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Abstract

This paper investigates into the colorization problem

which converts a grayscale image to a colorful version. This

is a very difficult problem and normally requires manual

adjustment to achieve artifact-free quality. For instance,

it normally requires human-labelled color scribbles on the

grayscale target image or a careful selection of colorful

reference images (e.g., capturing the same scene in the

grayscale target image). Unlike the previous methods, this

paper aims at a high-quality fully-automatic colorization

method. With the assumption of a perfect patch match-

ing technique, the use of an extremely large-scale refer-

ence database (that contains sufficient color images) is the

most reliable solution to the colorization problem. How-

ever, patch matching noise will increase with respect to

the size of the reference database in practice. Inspired by

the recent success in deep learning techniques which pro-

vide amazing modeling of large-scale data, this paper re-

formulates the colorization problem so that deep learning

techniques can be directly employed. To ensure artifact-

free quality, a joint bilateral filtering based post-processing

step is proposed. Numerous experiments demonstrate that

our method outperforms the state-of-art algorithms both in

terms of quality and speed.

1. Introduction

Image colorization assigns a color to each pixel of

a target grayscale image. Colorization methods can be

roughly divided into two categories: scribble-based col-

orization [10, 13, 16, 20, 25] and example-based coloriza-

tion [1, 2, 6, 11, 14, 23]. The scribble-based methods typ-

ically require substantial efforts from the user to provide

considerable scribbles on the target grayscale images. It is

thus time-assuming to colorize a grayscale image with fine-

scale structures, especially for a rookie user.

To reduce the burden on user, [23] proposes an example-

based method which is later further improved by [1, 11].

The example-based method typically transfers the color

information from a similar reference image to the target
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grayscale image. However, finding a suitable reference im-

age becomes an obstacle for a user. [2, 14] simplify this

problem by utilizing the image data on the Internet and pro-

pose filtering schemes to select suitable reference images.

However, they both have additional constraints. [14] re-

quires identical Internet object for precise per-pixel registra-

tion between the reference images and the target grayscale

image. It is thus limited to objects with a rigid shape (e.g.

landmarks). [2] requires user to provide a semantic text

label and segmentation cues for the foreground object. In

practice, manual segmentation cues are hard to obtain as

the target grayscale image may contain multiple complex

objects (e.g. building, car, tree, elephant). These methods

share the same limitation − their performance highly de-

pends on the selected reference image(s).

A fully-automatic colorization method is proposed to ad-

dress this limitation. Intuitively, one reference image cannot

include all possible scenarios in the target grayscale image.

As a result, [1, 2, 11, 23] require similar reference image(s).

A more reliable solution is locating the most similar im-

age patch/pixel in a huge reference image database and then

transferring color information from the matched patch/pixel

to the target patch/pixel. However, the matching noise is too

high when a large-scale database is adopted in practice.

Deep learning techniques have achieved amazing suc-

cess in modeling large-scale data recently. It has shown

powerful learning ability that even outperforms human to

some extent (e.g. [7]) and deep learning techniques have

been demonstrated to be very effective on various com-

puter vision and image processing applications including

image classification [12], pedestrian detection [17, 26], im-

age super-resolution [4], photo adjustment [24] etc. The

success of deep learning techniques motivates us to explore

its potential application in our context. This paper formu-

lates image colorization as a regression problem and deep

neural networks are used to solve the problem. A large

database of reference images comprising all kinds of ob-

jects (e.g. tree, animal, building, sea, mountain etc.) is used

for training the neural networks. Some example reference

images are presented in Figure 1 (b). Although the train-

ing is very slow due to the adoption of a large database,

the learned model can be directly used to colorize a target

grayscale image efficiently. The state-of-the-art coloriza-

1415



(a) Target grayscale images (b) Part of the adopted reference image database (c) Colorization results

Figure 1. The colorization results of our full-automatic method. Our system utilizes a large database of colorful reference images as

shown in (b). After the training of neural networks, the learned model is used directly to colorize the target gray scale images in (a). The

colorization results are presented in (c).

tion methods normally require matching between the target

and reference images and thus are slow.

