
Semi-Supervised Normalized Cuts for Image Segmentation

Selene E. Chew and Nathan D. Cahill

School of Mathematical Sciences, Rochester Institute of Technology

sec6971@rit.edu, nathan.cahill@rit.edu

Abstract

Since its introduction as a powerful graph-based method

for image segmentation, the Normalized Cuts (NCuts) al-

gorithm has been generalized to incorporate expert knowl-

edge about how certain pixels or regions should be grouped,

or how the resulting segmentation should be biased to be

correlated with priors. Previous approaches incorporate

hard must-link constraints on how certain pixels should

be grouped as well as hard cannot-link constraints on how

other pixels should be separated into different groups. In

this paper, we reformulate NCuts to allow both sets of con-

straints to be handled in a soft manner, enabling the user to

tune the degree to which the constraints are satisfied. An ap-

proximate spectral solution to the reformulated problem ex-

ists without requiring explicit construction of a large, dense

matrix; hence, computation time is comparable to that of

unconstrained NCuts. Using synthetic data and real im-

agery, we show that soft handling of constraints yields bet-

ter results than unconstrained NCuts and enables more ro-

bust clustering and segmentation than is possible when the

constraints are strictly enforced.

1. Introduction

One of the most popular algorithms for image segmen-

tation and clustering is Normalized Cuts [13, 14] (NCuts),

which generates segments by partitioning a graph that mod-

els the image. Although NCuts has been successful in many

settings, it is a fully automatic algorithm, and no fully au-

tomatic segmentation algorithm currently exists that is as

good as the human brain at handling the complexity and va-

riety inherent in real-world images. Because of this, one vi-

brant area of research over the last decade has been into the

development of interactive image segmentation algorithms

that rely on user input to help guide the segmentation pro-

cess.

Like NCuts, many of the modern interactive image seg-

mentation techniques are based on graph partitioning and

labeling algorithms [4, 3, 6, 8, 12, 18]. User input about

pixels or regions of the image can be provided as must-link

or cannot-link constraints [16], which specify that two or

more vertices of the graph should be grouped in the same

partition or separated into different partitions.

Two extensions of NCuts have been developed that han-

dle hard constraints: Yu and Shi [18] enable hard must-

link constraints, and Eriksson et al. [6] enable both hard

must-link and cannot-link constraints. A different general-

ization is the Biased Normalized Cut, by Maji et al. [10],

in which the resulting clustering or segmentation can be bi-

ased towards being correlated with some predefined tem-

plate or function. If this function is defined by the user to

indicate pixels/regions that should be linked, Biased Nor-

malized Cuts can be thought of as a way of modifying the

NCuts solution towards satisfying must-link constraints in

a soft manner.

In this paper, we present a different generalization of

NCuts that allows soft versions of both must-link and

cannot-link constraints to be satisfied, enabling an expert

user to vary the desired influence of specific constraints on

the partitioning process. Soft versions of the constraints al-

low for flexibility to be robust to situations when user in-

put is not guaranteed to be completely accurate. Our gen-

eralization, which we refer to as Semi-Supervised Normal-

ized Cuts (SSNCuts), has an approximate spectral solution

that does not require explicit construction of a large, dense

matrix; hence, computation time is comparable to that of

the original NCuts algorithm. Furthermore, it directly com-

putes the constrained solution without relying on an initial

unconstrained solution (as opposed to the approach of Bi-

ased NCuts). If desired, SSNCuts can form the basis of a

foreground extraction system like GrabCuts [12], by itera-

tively updating the manual labels and then estimating the

alpha-matte around the region border.

The remainder of this paper is organized as follows. Sec-

tion 2 reviews the original NCuts algorithm, and Section 3

shows how to generalize it to incorporate soft must-link and

cannot-link constraints. Section 4 uses the toy problem pre-

sented in [10] to explore the behavior of our generalization

compared to methods requiring strict constraint satisfaction

[6, 18]. Section 5 illustrates image segmentation results on

a variety of images from the PASCAL VOC dataset [7].

11716



A preliminary version of this paper appeared in [5], in

which we proposed a generalization of NCuts to handle only

soft must-link constraints.

