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Abstract

Robust estimation of model parameters in the presence of

outliers is a key problem in computer vision. RANSAC in-

spired techniques are widely used in this context, although

their application might be limited due to the need of a pri-

ori knowledge on the inlier noise level. We propose a new

approach for jointly optimizing over model parameters and

the inlier noise level based on the likelihood ratio test. This

allows control over the type I error incurred. We also pro-

pose an early bailout strategy for efficiency. Tests on both

synthetic and real data show that our method outperforms

the state-of-the-art in a fraction of the time.

1. Introduction

Robust estimation of model parameters from data points

contaminated with outlier noise is a fundamental problem

in geometric computer vision. In many applications the ran-

dom sampling paradigm (RANSAC [7]) is employed due to

its efficiency and its robustness to large amounts of outliers.

In statistical terms, RANSAC (and its many modern vari-

ants), aims to find a maximum likelihood estimate (MLE)

for the desired model parameters and inlier fraction by us-

ing a mixture model of inlier and outlier distributions. Since

the objective for MLE has many local minima, RANSAC

uses many restarts by sampling model parameters from sub-

sets of data to find an approximate MLE. The solely opti-

mized parameters of the mixture are the model parameters

and the mixture coefficient. Other parameters such as the

inlier noise level are assumed to be provided in advance.

In several applications the inlier noise level is not known

in advance, and even a sensible estimate may be unavail-

able, e.g. if two image-based 3D models with unknown

scale need to be merged, or if nothing is known on how

the data points were obtained. More frequently, the model

parameters have usually too few degrees of freedom—the

models are underspecified—for efficiency reasons, e.g. lens

distortion is typically not modeled in robust estimation tech-

niques for multi-view geometry. Underspecified models

therefore may invalidate assumptions on the inlier noise

level. Overall, adding the inlier noise level as additional

unknown to be determined from given data is beneficial in

many applications of robust model estimation.

Jointly optimizing over model parameters and the in-

lier noise level requires much more emphasis on reasoning

about statistical errors that can occur in robust estimation.

In standard RANSAC with a fixed inlier noise level, the

only relevant statistical error is a type II error (false neg-

ative rate) of missing a well-supported model due to the

bounded number of sampling iterations. If the noise level

is unknown, reasoning about the type I error (false positive

rate) of hallucinating a model with many inliers due to a

large chosen value for the noise level is critical. The need

of controlling the type I error in such setting has been iden-

tified in [19, 13], but to our knowledge using the generalized

likelihood ratio test (LRT) for robust model estimation with

unknown inlier noise level has not been considered in the

literature so far. In this work our contributions are: (i) we

propose to use the LRT test statistic as the objective func-

tion for robust model estimation with unknown inlier noise

level. It allows us to control the type I error of fitting an

insignificant model into random, unstructured data in a sta-

tistically sound manner. (ii) We show how the number of

sampling iterations given by the RANSAC formula leads to

reduction of the search range for the inlier noise level, ac-

celerating model verification. (iii) We propose a bailout test

to further speed up model verification, which makes our ap-

proach (which also determines the inlier noise level) com-

parable in runtime to modern RANSAC implementations

(which assume a given noise level).

2. Related Work

When the inlier noise level is unknown, standard robust

estimation with a fixed criterion (i.e. inlier threshold) to de-

termine inliers and outliers is not applicable. Numerous

methods have been proposed to address this task (e.g. least

median of squares [17], MINPRAN [19], AMLESAC [8],

AC-RANSAC [13, 14], RECON [16], kernel density esti-
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mation [22, 23] and the pbM-estimator [12, 18, 20].

Similar to MINPRAN [19] and AC-RANSAC [13, 14]

we cast the problem of joint estimation of a good model and

the noise level as a statistical test between two hypotheses:

is the set of given data points generated by an interesting

and informative distribution, or are the data points drawn

from an uninformative background distribution. Among

other (technical) differences between our and these meth-

ods, the most important difference is that both MINPRAN

and AC-RANSAC link the details of how models are gen-

erated with the test statistic of the hypothesis test: due to

an underlying independence assumption, MINPRAN uses a

very conservative estimate for the type I error, hence reject-

ing any estimated structure in the data points in the limit (i.e.

when sampling many model parameters). In AC-RANSAC

the specifics of how models are sampled enters as a co-

efficient in the test statistic, and it relies on models being

generated from random sets sampled from the data points.