It has recently been demonstrated that high-level under-

standing of an image is very useful for low-level vision

problems (e.g. image enhancement [24], edge detection

[27]). Because image colorization is typically semantic-

aware, we propose a new semantic feature descriptor to

incorporate the semantic-awareness into our colorization

model.

To demonstrate the effectiveness of the presented ap-

proach, we train our deep neural network using a large set

of reference images from different categories as can be seen

in Figure 1 (b). The learned model is then used to colorize

various grayscale images in Figure 1 (a). The colorization

results shown in Figure 1 (c) demonstrate the robustness and

effectiveness of the proposed method.

The major contributions of this paper are as follows:

1. it proposes the first deep learning based image col-

orization method and demonstrates its effectiveness on

various scenes.

2. it carefully analyzes informative yet discriminative im-

age feature descriptors from low to high level, which is

key to the success of the proposed colorization method.

2. Related Work

This section gives a brief overview of the previous col-

orization methods.

Scribble-based colorization Levin et al. [13] propose

an effective approach that requires the user to provide col-

orful scribbles on the grayscale target image. The color in-

formation on the scribbles are then propagated to the rest

of the target image using least-square optimization. Huang

et al. [10] develop an adaptive edge detection algorithm to

reduce the color bleeding artifact around the region bound-

aries. Yatziv et al. [25] colorize the pixels using a weighted

combination of user scribbles. Qu et al. [20] and Luan et

al. [16] utilize the texture feature to reduce the amount of

required scribbles.

Example-based colorization Unlike scribble-based col-

orization methods, the example-based methods transfer the

color information from a reference image to the target

grayscale image. The example-based colorization methods

can be further separated into two categories according to the

source of reference images:

(1) Colorization using user-supplied example(s). This

type of methods requires the user to provide a suitable ref-

erence image. Inspired by image analogies [8] and the color

transfer technology [21], Welsh et al. [23] employ the pixel

intensity and neighborhood statistics to find a similar pixel

in the reference image and then transfer the color of the

matched pixel to the target pixel. It is later improved in [11]

by taking into account the texture feature. Charpiat et al. [1]

propose a global optimization algorithm to colorize a pixel.

Gupta et al. [6] develop an colorization method based on su-

perpixel to improve the spatial coherency. These methods

share the limitation that the colorization quality relies heav-

ily on example image(s) provided by the user. However,

there is not a standard criteria on the example image(s) and

thus finding a suitable reference image is a difficult task.

(2) Colorization using web-supplied example(s). To re-

lease the users’ burden of finding a suitable image, Liu et

al.[14] and Chia et al. [2] utilize the massive image data

on the Internet. Liu et al.[14] compute an intrinsic image

using a set of similar reference images collected from the

Internet. This method is robust to illumination difference

between the target and reference images, but it requires

the images to contain identical object(s)/scene(s) for precise

per-pixel registration between the reference images and the

target grayscale image. It is unable to colorize the dynamic

factors (e.g. person, car) among the reference and target

images, since these factors are excluded during the compu-

tation of the intrinsic image. As a result, it is limited to

static scenes and the objects/scenes with a rigid shape (e.g.

famous landmarks). Chia et al. [2] propose an image fil-
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Figure 2. Overview of the proposed colorization method and the architecture of the adopted deep neural network. The feature descriptors

will be extracted at each pixel and serve as the input of the neural network. Each connection between pairs of neurons is associated with

a weight to be learned from a large reference image database. The output is the chrominance of the corresponding pixel which can be

directly combined with the luminance (grayscale pixel value) to obtain the corresponding color value. The chrominance computed from

the trained model is likely to be a bit noisy around low-texture regions. The noise can be significantly reduced with a joint bilateral filter

(with the input grayscale image as the guidance).

ter framework to distill suitable reference images from the

collected Internet images. It requires the user to provide

semantic text label to search for suitable reference image

on the Internet and human-segmentation cues for the fore-

ground objects.