2. Normalized Cuts

Consider an undirected weighted graph G = (V, E) that
we wish to partition into two disjoint subgraphs GA =
(A, EA), GB = (B, EB), where A

⋃

B = V . Partitioning
can be achieved by removing the edges connecting A to B;
the cost of partitioning G is called the cut cost and is defined
by the total weight of the edges that have been removed:

cut(A,B) =
∑

vi∈A,vj∈B

Wi,j , (1)

where the vertex set V = {v1, v2, · · · , vn}, and whereW
is the weighted adjacency matrix of G.
To find an optimal partitioning of G, one strategy is to

minimize (1) to find the minimum cut. As described in [17],

however, such a minimum cut can be unnaturally biased to-

wards partitionings in which one of the subgraphs has a sin-

gle vertex. To yield more balanced partitionings, other re-

lated cut costs have been proposed, one of the most popular

of which is the Normalized Cut [14]:

NCut(A,B) =
cut(A,B)

assoc(A,X)
+

cut(A,B)

assoc(B,X)
, (2)

where

assoc(S,X) =
∑

vi∈S,vj∈X

Wi,j (3)

is the total connection from all vertices in S to all vertices
in the graph G.
Shi and Malik [14] show that minimizing (2) is equiva-

lent to solving the following discrete minimization problem:

min
y

yT(D−W)y

yTDy
(4)

subject to yi ∈ {1,−b} , i = 1, 2, . . . , n ,

yTD1 = 0 ,

where D is the diagonal weighted degree matrix de-

fined componentwise by di = Di,i =
∑

j Wi,j ,

b =
(
∑

xi>0
di
)

/
(
∑

xi<0
di
)

, and y = (1+ x)/2 −
b(1− x)/2, where x is an n-dimensional indicator vector
such that xi = 1 if vertex vi is in A and xi = −1 other-
wise. They further show that if (4) is relaxed so that the

components of y are real-valued, its solution is the gener-

alized eigenvector corresponding to the smallest nontrivial

eigenvalue of:

(D−W)y = λDy . (5)

The components of the resulting generalized eigenvector

can then be thresholded to assign them one of the discrete

labels.

An alternate way to formulate the discrete minimization

problem (4) is presented in Eriksson et al. [6] and involves

parameterizing directly with x:

min
x

(

xT(D−W)x
)

dT1

xT((dT1)D− ddT)x
(6)

subject to xi ∈ {1,−1} , i = 1, 2, . . . , n ,

where d = DT1 is the vector containing the diagonal ele-

ments ofD. We go one step further; noting that:
(

dT1
)

D− ddT

dT1
= D−

ddT

dT1
= D−

D11TD

1TD1
(7)

= D1/2

⎛

⎝I−
D1/21

∥

∥D1/21
∥

∥

(

D1/21
∥

∥D1/21
∥

∥

)T
⎞

⎠D1/2 ,

which allows us to state (6) as:

min
x

xT(D−W)x

xTD1/2(I− qqT)D1/2x
(8)

subject to xi ∈ {1,−1} , i = 1, 2, . . . , n ,

where q is the unit vector in the direction ofD1/21.

There are two reasons we prefer to represent NCut min-

imization by (8) as opposed to (4). First, b is not actually
constant with respect to y; hence, the class labels for y are

actually a function of y itself, whereas the class labels for x

are fixed. Second, the balance constraint yTD1 = 0, while
required by (4), is not actually required by (8) because it is

implicitly satisfied by the solution to the relaxed version of

(8).

To see why the latter point is true, we first note that tak-

ing the gradient of the objective function in (8) and setting

it equal to zero shows us that any critical point x∗ of the re-

laxed version of (8) must satisfy the generalized eigenvector

problem:

(D−W)x∗ = λD1/2
(

I− qqT
)

D1/2x∗ . (9)

This is equivalent to the generalized eigenvector problem:

D−1/2 (D−W)D−1/2z∗ =
(

I− qqT
)

z∗ , (10)

where z∗ = D1/2x∗.