We fundamentally believe that the criterion for testing the

hypothesis whether a set of data points exhibits structure

against its alternative should be independent of how mod-

els are generated. The fact that in the majority of cases we

cannot generate all models exhaustively should, e.g., only

affect the type-II error (since we may miss a good model),

but any criterion should be independent of this limitation.

We share with MINPRAN and AC-RANSAC the utiliza-

tion of an uninformative background distribution to model

the null hypothesis.

RECON [16] uses a completely different approach: the

method assumes that good models generated by random

sampling combined with the correct noise level share most

of their inliers and have similar residual distributions. One

obvious but degenerate solution by setting the selected noise

level to a large enough value, such that all data points are

reported as inliers, is prohibited by a user-provided upper

bound for the noise level. The method does not provide any

statistical reasoning (such as on the type I error of halluci-

nating a structure in random data), and its run-time com-

plexity is quadratic in the number of sampled models.

AMLESAC [8] (and a related approach [5]) is an exten-

sion of MLESAC [21] by including the inlier noise level

into the set of parameters for maximum-likelihood estima-

tion, in addition to the mixture coefficient and model param-

eters. Neither MLESAC nor AMLESAC include hypothesis

testing, and both approaches rely on frequent non-convex

non-linear optimization to find the MLE.

The pbM-estimator [12, 18, 20] estimates the inlier noise

level by using kernel density estimation. However, this

method is intrinsically linked to linear models.

If the inlier noise level is unknown, the model evaluation

stage is computationally more expensive, since models have

to be evaluated with respect to a family of candidate noise

levels. Both MINPRAN [19] and AC-RANSAC [13] sort

the data points with respect to their residuals to evaluate the

model for increasing noise levels. In order to handle large

datasets we propose to utilize an early bailout approach in

the spirit of [3, 2, 10, 4], but we extend it to the case of

evaluating multiple noise levels simultaneously.

3. The likelihood-ratio test for robust estima-

tion

In this section we describe the basic method for robust

estimation with unknown inlier noise level, and we state the

underlying assumptions of our approach. Performance en-

hancements to improve the runtime efficiency are deferred

to Section 3.5. The problem of interest is to answer the fol-

lowing questions given data points X = (X1, . . . XN ):

1. Given a model class with parameters denoted by θ
(which need to be estimated from data), does X ex-

hibit a sufficient non-random structure?

2. If the answer is yes, then determine the model θ∗ that

explains the given observations X the best.

We use the likelihood-ratio test as described in the following

to answer both questions: if the likelihood ratio test statistic

is above a critical value we can assess (with user-specified

type I error) the non-randomness of the dataset. Further, we

use a RANSAC-type argument on the number of required

sampling iterations in order to guarantee (for a given confi-

dence value) that the best model so far cannot be improved.

This is in contrast to a-contrario approaches [13, 14] or RE-

CON [16], which stop the iterations once a non-random

model has been found (which is subsequently refined).

3.1. Notations

The task at hand is to find model parameters θ ∈ Θ that

robustly explain n given data points X = (X1, . . . , Xn),
where w.l.o.g. each data point is an element from a bounded

D-dimensional domain [0, 1]D. Θ is the space of model

parameters, which have d degrees of freedom (i.e. Θ is a d-

dimensional manifold). Robust fitting means that a model

is required to explain only inlier data points, that have their

respective residual e(X; θ) ≤ σ for an inlier noise level

σ. Here e(·; ·) measures the error of a data point X with

respect to the model parameters θ. σ is unknown as well

and is an element from a finite set Σ = {σmin, . . . , σmax},
i.e. we use a quantized set of candidate noise levels. For

model parameters θ and a noise level σ we define the inlier

region I(θ, σ)
def
= {X ∈ [0, 1]D : e(X; θ) ≤ σ} ⊆ [0, 1]D.

3.2. Nonrandom structures

We use the same basic idea of using a non-informative

background distribution as in [19, 13] to assess the likeli-

hood of finding a model in the data supported by an ob-

served number of inliers, but we differ in our choice of
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test statistic for the hypothesis test. We utilize the follow-

ing generative model for the observed data: data points are

drawn from a mixture of an inlier distribution (with weight

ρ ∈ [0, 1]) and a non-informative outlier distribution (with

weight 1 − ρ ∈ [0, 1]). For given model parameters θ and

inlier threshold σ, the inlier distribution is assumed to be

uniform in the set I(θ, σ). We denote the area of I(θ, σ)
by pσ (and for simplicity we omit the usually weak depen-

dence of pσ on the model parameters θ). Thus, pσ is the

probability of a point drawn from the uniform background

distribution to be an inlier. Overall, we have the probability

density for a data point Xi given by

P (Xi; θ, σ, ρ) = (1− ρ)1[0,1]D (Xi) +
ρ

pσ
1I(θ,σ)(Xi).