In contrast to the previous colorization methods, the pro-

posed method is fully automatic by utilizing a large set

of reference images from different categories (e.g., animal,

outdoor, indoor) with various objects (e.g., tree, person,

panda, car etc.).

3. Our Metric

An overview of the proposed colorization method is pre-

sented in Figure 2. Similar to the other learning based ap-

proaches, the proposed method has two major steps: (1)

training a neural network using a large set of example ref-

erence images; (2) using the learned neural network to col-

orize a target grayscale image. These two steps are summa-

rized in Algorithm 1 and 2, respectively.

Algorithm 1 Image Colorization − Training Step

Input: Pairs of reference images: Λ = {~G, ~C}.

Output: A trained neural network.

——————————————————————–

1. Compute feature descriptors ~x at sampled pixels in ~G

and the corresponding chrominance values ~y in ~C;

2. Construct a deep neural network;

3. Train the deep neural network using the training set Ψ
= {~x, ~y}.

Algorithm 2 Image Colorization − Testing Step

Input: A target grayscale image I and the trained neural

network.

Output: A corresponding color image: Î .

——————————————————————–

1. Extract a feature descriptor at each pixel location in I;

2. Send feature descriptors extracted from I to the trained

neural network to obtain the corresponding chrominance

values;

3. Refine the chrominance values to remove potential ar-

tifacts;

4. Combine the refined chrominance values and I to ob-

tain the color image Î .

3.1. A deep learning model for image colorization

This section formulates image colorization as a regres-

sion problem and solves it using a regular deep neural net-

work.

3.1.1 Formulation

A deep neural network is a universal approximator that

can represent arbitrarily complex continuous functions [9].

Given a set of exemplars Λ = {~G, ~C}, where ~G are

grayscale images and ~C are corresponding color images re-

spectively, our method is based on a premise: there exists

a complex gray-to-color mapping function F that can map

the features extracted at each pixel in ~G to the correspond-

ing chrominance values in ~C. We aim at learning such a

mapping function from Λ so that we can use F to convert a

new gray image to color image. In our model, we employ

the YUV color space, since this color space minimizes the

correlation between the three coordinate axes of the color
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space. For a pixel p in ~G , the output of F is simply the

U and V channels of the corresponding pixel in ~C and the

input of F is the feature descriptors we compute at pixel p.

The feature descriptors are introduced in detail in Sec. 3.2.

We reformulate the gray-to-color mapping function as cp
= F(Θ, xp), where xp is the feature descriptor extracted at

pixel p and cp are the corresponding chrominance values. Θ
are the parameters of the mapping function F to be learned

from Λ.

We solve the following least squares minimization prob-

lem to learn the parameters Θ:

argmin
Θ⊆Υ

n
∑

p=1

‖F(Θ, xp)− cp‖
2

(1)

where n is the total number of training pixels sampled from

Λ and Υ is the function space of F(Θ, xp).

3.1.2 Architecture

Deep neural networks (DNNs) typically consist of one in-

put layer, multiple hidden layers and one output layer. Each

layer can comprise various number of neurons. In our

model, the number of neurons in the input layer is equal to

the dimension of the feature descriptor extracted from each

pixel location in a grayscale image and the output layer has

two neurons which output the U and V channels of the cor-

responding color value, respectively. We perceptually set

the number of neurons in the hidden layer to half of that in

the input layer. Each neuron in the hidden or output layer

is connected to all the neurons in the proceeding layer and

each connection is associated with a weight. Let olj denote

the output of the j-th neuron in the l-th layer. olj can be

expressed as follows:

olj = f(wl
j0b+

∑

i>0

wl
jio

l−1

i ) (2)

where wl
ji is the weight of the connection between the

jth neuron in the lth layer and the ith neuron in the (l−1)th

layer, the b is the bias neuron which outputs value one con-

stantly and f(z) is an activation function which is typically

nonlinear (e.g., tanh, sigmoid, ReLU[12]). The output of

the neurons in the output layer is just the weighted combi-

nation of the outputs of the neurons in the proceeding layer.