Using the orthogonal decomposition theorem, we write

z∗ = α1q + α2z
∗

q⊥ , where q
Tz

∗

q⊥ = 0. First, note that

if α2 = 0, x∗ = D−1/2z∗ represents a trivial cut of G, so
to avoid this case we assume α2 �= 0. Now, noting that
q is an eigenvector of D−1/2 (D−W)D−1/2 with corre-

sponding eigenvalue 0 and that I − qqT projects q to zero

and preserves any vector orthogonal to q, we have:

D−1/2 (D−W)D−1/2z∗q⊥ = λz∗q⊥ . (11)

1717



Furthermore, the objective function evaluated at z∗ simpli-

fies to:

z∗TD−1/2 (D−W)D−1/2z∗

z∗T(I− qqT) z∗
(12)

=
z∗TD−1/2 (D−W)D−1/2z∗

q⊥

z∗Tz∗
q⊥

=
λz∗Tz∗

q⊥

z∗Tz∗
q⊥

= λ .

Since λ = 0 would correspond to z∗
q⊥ = q (which is im-

possible because they are orthogonal), z∗
q⊥ must be the gen-

eralized eigenvector corresponding to the second smallest

eigenvalue of (11). Once z∗
q⊥ is determined, α1 can be free

to be chosen to be any value without impacting the objec-

tive function nor changing the fact that z∗ is a critical point.

Thus, we can choose α1 = 0; this ensures that z∗ itself is
the eigenvector corresponding to the second smallest eigen-

value of:

D−1/2 (D−W)D−1/2z = λz (13)

and consequently, that x∗ is the generalized eigenvector cor-

responding to the second smallest eigenvalue of:

(D−W)x = λDx . (14)

This also ensures that the balance constraint is implicitly

enforced (because generalized eigenvectors of Ax = λBx

corresponding to distinct eigenvalues areB-orthogonal ifB

is symmetric positive definite [11]).

3. Incorporating Soft Constraints

In many situations, prior knowledge exists about how

some pairs of vertices should or should not be grouped in

the resulting graph partitioning procedure. Wagstaff et al.

[16] describes this type of knowledge in terms of must-link

and cannot-link constraints; must-link constraints specify

that two vertices are grouped in the same partition, and

cannot-link constraints specify that two vertices are sepa-

rated into different partitions. Eriksson et al. [6] show how

NCuts can be generalized to handle hard versions of must-

link and cannot-link constraints. In this article, we present

a generalization that allows soft versions of both types of

constraints, enabling an expert user to vary the desired in-

fluence of specific constraints on the partitioning process.

3.1. Must-Link Constraints

Prior knowledge in the form of soft must-link constraints

is straightforward to incorporate in a semi-supervised ver-

sion of NCuts. Suppose we know that each of the ordered

pairs of vertices in the set C = {(viℓ , vjℓ) |ℓ = 1, . . . ,m}
represents two vertices that should be grouped in the same

partition. A modified cut cost can be formulated that penal-

izes violations of the must-link constraints:

cutML(A,B) = cut(A,B) + 1

2

m
∑

�=1

γ� · θ(viℓ , vjℓ) , (15)

where θ(vi, vj) is the must-link penalty defined to be
1 if vi and vj are in different subgraphs (i.e., if

{vi ∈ A and vj ∈ B} or {vi ∈ B and vj ∈ A}) and 0 if they
are in the same subgraph. The γ�’s specify the strength of
each must-link constraint.

Using (15) in place of (1) in (2), we can further modify

the NCut cost by defining:

NCutML(A,B) =
cutML(A,B)

assoc(A,X)
+
cutML(A,B)

assoc(B,X)
= (16)

NCut(A,B) +

∑m
�=1

γ� · θ(viℓ , vjℓ)

2 · assoc(A,X)
+

∑m
�=1

γ� · θ(viℓ , vjℓ)

2 · assoc(B,X)
.

The must-link penalty function can also be written in

terms of the corresponding components of the indicator vec-

tor x; i.e., θ(vi, vj) = (xi − xj)
2
/4. This allows us to ex-

press
∑m

�=1
γ� · θ(viℓ , vjℓ) as x

TUTΓUx, where U is the

m×nmatrix defined row-wise so that row ℓ contains a 1/2
in column i�, a −1/2 in column j�, and 0’s in every other
column, and where Γ is the diagonal matrix containing the

weights on its main diagonal. (Note that in the special case

where all weights are equal to γ, xTUTΓUx reduces to

γxTUTUx.) Hence, minimizing (16) is equivalent to solv-

ing the discrete minimization problem:

min
x

xT
(

D−W +UTΓU
)

x

xTD1/2(I− qqT)D1/2x
(17)

subject to xi ∈ {1,−1} , i = 1, 2, . . . , n .