(1)

If we have n data points and k observed inliers, then the

joint density of X = (X1, . . . , Xn) is

P (X; θ, σ, ρ) = (1− ρ+ ρ/pσ)
k
(1− ρ)

n−k
. (2)

For the probability the exact instance X and the model pa-

rameter θ is not of importance, but it depends only on the

number of observed inliers k. In the following we will write

Eq. 2 as P (k;σ, ρ). k is a random variable defined via

k
def
= |{i : Xi ∈ I(θ, σ)}| = |{i : e(Xi; θ) ≤ σ}| . (3)

In order to have a compact notation we make the depen-

dence of k on the realization X, the current model parame-

ters θ, and the inlier threshold σ implicit.

We define the (simple) null hypothesis H0 by fixing ρ =
0, i.e. all data points are generated by a uniform background

distribution with density 1[0,1]D (·) (and hence the values of

θ and σ do not matter). The alternative hypothesis H1 is a

composite one with parameters θ, σ and ρ to be determined

from the data. Note that the hypotheses are nested, i.e. H0

is a special case of H1. The (generalized) likelihood ratio

test is therefore applicable, and the test statistic is given by

Λ(k) =
supθ,σ,ρ P (X; θ, σ, ρ)

∏

i 1[0,1]D (Xi)
= sup

θ,σ,ρ

P (k;σ, ρ), (4)

since the denominator is 1. Wilks’ theorem tells us that

under H0 the quantity 2 log Λ(k) is asymptotically χ2 dis-

tributed with d + 2 degrees of freedom.1 This allows us to

choose critical values c for the hypothesis test given a user-

defined choice α of the type I error. Note that specifying

α allows to use a uniform value with a clear interpretation

across all applications.

For the likelihood ratio test one needs to maximize the

likelihood w.r.t. the unknowns θ, σ, and ρ. Optimizing with

1d d.o.f. from the model parameters θ, one additional d.o.f. from σ and

ρ, respectively.

respect to θ is performed by random sampling, and maxi-

mization with respect to σ is performed by exhaustive eval-

uation for values σ ∈ {σmin, . . . , σmax}. One can easily

show that the maximum likelihood estimate for ρ̂ given the

number of apparent inliers k is given by

ρ̂ = max

{

0,
k/n− pσ
1− pσ

}

= max

{

0,
ε− pσ
1− pσ

}

, (5)

where we introduced the apparent inlier ratio ε = k/n.

This is an intuitive relation for the following reasons:

1. If ε < pσ , then we observe fewer apparent inliers than

even expected under H0. It also leads to a negative

mixture coefficient ρ̂, which is infeasible. Therefore

an upper bound for σ is induced by pσ ≤ ε.

2. If ε ≥ pσ , then the above relation can be rewritten as

ε = ρ̂+ (1− ρ̂)pσ, (6)

i.e. the observed inlier ratio is a mixture of the “true”

inlier fraction (or its MLE) and the chance of “random”

inliers from the background distribution.

In the following we add the constraint ε ≥ pσ and use the

relation ρ̂ = (ε − pσ)/(1 − pσ). Plugging the expression

for ρ̂ into the test statistic L(ε, σ)
def
= 2 logP (k;σ, ρ̂) yields

(after rearrangements)

L(ε, σ) = 2n

(

ε log

(

ε

pσ

)

+ (1− ε) log

(

1− ε

1− pσ

))

.

(7)

if ε < pσ , then Lθ(ε, σ) = 0.

Remark 1. Compared to MLESAC [21] or AMLESAC [8],

using uniform inlier and outlier distributions allows a closed

form MLE for the mixture coefficient ρ and a non-linear

optimization step is not required. Further, we believe that

the uniform inlier distribution can cope better with under-

specified models (e.g. not including lens distortion parame-

ters into the model for geometric vision problems).

Remark 2. In contrast to MINPRAN [19] or a-contrario es-

timation [13] the likelihood ratio test statistic is agnostic

on how the score L(ε, σ) is maximized. The fact that we

cannot test all model parameters θ ∈ Θ exhaustively only

implies, that e.g. if Lθ(ε, σ) is maximized by random sam-

pling, we may miss a model θ with the highest score (i.e. we

increase the type II error of incorrectly “accepting” H0
2).