In our method, we utilize ReLU[12] as the activation func-

tion as it can speed up the convergence of the training pro-

cess. The architecture of our neural network is presented in

Figure 2.

We apply the classical error back-propagation algorithm

to train the connected power of the neural network, and the

weights of the connections between pairs of neurons in the

trained neural network are the parameters Θ to be learned.

3.2. Feature descriptor

Feature design is key to the success of the proposed col-

orization method. There are massive candidate image fea-

tures that may affect the effectiveness of the trained model

(e.g. SIFT, SURF, Gabor, Location, Intensity histogram

etc.). We conducted numerous experiments to test various

features and kept only the features that have practical im-

pacts on the colorization results. We separate the adopted

features into low-, mid- and high-level features. Let xL
p ,

xM
p , xH

p denote different-level feature descriptors extracted

from a pixel location p, we concatenate these features to

construct our feature descriptor xp =
{

xL
p ;x

M
p ;xH

p

}

. The

adopted image features are discussed in detail in the fol-

lowing sections.

3.2.1 Low-level patch feature

Intuitively, there exists too many pixels with same lumi-

nance but fairly different chrominance in a color image,

thus it’s far from being enough to use only the luminance

value to represent a pixel. In practice, different pixels typ-

ically have different neighbors, using a patch centered at a

pixel p tends to be more robust to distinguish pixel p from

other pixels in a grayscale image. Let xp denote the array

containing the sequential grayscale values in a 7 × 7 patch

center at p, xp is used as the low-level feature descriptor in

our framework. This feature performs better than traditional

features like SIFT and DAISY at low-texture regions when

used for image colorization. Figure 3 shows the impact of

patch feature on our model. Note that our model will be in-

sensitive to the intensity variation within a semantic region

when the patch feature is missing (e.g., the entire sea region

is assigned with one color in Figure 3(b)).

(a)Input (b)-patch feature (c)+patch feature

Figure 3. Evaluation of patch feature. (a) is the target grayscale

image. (b) removes the low-level patch feature and (c) includes all

the proposed features.

3.2.2 Mid-level DAISY feature

DAISY is a fast local descriptor for dense matching [22].

Unlike the low-level patch feature, DAISY can achieve a

more accurate discriminative description of a local patch

and thus can improve the colorization quality on complex

scenarios. A DAISY descriptor is computed at a pixel lo-

cation p in a grayscale image and is denote as xM
p . Figure

4 demonstrates the performance with and without DAISY

feature on a fine-structure object and presents the compar-

ison with the state-of-the-art colorization methods. As can

be seen, the adoption of DAISY feature in our model leads

418



to a more detailed and accurate colorization result on com-

plex regions. However, DAISY feature is not suitable for

matching low-texture regions/objects and thus will reduce

the performance around these regions as can be seen in Fig-

ure 4(c). A post-processing step will be introduced in Sec-

tion 3.2.5 to reduce the artifacts and result is presented in

Figure 4(d). Furthermore, we can see that our result is com-

parable to Liu et al. [14] (which requires a rigid-shape tar-

get object and identical reference objects) and Chia et al.

[2] (which requires manual segmentation and identification

of the foreground objects), although our method is fully-

automatic.

(a)Target (b)-DAISY (c)+DAISY (d)Refined

(e)Gupta [6] (f)Irony [11] (g)Chia [2] (h)Liu [14]

Figure 4. Evaluation of DAISY feature. (a) is the target gray scale

image. (b) is our result without DAISY feature. (c) is our re-

sult after incorporating DAISY feature into our model. (d) is the

final result after artifact removal (see Sec. 3.2.5 for details). (e)-

(h) presents results obtained with the state-of-the-art colorizations.