SinceU1 = 0, 1 is an eigenvector ofD−W+UTΓU

corresponding to eigenvalue 0, and therefore we can use an
argument similar to that of Section 2 to show that the so-

lution to the relaxed (unconstrained) version of (17) is the

generalized eigenvector corresponding to the smallest non-

trivial eigenvalue of:

(

D−W +UTΓU
)

x = λDx . (18)

As with unconstrained NCuts, the components of the result-

ing generalized eigenvector can be thresholded in order to

assign classification labels.

3.2. Cannot-Link Constraints

Incorporating soft cannot-link constraints into the NCuts

framework is not quite as straightforward as incorpo-

rating soft must-link constraints. Suppose now that

each of the ordered pairs of vertices in the set C̃ =
{(

vĩℓ , vj̃ℓ

)

|ℓ = 1, . . . , m̃
}

represents two vertices that

should be grouped in different partitions. Another modified

1718



cut cost can be formulated, this one penalizing violations of

the cannot-link constraints:

cutCL(A,B) = cut(A,B) + 1

2

m̃
∑

�=1

γ̃� · θ̃
(

vĩℓ , vj̃ℓ

)

, (19)

where θ̃(vi, vj) = 1 − θ(vi, vj) = (xi + xj)
2
/4 is the

cannot-link penalty that equals 1 if vi and vj are in the
same subgraph and 0 if they are in different subgraphs. The
γ̃�’s specify the strength of each cannot-link constraint. The
modified cut cost can be used to create a modified NCut:

NCutCL(A,B) =
cutCL(A,B)

assoc(A,X)
+
cutCL(A,B)

assoc(B,X)
= (20)

NCut(A,B) +

∑m̃
�=1

γ̃� · θ̃
(

vĩℓ , vj̃ℓ

)

2 · assoc(A,X)
+

∑m̃
�=1

γ̃� · θ̃
(

vĩℓ , vj̃ℓ

)

2 · assoc(B,X)

=
xT

(

D−W + ŨTΓ̃Ũ
)

x

xTD1/2(I− qqT)D1/2x
, (21)

where Ũ is the m̃× n matrix defined row-wise so that row
ℓ contains 1/2’s in columns ĩ� and j̃�, and 0’s in every other
column, and where Γ̃ is the diagonal matrix containing the

weights on its main diagonal.

Critical points of (21) (assuming the constraints xi ∈
{1,−1} , i = 1, 2, . . . , n, are relaxed), satisfy the general-
ized eigenvector problem:

(

D−W + ŨTΓ̃Ũ
)

x = λD1/2
(

I− qqT
)

D1/2x .

(22)

However, solving (22) directly is problematic in a way that

solving (14) or (18) is not. Consider that the matrix I−qqT

projects vectors onto the subspace orthogonal to q, so the

inner product of any scalar multiple of q with the vector
(

I− qqT
)

D1/2x must be zero. D1/21 is a scalar multi-

ple of q, so 1TD
1/2(

I− qqT
)

D1/2x vanishes for any x.

Hence, the right-hand side of (22) is orthogonal to 1.

This means that the left-hand side of (22) must also be

orthogonal to 1 whenever λ �= 0. Even though this same
analysis is true for (14) or (18), the row sums of D−W

and ofUTΓU vanish, guaranteeing that the left-hand sides

of (14) or (18) are orthogonal to 1. However, the row sums

of ŨTΓ̃Ũ do not vanish, and so we must explicitly enforce

the constraint xTŨTΓ̃Ũ1 = 0. The relaxed version of the
minimization of (21) is therefore:

min
x

xT
(

D−W + ŨTΓ̃Ũ
)

x

xTD1/2(I− qqT)D1/2x
(23)

subject to xTŨTΓ̃Ũ1 = 0 .

