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Abstract

This paper presents a linear time fully connected guided

filter by introducing the minimum spanning tree (MST) to

the guided filter (GF). Since the intensity based filtering ker-

nel of GF is apt to overly smooth edges and the fixed-shape

local box support region adopted by GF is not geometric-

adaptive, our filter introduces an extra spatial term, the tree

similarity, to the filtering kernel of GF and substitutes the

box window with the implicit support region by establish-

ing all-pairs-connections among pixels in the image and as-

signing the spatial-intensity-aware similarity to these con-

nections. The adaptive implicit support region composed

by the pixels with large kernel weights in the entire image

domain has a big advantage over the predefined local box

window in presenting the structure of an image for the rea-

son that: 1, MST can efficiently present the structure of an

image; 2, the kernel weight of our filter considers the tree

distance defined on the MST. Due to these reasons, our fil-

ter achieves better edge-preserving results. We demonstrate

the strength of the proposed filter in several applications.

Experimental results show that our method produces better

results than state-of-the-art methods.

1. Introduction

Edge-preserving image filters are fundamental building

blocks for many computer vision and graphics applica-

tions [4, 10, 13] because they smooth out trivial details

while preserving major image structures (edge-preserving).

A common approach is to pose this problem as the weighted

average pi =
∑

j∈Ωi
Wijqj over an explicit local support

region Ωi around the pixel i, where Wij denotes the weight

kernel, qi and pi are the intensities of the input image q and

the output image I at i, respectively.

Traditional edge-aware filtering methods often explicitly

limit the support region Ωi to a box window and compute

Wij from both intensity similarity and spatial affinity or

only from the intensity similarity between i and j ∈ Ωi.

Since the shape of the most relevant pixels in Fig.1a is ir-

regular, the box window in Fig.1b cannot efficiently capture

(a) Input (b) GF/BF [9, 19] (c) CLMF [14]

(d) CLMF [14] (e) MLPA [18] (f) Ours

Figure 1: Support regions of a pixel i in the region compo-

nent C. (a) is input image. (b) (c) (d) (e) are the explicit

support regions determined by BF, GF, CLMF and MLPA,

where (c) (d) show the support regions produced by differ-

ent scanning orders. (f) is the implicit support region of

ours.

the most relevant pixels of i in the image domain. To solve

this problem, people designed various geometric-adaptive

support regions. However, these sophisticated algorithms

still cannot pick out all the most relevant pixels as shown in

Figs.1c 1d 1e. The shortcoming limits the ability of these

algorithms to model long-range connections as well as the

complicated geometric structures of an image and therefore

results in unsatisfactory smoothing results. But the explicit

support region cannot be easily removed because 1, some

filters do not consider the spatial affinity, the local support

region is used to to block the interconnection of distant pix-

els; 2, some filters’ computational complexity depends on

the size of support regions, a small window is chosen to

reduce the computational cost.

In order to exploit all information in arbitrary shapes,

we can compute all-pairs-weights Wij of a filter for pixels

i, j in the entire image domain Ω and consider that the im-

plicit support region Ω̃i = {j ∈ Ω | Wij > T} is versatile

and can present the ideal support region as shown in Fig.1f,

where T is a threshold and a plausible value of T is 0.001.

Since Ω̃i contains all pixels with large weights, we have

pi =
∑

j∈Ω̃i
Wijqj ≈

∑

j∈Ω Wijqj which implies that the

fully connected filtering
∑

j∈Ω Wijqj is a good approxima-
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tion of the ideal filtering
∑

j∈Ω̃i
Wijqj . From this implicit

support region filtering perspective, the problem of the ex-

plicit support region is that it limits the possible points that

compose the implicit support region in a local area. This

drawback will produce negative results in some situations.

To solve this, we ought to exploit the fully connected filter-

ing scheme to compute the ideal filtering result pi.
The idea of the fully connected filtering is not new.

Incorporating optimization, Xu took it for texture remov-

ing [21] and image editing [20]. But his optimization based

methods are very slow. Yang applied it to stereo match-

ing [22]. But his method only considers the intensity sim-

ilarity, which leads to that two distant pixels with similar

intensities always have a large similarity. The bilateral filter

(BF) [19] cooperates with distance-intensity-aware weights

in a box support region Ωb
i to smooth an image. We can

simply relax Ωb
i to the entire image domain Ω to perform

the fully connected bilateral filtering (FCBF). Based on

Yang’method and FCBF, Bao et al. [1] define the tree fil-

ter (TF) for texture smoothing. However, the computational

burden of BF is proportional to the size of Ωb
i and limits

the applications of FCBF and TF in practical environment.

The guided filter (GF) [9] is considered to be the first edge-

preserving filter whose computational complexity does not

depend on the size of the box support region Ωb
i . But, it also

disregards the spatial affinity at all. When we extend Ωb
i to

Ω and perform the fully connected guided filtering, sharp

edges are more likely to be blurred (i.e. the implicit support

region defined by the filtering kernel of GF is problematic).