Although the proposed method is fully-automatic, its performance

is comparable to the state-of-the-art.

3.2.3 High-level Semantic feature

Patch and DAISY feature are low-level and mid-level fea-

tures indicating the geometric structure of the neighbors of

a pixel. The existing state-of-art methods typically employ

such features to match pixels between the reference and tar-

get images. Recently, high-level properties of a image have

demonstrated its importance and virtues in some fields (e.g.

image enhancement [24], edge detection [27]). Consider

that the image colorization is typically a semantic-aware

process, we extract a semantic feature at each pixel to ex-

press its category (e.g. sky, sea, animal) in our model.

We utilize the state-of-art scene parsing algorithm [15]

to annotate each pixel with its category label, and obtain

a semantic map for the input image. The semantic map

is not accurate around region boundaries. As a result, it

is smoothed using an efficient edge-preserving filter [5]

with the guidance of the original gray scale image. An N-

dimension probability vector will be computed at each pixel

location, where N is the total number of object categories

and each element is the probability that the current pixel be-

longs to the corresponding category. This probability vector

is used as the high-level descriptor denoted as xH .

(a)Input (b)Patch+DAISY (c)+Sementic

Figure 5. Importance of semantic feature. (a) is the target

grayscale image. (b) is the colorization result using patch and

DAISY features only. (c) is the result using patch, DAISY and

semantic features.

Figure 5 shows that the colorization result may change

significantly with and without the semantic feature. The

adoption of semantic feature can significantly reduce

matching/training ambiguities. For instance, if a pixel is de-

tected to be inside a sky region, only sky color values reside-

ing in the reference image database will be used. The col-

orization problem is thus simplified after integrating the se-

mantic information and colorization result is visually much

better as can be seen in Figure 5.

3.2.4 Global features

Unlike the previous example-based methods, we don’t in-

corporate the global image features (e.g., gist, histogram

etc.) into our model. State-of-the-art methods [2], [14]

typically utilize the global features to construct an image

filter, and then use it to select similar reference images from

a large image set automatically. However, it is very likely

that the image filter selects a reference image that is glob-

ally similar but semantically different from the target image.

When we incorporate the global features into our model, it

would produce an unnatural colorization result as shown in

Figure 6.

(a) (b) (c)

Figure 6. Evaluation of global features. (a) is the target gray scale

image. (b) is our final result using patch, DAISY and semantic

features. (c) is the colorization result when we incorporate the

global features into our model.
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3.2.5 Chrominance Refinement

The proposed method adopts the patch feature and DAISY

feature, and we hope to use patch feature to describe low-

texture simple regions and DAISY to describe fine-structure

regions. However, we simply concatenate the two features

instead of digging out a better combination. This will result

in potential artifacts especially around the low-texture ob-

jects (e.g., sky, sea). This is because DAISY is vulnerable

to these objects and presents a negative contribution.

The artifacts around low-texture regions can be signifi-

cantly reduced using joint bilateral filtering technique [19].

It was first introduced to remove image noise of a no-flash

image with the help of a noise-free flash image. Our prob-

lem is similar, the chrominance values obtained from the

trained neural network is noisy (and thus results in visi-

ble artifacts) while the target grayscale image is noise-free.

As a result, to ensure artifact-free quality, we apply joint

bilateral filtering to smooth/refine the chrominance values

(computed by the trained neural network) with the target

grayscale image as the guidance. Figure 7 presents the re-

sult before and after chrominance refinement. Note that

most of the visible artifacts can be successfully removed.

(a)Input (b)Before (c)After

Figure 7. Chrominance refinement using joint bilateral filtering

[19]. From (a) to (c): target grayscale image, colorization results

before and after chrominance refinement, respectively. Note that

the artifacts in (b) are successfully removed from (c).