Remark 3. For fixed σ (and therefore pσ), L(ε, σ) is a con-

vex and monotonically increasing function with respect to

ε, and strictly convex in ε ∈ [pσ, 1]. This will be important

in Section 3.3, since for a fixed σ we need to compute a

critical inlier ratio ε such that L(ε, σ) = c for a given c.

2Since the type II error is not controlled, the proper statistical terminol-

ogy is “not rejecting” H0.
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Straightforward implementation of maximizing the like-

lihood ratio test statistic by random sampling of models and

subsequent evaluation of the model for all values of σ is

computationally expensive and requires O(n|Σ|) time per

model. By sorting the residuals one can virtually set Σ = R

and reduce the runtime complexity to O(n log n) [19, 13],

but this is still slow in practice. In the following section

we propose an approach that bails out of the evaluation

step early if a model is unlikely to outperform the best hy-

pothesis so far. It shares its motivation with randomized

RANSAC [3, 10, 4], but uses a different approach, since

models are evaluated for many values of σ in parallel.

3.3. Limited search range for σ

For a user-defined critical value c and every inlier noise

level σ there is a minimal value ε such that L(ε, σ) ≥ c
for all ε > ε (which follows from the monotonicity of

L(·, σ)). ε ∈ [0, 1] may not exist for combinations of c
and σ, i.e. L(ε, σ) < c for all choices of ε ∈ [0, 1]. This

implies that given the critical value c (obtained by specify-

ing the type I error) there is a global upper bound for the

range σ to consider, and any inlier noise level larger than

this threshold can never lead to a test statistic exceeding the

critical value. Consequently, we maintain an array ε(σ),
σ ∈ Σ = {σmin, . . . , σmax} with minimally required in-

lier ratios ε(σ) to exceed the critical value c. Since L(ε, σ)
is monotonically increasing as a function of ε, numerical

computation of ε(σ) can be efficiently performed via the

bisection method.

The same reasoning can be applied for the minimum in-

lier ratio required for each σ in order to exceed the best

scoring model so far. Hence, whenever L(ε̂, σ̂) for a current

model θ, currently observed inlier ratio ε̂, and correspond-

ing value σ̂ is a new maximum Λ∗ of the test statistic, the

required inlier ratios ε(σ) are updated (increased) for all σ.

3.4. Number of sampling iterations

One important assumption linking the test statistics

L(ε, σ) with sampling arguments is the following: mean-

ingful structures (meeting the critical value or outperform-

ing the best model found so far) are only reported by non-

contaminated samples, i.e. maxθ L(ε, σ) > max{c,Λ∗}3

only if the model θ was estimated from an uncontaminated

sample. The converse is not necessarily true, since even the

correct model might not be statistically significant. This as-

sumption implies that we can rule out values of σ, if the

number of sampling iterations was large enough to generate

at least one good model with high confidence. If for a value

of σ the test statistic L(ε, σ) < max{c,Λ∗} after

M(σ)
def
=

log(γ)

log(1− ε(σ)s)
(8)

3Recall that ε has an implicit dependence on θ and X.

sampling iterations, where s is the size of the minimal sam-

ple set, we can (with high confidence 1 − γ) conclude that

the data points show no sufficient structure at noise level σ.

This allows to successively eliminate noise levels σ to test

over the iterations. Since ε(σ) is monotonically increasing

by construction, it means that σmax can be reduced succes-

sively. It also allows us to adaptively refine the required

number of sampling iterations.

Since by design the evaluation of model parameters with

respect to a fixed σ ∈ Σ is stopped after M(σ) sampling it-

erations, such that the chance of missing an uncontaminated

model is γ, we have to compute the respective probability

of missing an uncontaminated model for any value of σ.

Application of the law of total probability,

P (A) =
∑

j

P (A,Bσ) =
∑

σ

P (A | Bσ)P (Bσ)

= (1− γ)
∑

σ

P (Bσ) = 1− γ

(and defining A as the event of drawing at least one

good model regardless of the value of σ, and Bσ is the

event of σ attaining its respective value), implies that

P (at least one good model drawn for any σ) ≥ 1− γ. This

result implies that if the number of actually performed sam-

pling iterations T is larger than M(σ) for every σ (which

due to monotonicity is equivalent of testing whether T ≥
M(σmin)), then we can terminate the iterations and return

the best scoring model parameters θ with the respective

noise level σ. It also implies that the type II error of in-

correctly accepting H0 increases by γ.