To make (23) easier to solve, we follow the strategy

of [6] and judiciously choose a n × (n− 1) matrix B

whose columns form a basis for the subspace orthogonal

to the vector p = ŨTΓ̃Ũ1, and we make the substitu-

tion x = Bh, where h is (n− 1) × 1. Minimizing the
relaxed version of (23) is then equivalent to solving the un-

constrained minimization problem:

min
h

hTBT
(

D−W + ŨTΓ̃Ũ
)

Bh

hTBTD1/2(I− qqT)D1/2Bh
. (24)

A variety of choices can be made for B; for computational

purposes, we make the sparse choice B = PîM, where

î = argmaxp, Pî is the n × n permutation matrix that

swaps rows 1 and î, andM is the n× (n− 1) matrix given
by:

M =

[

p̂2 p̂3 · · · p̂n
−p̂1I

]

, (25)

with p̂ = Pîp.

With this choice ofB, we find that critical points of (24)

satisfy the generalized eigenvector problem:

MTPî

(

D−W + ŨTΓ̃Ũ
)

PîMh (26)

= λMTPîD
1/2

(

I− qqT
)

D1/2PîMh .

The solution to (24) is therefore the generalized eigenvector

of (26) corresponding to the smallest eigenvalue; this eigen-

vector can then be premultiplied by PîM and thresholded

to approximately minimize NCutCL(A,B).
Note that all matrices in (26) are sparse except for

I − qqT; however, if the Lanczos algorithm [9] is used to

solve (26), I − qqT never needs to be formed explicitly.

Only the matrix-vector product
(

I− qqT
)

f must be com-

puted repeatedly for various vectors f , and this product is

equivalent to f −
(

qTf
)

q.

3.3. Both Types of Constraints in the Same Problem

Soft versions of must-link and cannot-link constraints

can easily be incorporated into the same problem. If we

first define the semi-supervised cut cost cutSS(A,B) to en-
able both types of constraints; i.e.,

cutSS(A,B) = (27)

cut(A,B) + 1

2

m
∑

�=1

γ� · θ(viℓ , vjℓ) +
1

2

m̃
∑

�=1

γ̃� · θ̃
(

vĩℓ , vj̃ℓ

)

= cutML(A,B) + cutCL(A,B)− cut(A,B) ,

then we can define the Semi-Supervised Normalized Cut

cost by:

NCutSS(A,B) =
cutSS(A,B)

assoc(A,X)
+
cutSS(A,B)

assoc(B,X)
. (28)

1719



Combining the analyses of Sections 3.1 and 3.2, we find

that minimizing (28) can be relaxed into the equivalent min-

imization problem:

min
x

xT
(

D−W +UTΓU+ ŨTΓ̃Ũ
)

x

xTD1/2(I− qqT)D1/2x
(29)

subject to xTŨTΓ̃Ũ1 = 0 .

This can be solved by finding the generalized eigenvector

corresponding to the smallest eigenvalue of:

MTPî

(

D−W +UTΓU+ ŨTΓ̃Ũ
)

PîMh (30)

= λMTPîD
1/2

(

I− qqT
)

D1/2PîMh ,

and then premultiplying the result by PîM.

As in Section 3.2, all matrices in (30) are sparse except

for I− qqT, which never needs to be formed explicitly.

3.4. Constraint Conditioning

Yu and Shi [18] show that when the set of constraints

is sparse, better solutions to the hard must-link constrained

Normalized Cuts problem are obtained by propagating (or

conditioning) the constraints to neighboring vertices of the

graph by replacing the constraint matrixU withUD−1W.

In the context of this paper, sparse constraints can be condi-

tioned in the same way, by replacingU withUD−1W and

Ũ with ŨD
−1

W in the generalized eigenvector problems

(18), (26), and (30).

3.5. Choosing Constraint Weights

The values assigned to the constraint weight matrices Γ

and Γ̃ can have unpredictable effects if the number of con-

straints is changed. A recommended strategy is to define

equal weights for each constraint (i.e., set Γ = γI and
Γ̃ = γ̃I), and then rescale U and Ũ so that tr

(

UTU
)

=

tr
(

ŨTŨ
)

= tr(D). This rescaling normalizes the problem

so that the choice γ = γ̃ = 1 always indicates equal in-
fluence across all terms in the cost function. For all of the

images in section 5, after rescaling U and Ũ, SSNCuts is

carried out with γ = γ̃ = 100.