3.3. Difference from the stateoftheart coloriza
tion methods

The previous algorithms [1, 2, 6, 11, 23] typically use

one similar reference image or a set of similar reference

images from which transfer color values to the target gray

image. [6] is the state-of-art example-based method as it

outperforms others in performance and application scope.

However, its performance highly depends on given refer-

ence image as demonstrated in Figure 10. [6] can obtain a

very good colorization result using a reference image con-

taining identical object(s) as the target grayscale image.

However, when the reference image is different from the

target, its performance is quite low as shown in Figure 10

(h)-(i). To minimize the high dependence on a suitable ref-

erence image, our method utilizes a large reference image

database. It “finds” the most similar pixel from the database

and “transfers” its color to the target pixel. This is why our

approach is robust to different grayscale target images.

(a) Input (b) Proposed (22dB) (c) ground truth

(d) Reference 1 (e) Reference 2 (f) Reference 3

(g) [6]+(d) (19dB) (h) [6]+(e) (17dB) (i) [6]+(f) (18dB)

Figure 10. The high dependence on a suitable reference image of

Gupta et al. [6]. (a) is the input grayscale image. (b) is the color

image obtained from the proposed method which is visually more

accurate. (c) is the ground truth of (a). (d) is the first reference

image for [6]. It has a similar scene as the (a). (e) is the second

reference image. It is semantically different from (a). (f) is the

last reference image that is complete different from (a). The color

images obtained from [6] w.r.t. the reference images in (d)-(f)

are presented in (g)-(i), respectively. The PSNR values computed

from the colorization results and the ground truth are presented

under the colorized images.

Intuitively, one reference image cannot comprise all suit-

able correspondences for pixels in the target grayscale im-

age. This is why the performance of [6] highly depends on

a suitable reference image. As shown in Figure 11, using

a couple of similar reference images could improve their

colorization result. However, when the reference images

contain multiple objects (e.g. door, window, building etc.),

their colorization result becomes unnatural, although some

of the reference images is similar to the target. This is due

to the significant amount of noise residing in feature match-

ing (between the reference images and the target image).

For instance, we noticed that the grassland in Figure 10(a)

was matched to the wall in Figure 11(e)), and the sky was

matched to the building in Figure 11(f).

Experiments demonstrate that deep learning technique
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33dB 22dB 21dB 20dB 11dB

(a) input image (b) our method (c) Gupta et al.[6] (d) Irony et al.[11] (e) Welsh et al.[23] (f) Charpiat et al.[1] (g) reference image

Figure 8. Comparison with the state-of-art colorization methods [1, 6, 11, 23]. (c)-(f) use (g) as the reference image, while the proposed

method adopts a large reference image dataset. The reference image contains similar objects as the target grayscale image (e.g., road,

trees, building, cars). It is seen that the performance of the state-of-art colorization methods is lower than the proposed method when the

reference image is not “optimal”. The segmentation masks used by [11] are computed by mean shift algorithm [3]. The PSNR values

computed from the colorization results and ground truth are presented under the colorized images.
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(a) City (b) Road (c) House (d) Forest (e) Building (f) Beach (g) Field

Figure 9. Comparison with the ground truth. The first row presents the input grayscale images from different categories. Colorization

results obtained from the proposed method are presented in the second row. The last row presents the corresponding ground-truth color

images, and the PSNR values computed from the colorization results and the ground truth are presented under the colorized images.

is well-suited for a large reference image database. The

deep neural network helps to combine the various features

of a pixel and computes the corresponding chrominance

values. Additionally, the state-of-the-art methods are very

slow because they have to find the most similar pixels (or

super-pixels) from massive candidates. In comparison, the

deep neural network is tailored to massive data. Although

the training of neural network is slow especially when the

database is large, colorizing a 256×256 grayscale image

using the trained neural network takes only 4.9 seconds in

Matlab.