3.5. Early bailout

A statistically justified approach for early stopping of

model parameter evaluation proposed in [10, 4] is based

on Wald’s sequential probability ratio test (SPRT). Unfortu-

nately, SPRT is not applicable in our setting, since we have

a composite alternative hypothesis (with unknown mixture

coefficient ρ and inlier threshold σ). SPRT has been gener-

alized to composite hypotheses, and asymptotic results for

the type I and type II error are available [9]. Nevertheless,

we employ a more standard argument using concentration

bounds to control the probability of incorrect early stopping.

In the evaluation phase for a current model θ the task

is to determine quickly whether ε̂(σ, θ) ≥ ε(σ) for any σ
can be achieved, or if ε̂(σ, θ) < ε(σ) for all σ with high

probability. Let ε̂m(σ, θ) be the observed inlier ratio after

evaluating m ≤ n data points. We will use a one-sided

version of Hoeffding’s inequality,

P
(

Z̄ ≤ E(Z̄)− t
)

≤ e−2t2m, (9)

for independent random variables Zi ∈ [0, 1] and Z̄
def
=

1
m

∑m
i=1 Zi. In our setting Zi = 1 if the i-th data point
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Xi is an inlier with respect to the current model θ and noise

level σ, and 0 otherwise. Z̄ therefore corresponds to the ob-

served inlier ratio after m data points, ε̂m(σ, θ). Under the

hypothesis that E(ε̂m(θ, σ)) ≥ ε(σ), this bound implies

P
(

ε̂m(σ, θ) ≤ ε(σ)− τm(σ)
)

≤ e−2τm(σ)2m, (10)

For a deviation τm(σ). This means that the probability of

discarding a model with inlier ratio not worse than ε(σ)
decreases exponentially fast to 0 w.r.t. m. For computa-

tional efficiency we want m (the number of evaluated data

points) and the r.h.s. of the inequality (the type II error de-

noted by β′) to be the same for all values of σ (and therefore

τm(σ) = τm is independent of σ). Thus, in the evaluation

phase we check the criterion ε̂m(σ, θ) ≤ ε(σ)− τm after m
data points for all (still considered) values of σ. Recall that

the type I error of early committing to ε̂(θ, σ) ≥ ε(σ) is 0,

and for a given user-specified type II error β′ we obtain

β′ = e−2τ2

m
m or τm =

√

−
log β′

2m
.

In contrast to the T (d, d) test [3], the choice of m does not

fix the type II error,4 hence we have freedom to choose m.

The presentation above applies if the bailout test is ap-

plied exactly once after m data points. A natural extension

is to repeat the bailout test after every B data points, where

B is the size of a batch. Since checking the bailout criterion

comes at a certain computation cost (of complexity O(|Σ|)),
it is –in contrast to SPRT– not efficient to apply the test after

every data point, but to use larger batches of size B. We de-

termine B empirically such that the runtime of evaluating B
data points is similar to the time required for the bailout test

(hence neither the evaluation of data points nor the bailout

test dominate the runtime). In such setting the bailout test

is applied Q = ⌈n/B⌉ times. Via the union bound the total

type II error β of bailing out incorrectly at any of the Q tests

is bounded by Qβ′, hence we choose β′ = β/Q for a user-

specified type II error β.5 Plugging this into the expression

for τm yields

τm =

√

−
log(β/Q)

2m
=

√

−
log β − logQ

2m
. (11)

Note that the number Q of bailout tests only mildly influ-

ences the deviation τm: for β = 0.05 and B = 100 we

have τB ≈ 0.16276 for n = 1000, τB ≈ 0.19495, and

τB ≈ 0.22253 for n = 100000. From the expression for

τm we see that the largest difference in their values is for

the smallest tested value of m, i.e. m = B, as τm monoton-

ically converges to 0 with increasing m.

4In the T (d, d) test τm is essentially fixed.
5This means we essentially apply the Bonferroni correction for multiple

hypotheses tests. Thus, we are not underestimating the type II error (unlike

the bailout method proposed in [2] as pointed out in [4]).

Remark 4. The increase of the type II error by early bailout

in the evaluation step has the following consequence: the

expected number of generated models needed to see (and

fully evaluate) the first good model is increased from 1/εs

to 1/[εs/(1− β)], where β is the overall type II error of the

early bailout step. Thus, Eq. 8 needs to be modified to

M(σ)
def
=

log(γ)

log
(

1− ε(σ)s(1− β)
) . (12)

The total type I error α is therefore unaffected.