For greater flexibility in interactive segmentation sys-

tems, an alternative is to choose constraint weights to

equally influence must-link constraints in the foreground

with those in the background. By reordering and partition-

ing U so that the top rows (Uf ) correspond to foreground

ML constraints and the bottom rows (Ub) to background

ML constraints, we can separately rescale Uf and Ub so

that tr
(

UT
f Uf

)

= tr
(

UT
b Ub

)

= tr
(

ŨTŨ
)

= tr(D). This

allows for the choice of separate weights γf and γb for the
two groups of must-link constraints.

5 10 15 20

1

2

3

4

5

6

7

8

9

(a) Input Points

50 100 150 200 250

-1

0

1

(b) Normalized Cut

Figure 1: Synthetic example: (a) data set comprising three

classes, (b) partitioning based on minimizing NCut.

4. Synthetic Example

To illustrate the incorporation of soft must-link and

cannot-link constraints into NCuts, we compare our pro-

posed algorithm with Yu-Shi NCuts [18] and Eriksson et al.

NCuts [6] using the synthetic example introduced in Maji et

al. [10]. Figure 1a shows data randomly generated in three

sets, S1, S2, and S3, with 100 data points in each set. Af-

ter constructing a graph with edge weights between points

pi and pj given by wi,j = exp
(

−‖pi − pj‖
2
/2σ2

)

with

σ = 2, we performed NCuts, which correctly partitions the
points into three separate clusters as shown in Fig. 1b.

Next, as in [10], we attempt to group S1 and S3 to-

gether by adding various must-link and cannot-link con-

straints as shown in Fig. 2. In the left three columns of

Fig. 2, must-link constraints are created between each pair

of points circled in red; in the right three columns, must-link

constraints are created between all pairs of points circled in

the same color, and cannot-link constraints are created be-

tween points circled in red and those circled in green. In the

third and sixth columns, erroneous constraints are added by

”accidentally” selecting two points in S2 to be grouped with

those in S1 and S3.

In the left columns, where only must-link constraints are

provided, we see the results of Yu-Shi NCuts [18] and SS-

NCuts. In the right columns, where two groups of con-

straints are provided, we separately pair subsets of red and

green circled points to form must-link constraints, and we

form cannot-link constraints are between each red/green

point pair. In these columns, we see the results of Eriks-

son et al. NCuts [6] and SSNCuts (Yu-Shi NCuts is not

applicable in the presence of cannot-link constraints).

Note that in situations where there are no erroneous

manually-labeled points, Yu-Shi NCuts, Eriksson et al.

NCuts, and SSNCuts all nicely separate the data into the

desired clusters. However, in the presence of even a sin-

gle erroneous manually-labeled point, the hard-constrained

versions of NCuts fail; whereas, SSNCuts is able to suc-

1720



5 10 15 20

1
2
3
4
5
6
7
8
9

C
2,2

 ML

5 10 15 20

1
2
3
4
5
6
7
8
9

C
2,20

 ML

5 10 15 20

1
2
3
4
5
6
7
8
9

C
2,22

 ML

5 10 15 20

1
2
3
4
5
6
7
8
9

C
2,2

 ML + 2 CL

5 10 15 20

1
2
3
4
5
6
7
8
9

(C
2,20

+C
2,10

) ML + 20# 10 CL

5 10 15 20

1
2
3
4
5
6
7
8
9

(C
2,22

+C
2,10

) ML + 22# 10 CL

50 100 150 200 250

-1

0

1
Yu-Shi NCut

50 100 150 200 250

-1

0

1
Yu-Shi NCut

50 100 150 200 250

-1

0

1

Yu-Shi NCut

50 100 150 200 250

-1

0

1

Eriksson NCut

50 100 150 200 250

-1

0

1

Eriksson NCut

50 100 150 200 250

-1

0

1

Eriksson NCut

Figure 2: Comparison of our SSNCut algorithms to Yu-Shi NCuts [18] and Eriksson et al. NCuts [6] for various constraints

shown by red and green circled points. In all situations where Yu-Shi and Eriksson NCuts can be used, SSNCuts

successfully separates S2 from S1 and S3 for a range of values of γ. In addition, in situations where Yu-Shi and Eriksson
NCuts fail due to the presence of erroneous manual labels, SSNCuts succeeds as γ and ˜gamma are decreased.

cessfully separate the data as the constraint weights are de-

creased γ. This suggests that even if hard constraints be-
come impossible to satisfy, soft constraints can be effective.