Our main contribution in this paper is to design a new

GF-like filter that considers both spatial affinity and inten-

sity similarity and performs the fully connected filtering in

linear time. Additionally, the fully connected filtering can

aid original GF to choose the most relevant pixels accord-

ing to the underlying structure of an image. These improve-

ments can greatly expand GF’s application scope.

2. Related work

GF disregards the spatial affinity at all. We can observe

this from the kernel (1) of GF clearly.

W gf
ij =

∑

k∈Ωb
i
∩Ωb

j

(

1 +
(Ii−E

Ωb
k
(I))(Ij−E

Ωb
k
(I))

D
Ωb
k
(I)+ǫ

)

(
∑

k∈Ωb
i
1)(

∑

k∈Ωb
j
1)

(1)

where EΩb
i
(x) and DΩb

i
(x) denote the arithmetical aver-

age and variance of x in the explicit local support region

Ωb
i . The drawback leads GF to smooth the sharp boundaries

in applications such as depth upsampling [15] and stereo

matching [10]. To avoid over-flatten artifacts, GF has to

employ a small support region to block the interconnections

between distant pixels. The filtering results of GF is com-

puted from a two steps procedure in the local multipoint fil-

tering framework [11]. The first multipoint estimation step

assumes R(αi, Ij) = α1
i Ij+α2

i for j ∈ Ωb
i and exploits ob-

jective function (2) to determine coefficients αi = (α1
i , α

2
i ).

E(αi) =
∑

j∈Ωb
i

(R(αi, Ij)− qj)
2 + ǫ(α1

i )
2 (2)

where q represents the input image. The closed form solu-

tion of the quadratic objective function is given by

α1
i =

EΩb
i
(Iq)− EΩb

i
(I)EΩb

i
(q)

DΩb
i
(I) + ǫ

(3)

α2
i = EΩb

i
(q)− α1

iEΩb
i
(I) (4)

As each given pixel i has a number of multipoint esti-

mates {R(αi, Ij) | j ∈ Ωb
i} for each fixed αi, the final fil-

tering result p is defined as the average of these multipoint

estimates in the second aggregation step:

pi =

∑

j∈Ωb
i
R(αi, Ij)

∑

j∈Ωb
i
1

= EΩb
i
(α1)Ii + EΩb

i
(α2) (5)

Eqs.(2) (5) equally treat all pixels in the local support

region and Eqs.(3) (4) perform arithmetical average. This

is another irrational way of GF as the contribution of each

pixel to the center pixel should correspond with the pre-

defined similarity. So one reasonable way is to introduce

affinity weights to these formulae. However, people prefer

the approach that transforms explicit box support regions to

more sophisticated explicit support regions.

In literature, Lu [14] first points out that the box support

region Ωb
i is not geometric-adaptive. To obtain structure-

aware support regions, he adaptively constructs a cross

based support region Ωc
i with four varying arm lengths

{h1, h2, h3, h4} as illustrated in Figs.1c 1d. The smoothing

procedure of his cross-based local multipoint filter (CLMF)

is similar to GF. In the first step, CLMF replaces Ωb
i by Ωc

i .

In the second step, CLMF computes the result pi by

pi =

∑

j∈Ωc
i

∑

k∈Ωc
j
R(αi, Ij)

∑

j∈Ωc
i

∑

k∈Ωc
j
1

(6)

Tan [18] argues that CLMF is problematic yet. The sup-

port region of CLMF depends on the scanning order as il-

lustrated in Figs.1c 1d and the complexity of calculation

for support arms at each point depends on the maximum

length of arms. These lead to unreliable estimation espe-

cially for points near the concave region and slow down

the algorithm. Even worse, both CLMF and GF only con-

sider the intensity information in the guidance image re-

gardless of the position of the point in the image, which is

likely to overly smooth the input image in regions where

the values of the guidance image are similar. To solve

these problems, Tan designs a local polynomial approxi-

mation based multipoint filter (MLPA). MLPA employs a
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2D quadratic spatial regularization term S(βi, xj , yj) =
β0
i + β1

i xj + β2
i yj + β3

i xjyj + β4
i x

2
j + β5

i y
2
j to grant it the

distance-aware ability, where xj and yj are the coordinates

of the pixel j and βi = (β0
i , β

1
i , β

2
i , β

3
i , β

4
i , β

5
i ). In the first

multipoint estimation step, MLPA employs optimization (7)

which jointly exploits R(αi, Ij) and S(βi, xj , yj) to find

coefficients αi,βi.

E(αi,βi) =
∑

j∈Ωm
i

wij(R(αi, Ij) +S(βi, xj , yj)− qj)
2

+ ǫr(α
1
i )

2 + ǫs
∑5

m=1
(βm

i )2 (7)

Here Ωm
i = ΩH

i

⋃

ΩV
i , ΩH

i denotes the support region of

the pixel i with the horizontal direction first aggregation.