Algorithm 1 Robust estimation using LRT

Require: Model class Θ, data points X = (X1, . . . , Xn)
Require: Type I error α, type II error β, confidence 1− γ

1: ∀σ : compute ε(σ) : L
(

ε(σ), σ
)

= c via bisection

2: T ←M(σmin), Λ
∗ ← 0

3: repeat

4: Hypothesize θ from random sample

5: for all X ∈ Xi = {X0, . . . XN} do

6: Compute e(Xi; θ) and update ε̂(σ)
7: if i mod B = 0 and ∀σ, ε̂(σ) < ε(σ)−τi+1 then

8: Stop, discard θ and go back to step 4

9: end if

10: end for

11: Λ̂← maxσ {L(ε̂(σ), σ)}
12: if Λ̂ > Λ∗ then

13: Λ∗ ← Λ̂, θ∗ ← θ
14: ∀σ : update ε(σ) : L

(

ε(σ), σ
)

= Λ∗

15: ∀σ : update M(σ) (Eq. 12), T ←M(σmin)
16: Decrease σmax if M(σmax) < T
17: end if

18: until T iterations are reached

19: return best model θ∗ if Λ∗ ≥ c, null otherwise

3.6. Summary of the method

Algorithm 1 incorporates the ideas described in the pre-

vious sections. In addition to the model class and the data

points it has three further inputs: the type I error α, that

controls the false positive rate of hallucinating a model in

random data; a type II error β that affects the bailout test in

the model verification stage; and the confidence level 1− γ
that steers the number of sampling iterations. The algorithm

returns the best model parameters if the null hypothesis is

rejected, or null otherwise.

Our implementation uses a Fenwick tree [6] to accu-

mumlate ε̂(σ), which reduces the time to update the array

ε̂(σ))σ∈Σ for each data point from O(|Σ|) to O(log(|Σ|)).

4. Results

We evaluated our method on a number of estimation

problems and we compared our performance with the cur-
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Plane H F

Params Method T err T err T err

ε = 0.6

σ = 3.0

RANSACT 31.5 1.41 66.4 2.97 271.1 3.1
RECON 38.2 1.35 47 2.9 133.1 3.04

AC-RANSAC 1001 0.76 1007 2.79 1001 0.85
OURS 12.8 1.43 29.2 3.78 139.2 2.3

ε = 0.4

σ = 2.0

RANSACT 99.7 0.88 304.7 2.05 2431.5 2.2
RECON 72.5 0.89 166.9 2.04 1879.3 2.34

AC-RANSAC 1006 0.51 1037 1.83 1001 10.45
OURS 47.8 0.96 156.0 2.63 2270.65 1.83

ε = 0.3

σ = 2.0

RANSACT 212 0.82 891.2 2.55 30153.5 2.42
RECON 149.5 0.76 490 2.56 13751.4 2.44

AC-RANSAC 1015 0.52 1122 1.83 1001 107.82
OURS 115.4 0.98 521.5 2.54 17907.9 1.77

ε = 0.3

σ = 4.0

RANSACT 291.8 1.67 1373.4 4.61 35983.9 4.06
RECON 172.4 1.72 612.3 4.47 13894.4 3.98

AC-RANSAC 1017 0.98 1147 3.69 1001 118.95
OURS 118.4 1.93 554.1 4.36 16734.8 3.01

Table 1: Results on synthetic data.
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Figure 1: Top: iterations vs σ.

Bottom: true inliers vs σ.

rent state-of-the-art as well as with standard RANSAC. For

all experiments we used α = 1%, γ = 1% and β = 5%.

σmin was set to 0.25 pixels, while σmax was computed

as described in Section 3.3. pσ is computed as described

in [14]. We tested our method on both synthetic and real

data, achieving state-of-the-art results. The raw results ob-

tained by our method are presented with no further local

optimization. Our results are comparable to RECON and

superior to both MINPRAN and AC-RANSAC while being

more than an order of magnitude faster, especially for large

datasets.

4.1. Synthetic data

We tested the performance of our method for three dif-

ferent problems: 3D plane estimation, homography estima-

tion and fundamental matrix estimation. The results are pre-

sented in Table 1. We show the number of samples drawn

T and mean error of the true inliers (err). We used the

same settings as in [16]: we generated data with an inlier

ratio ε varying from 0.25 to 1.0 in steps of 0.05. The in-

liers were altered with a zero-mean Gaussian noise with σ
ranging from 0.5 to 4.0. The total number of points was

chosen randomly between 500 and 2000 for each of the 500
trials. We compare our results with RANSAC using the true

noise level as threshold (RANSACT ), as well as with RE-

CON and AC-RANSAC. The results of MINPRAN are not

reported since it failed to achieve acceptable results for in-

lier ratios as high as 60% with an average running time of

13s. Table 1 shows a subset of these experiments. The re-

sults obtained by RECON and our method are very similar

and comparable to those achieved by RANSACT . However,

RECON requires some knowledge on maximal noise level.