5. Qualitative Segmentation Results

To illustrate how SSNCuts performs on real imagery in

comparison and contrast with hard-constrained versions of

NCuts, we follow the evaluation strategy of Maji et al. [10]

and present qualitative results on images from the PAS-

CAL VOC dataset [7]. As done in [10], we will refrain

from performing a quantitative validation using segmenta-

tion benchmarks or wrapping the various NCuts algorithms

inside foreground extraction systems like GrabCuts [12].

Figure 3 shows a variety of images taken from the PAS-

CAL VOC database. For each image, we use a paintbrush

tool to manually identify regions of the image that should

belong to the foreground object (orange) and background

(blue). To make the subsequent segmentation algorithms

more computationally efficient, we first perform an over-

segmentation of the image into superpixels using Simple

Linear Iterative Clustering (SLIC) [1] as implemented in the

VLFeat toolbox [15], and we construct a graph having each

superpixel as a vertex.

To define edge weights for the graph, we compute the

globalized probability of boundary (gPb) [2] at each pixel,

find the maximum gPb across eight orientation angles, and

define the weight between superpixel i and j as:

Wi,j = exp(−max {gPb(pi,j)} /ρ) (31)

if ‖pi,j‖ ≤ r and Wi,j = 0 otherwise, where pi,j is the

line segment connecting the centroids of superpixels i and
j, and ρ is a constant. We set r to be 0.1 times the maximum
of the image width and height, and ρ = 0.1. Our choice of
ρ is consistent with [2], but our choice of r is larger because
of our use of superpixels to form the graph.

For each PASCAL VOC image, the generalized eigen-

vectors corresponding to the solutions of unconstrained, Yu-

Shi, Eriksson et al., and Semi-Supervised NCuts are shown

in columns 4-7. Column 8 shows a segmentation of the

foreground region based on k-means clustering of the SS-
NCuts eigenvector. In the images in the first two rows,

hard-constrained versions of NCuts are successful, and so

SSNCuts shows no improvement. In the remaining rows,

hard-constrained NCuts fail (in the same manner, in fact),

but SSNCuts yields eigenvectors that appear to highlight

the location of the foreground region. The final three rows

show images for which SSNCuts yields qualitatively good

eigenvectors, but for which k-means clustering yields too
low of a threshold for segmentation. These results suggest

that SSNCuts would likely be successful in a GrabCuts-like

iterative foreground extraction system [12].

Figure 4 illustrates the influence of the weights in the

soft constraints. Using one of the dog images with user-

provided paintbrush strokes shown in Fig. 3, we see the

1721



(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3: PASCAL VOC Images: (a) original, (b) original with user-provided constraints overlayed, (c) maximum gPb, (d)

eigenvector from unconstrained NCuts [14], (e) eigenvector from Yu-Shi NCuts [18] with hard ML constraints, (f)

eigenvector from Eriksson et al. NCuts [6] with hard ML and CL constraints, (g) eigenvector from SSNCuts, and (h)

segmentation based on k-means clustering on (g).

1722



γ = γ̃ = 1 10 102 103 104 105 106

Figure 4: Result of increasing constraint weights in Semi-Supervised NCuts for the dog image from row seven of Figure 3.

influence of simultaneously increasing γ and γ̃. As the
constraint weights are initially increased, the SSNCuts so-

lution appears to successfully identify the dog in the fore-

ground; however, as the constraint weights grow even fur-

ther, SSNCuts eventually yields solutions similar to hard-

constrained NCuts.

6. Conclusion

In this paper, we have extended the NCuts algorithm for

image segmentation and clustering to enable soft must-link

and cannot-link constraints. The constraints can be pro-

vided by an expert user, and their soft nature allows their

relative influence to be varied. Through various synthetic

and real-world examples, we illustrate results that are more

robust than those achieved by hard constraint enforcement.