4. Experimental Results

The proposed colorization neural network is trained on

2688 images from the Sun database [18]. Each image is

segmented into a number of object regions and a total of

47 object categories are used (e.g. building, car, sea etc.).

The neural network has an input layer, three hidden lay-

ers and one output layer. According to our experiments,

using more hidden layers cannot further improve the col-

orization results. A 49-dimension (7 × 7) patch feature, a

32-dimension DAISY feature [22] (4 locations and 8 orien-

tations) and a 47-dimension semantic feature are extracted

at each pixel location. Thus, there are a total of 128 neurons

in the input layer. This paper perceptually set the number of

neurons in the hidden layer to half of that in the input layer

and 2 neurons in the output layer (which correspond to the

chrominance values).

Figure 8 compares our colorization results with the state-

of-the-art colorization methods [1, 6, 11, 23]. The per-

formance of these colorization methods is very high when

an “optimal” reference image is used (e.g., containing the

same objects as the target grayscale image), as shown in

[1, 6, 11, 23]. However, the performance may drop signifi-

cantly when the reference image is only similar to the target

grayscale image. The proposed method does not have this

limitation due to the use of a large reference image database
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(a) Reference image set 1 (d) [6]+(a) (21dB)

(b) Reference image set 2 (e) [6]+(b) (20dB)

(c) Reference image set 3 (f) [6]+(c) (19dB)

Figure 11. Gupta et al.[6] with multiple reference images. The

target grayscale image is the same as Figure 10(a). (a)-(c) are

different reference images and (d)-(f) are the corresponding col-

orization results. Note that the best performance can be achieved

when sufficient similar reference images are used.

as shown in Figure 1(b).

To test the influence of sample size on our model, we

utilized different sizes of samples to train our DNN, and

then colorized 1344 grayscale images. Let Ψ denote our

training set. The sample size is denoted as δ = size(Ψ).

As shown in Figure 12, we can see that more samples will

result in more accurate colorization results.

(a) Average PSNR (b) PSNR distribution

Figure 12. Influence of sample size on the colorization results. (a)

and (b) presents the average and the distribution of PSNR using

different sample size. The yellow, blue and green curves in (b)

represent the PSNR distribution when log(δ) are assigned with 7.6,

8.6 and 11.6 respectively.

Figure 9 presents more colorization results obtained

from the proposed method with respect to the ground-truth

color images. Figure 9 demonstrates that there is almost not

visible artifact in the color images generated using the pro-

posed method, and these images are visually very similar to

the ground truth.

5. Limitations

The proposed colorization is fully-automatic and thus is

normally more robust than the traditional methods. How-

ever, it relies on machine learning techniques and has its

own limitations. For instance, it is supposed to be trained

on a huge reference image database which contains all pos-

sible objects. This is impossible in practice. For instance,

the current model was trained on real images and thus is in-

valid for the synthetic image. It is also impossible to recover

the color information lost due to color to grayscale transfor-

mation. Nevertheless, this is a limitation to all state-of-the-

art colorization method. Two failure cases are presented in

Figure 13.

(a) Input (b) Our method (c) Groundtruth

Figure 13. Limitations of our method. Our method is not suitable

for synthetic images and cannot recover the information lost dur-

ing color to grayscale conversion. Note that the green number in

the last row of (c) disappears in the corresponding grayscale image

in (a).

6. Concluding Remarks

This paper presents a novel, full-automatic colorization

method using deep neural networks to minimize user effort

and the dependence on the example color images. Infor-

mative yet discriminative features including patch feature,

DAISY feature and a new semantic feature are extracted and

serve as the input to the neural network. The output chromi-

nance values are further refined using joint bilateral filter-

ing to ensure artifact-free colorization quality. Numerous

experiments demonstrate that our method outperforms the

state-of-art algorithms both in terms of quality and speed.
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