This can be limiting for some applications where the scale

of the data might be unknown. Note that AC-RANSAC

failed to find a good solution for inlier ratios smaller than

40%. RECON’s reported running times vary from 22ms to

1.7s, while AC-RANSAC takes between 0.12s and 0.31s.

Our method achieved similar results in 0.9ms to 6ms for

the lower inlier ratios. In addition, the accuracy of the solu-

tion, measured in the percentage of true inliers recovered, as

well as running time, do not vary with respect to the noise

levels, as opposed to standard RANSAC with a fixed thresh-

old (RANSACF ). This behaviour is illustrated in Figure 1.

4.2. Real Data

We evaluated our method on real data taken from [15] for

three different applications: fundamental matrix, essential

matrix and homography estimation. Results were averaged

over 500 runs. We compare our performance with standard

RANSAC, USAC1.0 [15] (both with a fixed inlier threshold

of 1) and AC-RANSAC. Tables 2, 3 and 4 report number

of inliers found (k), inlier error (error), number of samples

(T ), number of verifications per model (vpm) as well as to-

tal running time in milliseconds for each of the different es-

timation problems. For USAC1.0, T reports the number of

samples/models rejected by the sample/model check steps.

For most datasets, all methods obtain very similar results,

with USAC1.0 showing a smaller variation in the number

of inliers detected over all runs, due to the use of local opti-

mization. Even though a fixed threshold of 1 works well for

most cases, we show that for some datasets the noise level is

actually higher, e.g. dataset A for homography estimation.

Both AC-RANSAC and our method found a better solution

with σ close to 4 pixels. AC-RANSAC fails to find a good

solution for homography estimation on dataset E, probably

due to the fixed number of iterations used in the method,
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RANSACF USAC 1.0 AC-RANSAC OURS

A: ε = 0.48, N = 3154 k 1412± 50 1495± 8 1414± 40 1455± 50

error 1.28± 0.58 0.63± 0.24 0.36± 0.08 0.60± 0.29
T 1420 2/0 1001 1142

vpm 3154.0 940.9 3154.0 47.4
time 255.90 11.84 1065.9 1.88

B: ε = 0.57, N = 575 k 315± 12 328± 3 312± 7 323± 7

error 0.71± 0.45 0.06± 0.24 0.34± 0.15 0.70± 0.61
T 385 3/0 1001 279

vpm 575.0 423.8 575.0 38.5
time 14.98 3.61 169.7 5.92

C: ε = 0.38, N = 1088 k 381± 13 406± 4 343± 44 397± 19

error 1.79± 1.27 0.58± 0.28 0.36± 0.27 0.57± 0.24
T 7935 2/0 1001 6585

vpm 1088.0 472.2 1088.0 51.74
time 546.53 13.74 327.3 9.51

D: ε = 0.22, N = 1516 k 324± 10 334± 3 596± 495 335± 34

error 0.93± 0.47 0.49± 0.22 24.4± 39.9 1.03± 1.51
T 267465 4/0 1003 252657

vpm 1516.0 268.6 1516.0 53.12
time 23892.92 3.32 462.19 937.31

E: ε = 0.92, N = 786 k 685± 37 722± 0 620± 53 686± 36

error 2.77± 6.43 0.29± 0.00 0.15± 0.03 0.47± 0.24
T 14 1/0 1001 12

vpm 786.0 675.7 786.0 327.7
time 0.85 15.61 219.2 0.16

Table 2: Results for fundamental matrix estimation

RANSACF USAC 1.0 AC-RANSAC OURS

A: ε = 0.35, N = 1207 k 395± 16 418± 8 596± 10 619± 22

error 2.21± 1.48 0.98± 0.54 0.91± 0.10 1.63± 0.96
T 1321 19/0 1001 131

vpm 1207.0 72.2 1207.0 62.9
time 522.77 6.12 661.49 9.47

B: ε = 0.65, N = 1110 k 646± 18 713± 4 795± 11 828± 14

error 2.94± 2.20 0.31± 0.24 0.63± 0.04 1.32± 0.76
T 73 12/0 1001 18

vpm 1110.0 94.5 1110.0 174.51
time 24.1 5.21 450.90 2.61

C: ε = 0.26, N = 2273 k 537± 23 586± 5 541± 16 602± 60

error 1.82± 0.57 1.08± 0.28 1.07± 0.15 2.46± 1.6
T 6826 35/0 1002 4138

vpm 2273.0 25.6 2273.0 56.18
time 4100.09 17.81 1276.53 22.30

Table 3: Results for essential matrix estimation

since this dataset has only a 10% inlier ratio. Our method is

the fastest for most datasets with running times comparable

to USAC1.0 while automatically recovering σ.