Appendix

Prototype implementations of algorithms in

this paper are available at MATLAB Central

(http://www.mathworks.com/matlabcentral/)

under File ID #52735.

Acknowledgements

Thanks to Paul Wenger and the anonymous reviewers for

helpful comments. Selene Chew was supported by RIT’s

Honors Summer Undergraduate Research Program.

References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Süsstrunk. SLIC superpixels compared to state-of-the-

art superpixel methods. IEEE Trans. Pattern Analysis and

Machine Intelligence, 34(11):2274–2282, May 2012. 6

[2] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Contour

detection and hierarchical image segmentation. IEEE Trans.

Pattern Analysis and Machine Intelligence, 33(5):898–916,

May 2011. 6

[3] A. Blake, C. Rother, M. Brown, P. Perez, and P. Torr. Interac-

tive image segmentation using an adaptive GMMRF model.

In Proc. European Conference on Computer Vision, ECCV,

pages 428–441, 2004. 1

[4] Y. Y. Boykov and M. P. Jolly. Interactive graph cuts for opti-

mal boundary & region segmentation of objects in N-D im-

ages. In Proc. International Conference on Computer Vision,

ICCV, pages 105–112, 2001. 1

[5] S. E. Chew and N. D. Cahill. Normalized cuts with soft must-

link constraints for image segmentation and clustering. In

Proc. IEEE Western New York Image and Signal Processing

Workshop, WNYISPW, pages 6–10, November 2014. 2

[6] A. Eriksson, C. Olsson, and F. Kahl. Normalized cuts revis-

ited: A reformulation for segmentation with linear grouping

constraints. Journal of Mathematical Imaging and Vision,

39(1):45–61, 2011. 1, 2, 3, 4, 5, 6, 7

[7] M. Everingham, M. E. Ali Eslami, L. Van Gool, C. K. I.

Williams, J. Winn, and A. Zisserman. The PASCAL vi-

sual object classes challenge – a retrospective. International

Journal of Computer Vision, 2014. 1, 6

[8] L. Grady. Random walks for image segmentation.

IEEE Trans. Pattern Analysis and Machine Intelligence,

28(11):1768–1783, Nov 2006. 1

[9] C. Lanczos. An iteration method for the solution of the

eigenvalue problem of linear differential and integral oper-

ators. Journal of Research of the National Bureau of Stan-

dards, 45(4):255–282, Oct 1950. 4

[10] S. Maji, N. K. Vishnoi, and J. Malik. Biased normalized cuts.

In Proc. Computer Vision and Pattern Recognition, CVPR,

pages 2057–2064, 2011. 1, 5, 6

[11] B. N. Parlett. The symmetric eigenvalue problem. Society

for Industrial and Applied Mathematics, 1998. 3

[12] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interac-

tive foreground extraction using iterated graph cuts. ACM

Transactions on Graphics, 23:309–314, 2004. 1, 6

[13] J. Shi and J. Malik. Normalized cuts and image segmen-

tation. In Proc. Computer Vision and Pattern Recognition,

CVPR, pages 731–737, Jun 1997. 1

[14] J. Shi and J. Malik. Normalized cuts and image segmenta-

tion. IEEE Trans. Pattern Analysis andMachine Intelligence,

22(8):888–905, Aug 2000. 1, 2, 7

[15] A. Vedaldi and B. Fulkerson. VLFeat: An open

and portable library of computer vision algorithms.

http://www.vlfeat.org/, 2008. 6

[16] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl. Con-

strained k-means clustering with background knowledge. In

Proceedings of the Eighteenth International Conference on

Machine Learning, ICML ’01, pages 577–584, 2001. 1, 3

[17] Z. Wu and R. Leahy. An optimal graph theoretic approach

to data clustering: theory and its application to image seg-

mentation. IEEE Trans. Pattern Analysis and Machine Intel-

ligence, 15(11):1101–1113, Nov 1993. 2

[18] S. X. Yu and J. Shi. Segmentation given partial grouping

constraints. IEEE Trans. Pattern Analysis and Machine In-

telligence, 26(2):173–183, Feb 2004. 1, 5, 6, 7

1723


