application of BM3D image denoising.

All images in TID2008 and BSDS500 are used here to

evaluate the effectiveness of using our noise level estima-

tion results as the input parameter of BM3D. As confirmed

by Fig.8 (a), the performance of BM3D with our estimated

noise level is almost the same as that with true noise level.

Due to the article limitation, we only use PSNR [11] to

evaluate the denoising performance. A real-world denois-

ing examples using BM3D with our estimation results is

demonstrated in Fig.8 (b) and (c).

4. Conclusion and Future Works

In this paper, we propose an efficient method to esti-

mate noise variance from a single noisy image automati-

cally, which is very important for different computer vision

algorithms. The performance of this method has been the-

oretically guaranteed. Furthermore, by comparing our ap-

proach with two state-of-the-art ones, we show that the ac-

curacy of the proposed method is the best in most cases with

Figure 8. (a) compares the performance of BM3D between our es-

timated noise level and the true noise level. (b) and (c) show a real

noisy image and the denoising image with BM3D+our method.

the least execution time.

There still exist several future works that we are inter-

ested in. In this paper, the noise of an image is assumed to

be zero-mean additive Gaussian distributed. However, the

noise can be more complicated in real world applications

which is required to be investigated. Meanwhile, we are

interested in developing efficient blind image denoising

algorithm in the future.
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