Note that problems may arise with smaller sized

datasets; as explained in Section 3, the relation between the

critical value c and the type I error only holds asymptoti-

cally. Therefore, for a lower number of points, the critical

value is more difficult to reach, potentially leading to an in-

crease in type II error (rejection of valid models). However,

in practice, datasets with as little as 500 data points did not

present any problem for our method.

We also ran fundamental matrix estimation on three chal-

lenging optical flow datasets (taken from the robust vision

challenge data [11]), where 656 × 541 = 354896 pu-

tative correspondences were determined by a fast Patch-

Match [1] inspired optical flow method. Results obtained

by RANSACF and our method are presented in Table 5 (the

statistics are the same as in the previous tables, time is mea-

sured in seconds). The images on the table illustrate (from

left to right): the optical flow image, the inliers recovered
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RANSACF USAC 1.0 AC-RANSAC OURS

A: ε = 0.46, N = 2540 k 994± 68 1148± 2 1574± 13 1612± 39

error 1.71± 0.21 1.04± 0.00 1.50± 0.15 2.32± 1.40
T 220 2/0 1001 26

vpm 2540.0 940.9 2540.0 284.1
time 40.62 11.84 504.80 1.90

B: ε = 0.15, N = 514 k 70± 4 74± 3 71± 2 76± 12

error 1.88± 0.68 1.19± 0.33 0.46± 0.25 2.56± 2.31
T 16766 9/1 1001 13081

vpm 514.0 110.4 514.0 22.0
time 940.73 1.81 86.94 208.1

C: ε = 0.23, N = 1317 k 286± 17 302± 6 294± 16 318± 40

error 1.63± 0.44 0.89± 0.13 0.44± 0.05 2.20± 2.23
T 2433 9/1 1001 1688

vpm 1317.0 374.1 1317.0 60.7
time 254.62 1.26 219.77 3.14

D: ε = 0.34, N = 495 k 151± 11 168± 0 170± 2 173± 3

error 2.22± 0.45 1.43± 0.00 0.23± 0.02 0.56± 0.61
T 663 8/2 1001 327

vpm 495.0 124.0 495.0 50.0
time 36.00 6.13 83.39 6.54

E: ε = 0.10, N = 994 k 93± 6 99± 0 20± 13 80± 11

error 3.43± 1.42 2.59± 0.27 0.13± 0.68 4.43± 1.60
T 75950 7266/6511 1023 173192

vpm 994.0 38.0 994.0 151.8
time 6532.22 25.74 20.54 3616.11

Table 4: Results for homography estimation

RANSACF OURS

A: ε = 0.55, N = 354896 k 182910± 4523 200997± 3995

error 0.30± 0.03 0.48± 0.25
T 514 384

vpm 354896 3722.26
time (s) 6.72 2.77

B: ε = 0.54, N = 354896 k 160666± 4856 192404± 5216

error 0.22± 0.03 0.17± 0.04
T 230 301

vpm 354896 5031.4
time (s) 3.16 2.40

C: ε = 0.40, N = 354896 k 115141± 2685 143607± 35489

error 0.28± 0.04 1.72± 2.56
T 1270 9733

vpm 354896 205.2
time (s) 130.89 54.39

Table 5: Results for fundamental matrix estimation using optical flow field

by our method, and the estimated epipolar geometry. Once

again, automatic noise estimation allows for the recovery

of a bigger inlier ratio. Our method achieves very good re-

sults in reasonable time while AC-RANSAC has an average

running time of 200s on these datasets.

5. Conclusions

We introduced a new method for robust model estima-

tion based on the likelihood-ratio test. Our approach is jus-

tified by a sound theoretical analysis and it doesn’t require

a-priori knowledge on the inliers noise level. We also pro-

posed an early-bailout technique with statistical guarantees

on the bounds for the error incurred. Tests on both synthetic

and real data for a number of different estimation problems

show that our method achieves state-of-the-art results while

being faster than previously proposed methods. We plan to

extend this work in order to account for multiple structures.
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