Similarly, ΩV
i is the support region of the pixel i with the

vertical direction first aggregation, and wij is defined as

wij =

{

1 j ∈ (ΩH
i − ΩV

i )
⋃

(ΩV
i − ΩH

i )

2 j ∈ ΩH
i

⋂

ΩV
i

(8)

Similar to Eq. (6), MLPA determines the result pi by

pi =

∑

j∈Ωm
i

∑

k∈Ωm
j
wij(R(αi, Ij) +S(βi, xj , yj))

∑

j∈Ωm
i

∑

k∈Ωm
j
wij

(9)

3. Motivation & Technique background

MLPA is also improvable. First, the extra spatial regular-

ization term S(βi, xj , yj) increases MLPA’s computational

cost. Specifically, MLPA inverses a 7 × 7 positive matrix

as the quadric objective function (7) totally contains 7 in-

dependent variables. In contrast, GF and CLMF inverse a

2× 2 matrix. The distance-aware ability of MLPA is at the

cost of increasing the size of the positive matrix nearly four

times. Second, although the support region of MLPA is ob-

tained in data-driven manner, it still cannot contain all the

most relevant pixels in a complicated concave support re-

gion as shown in Fig.1e and therefore loses much valuable

information. Third, it is a pity that MLPA also treats all

pixels in Eq. (7) equally. (The choice wij = 2 is only used

to define the aggregation order invariant support region Ωc
i

without the function of indicating importance.)

These problems can be fundamentally solved under the

fully connected filtering framework. We establish a full

connection between each pixel and the remaining pixels in

Ω. For each pixel i, we assign a weight to a pixel j ∈ Ω to

denote the affinity between i and j. Employing the weight,

objective functions (2) (7) are able to consider all informa-

tion of an image. The approach is significantly different

from GF, CLMF and MLPA that only exploit the informa-

tion in the explicit local support region and equally treats

every pixel in Eqs.(2) (7) and the arithmetical average oper-

ator EΩi
(x). Moreover, if the weight is distance-aware, the

newly defined filter will automatically inherit the spatial-

affinity and no longer needs to add an extra spatial regu-

larization term S(βi, xj , yj) which increases the computa-

tional cost. Additionally, the new filter replaces the explicit

support region by the implicit support region and there-

fore solves the second and third problems in above section.

However, finding appropriate weights for edges of full con-

nections is not an easy task as the weight wij should satisfy:

1. wij measures the distance of two pixels on the inten-

sity surface of an image. For two pixels on either

side of an edge, it assigns a small weight to them.

For two pixels on the same side of an edge, it gives

a large weight. More importantly, for two far pixels,

the weight approaches to zero no matter whether they

are on the same side of an edge.

2. There is a fast algorithm to compute the fully con-

nected aggregation Ci =
∑

j wijxj because solving

objective functions (2) (7) and calculating the filtering

result pi (5) (6) (9) depend on it.

Recently, many geodesic-like affinities [8, 12, 24] have

been proposed, but only the tree affinity [22] satisfies the

two constraints. The affinity is defined on a minimum span-

ning tree (MST). By treating an image as an undirected 4-

connected grid with edges measured by the sum of color dif-

ferences between adjacent pixels, an MST can be computed

by removing edges with large intensity difference and leav-

ing the remaining edges connecting through all pixels as a

tree. MST is geometric-aware because the sum of total dif-

ference is the minimum of all spanning trees and edges with

large intensity difference will be removed during spanning

tree construction. Hence it is reasonable to define a spatial

affinity along the MST.

The tree distance dtij in an MST is the sum of lengths

of the edges between pixels i and j, where the length of an

edge is the Euclidean distance between the two connected

pixels. The spatial similarity wt
ij of i and j is given by

wt
ij = exp(−dtij/σ) (10)

where σ is a constant used to adjust the similarity. Yang [22]

proves that the fully connected aggregation
∑

j w
t
ijxj can

be efficiently computed by traversing the tree structure of

the MST in two sequential passes. Initially, we visit the

nodes of the MST using the breadth first traversal algorithm

to assign each node vn an order n based on the visit se-

quence with the property that if vm is the parent of vn, then

m 6 n, where 1 6 m,n 6 M and M denotes the nodes

number of the MST. In the first pass, while the tree is traced

from vM to v1, C↑
vM is not updated until all its children

have been updated by the updating formula (11).

C↑
P (vn) = CP (vn) + wt

vn,P (vn)
C↑

vn
(11)
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T
im

e GF [9] CLMF-0 [14] CLMF-1 [14] MLPA-0 [18] MLPA-1 [18] MLPA-2 [18] FCGF-0 FCGF-1 FCBF TF [1]

r=5 850 ms 630 ms 1680 ms 2650 ms 3450 ms 6140 ms 930 ms 1730 ms 40 s 40 s

r=10 850 ms 1320 ms 2130 ms 2650 ms 3450 ms 6140 ms 930 ms 1730 ms 40 s 40 s

Table 1: Running time comparison of different methods with different window sizes.

where Cvm
= xvm , P (v) records the father of v and C↑

vm

is the intermediate aggregation result. In the second pass,

we employ the updating formula (12) to renew C(v) when

the tree is traversed from v1 to vM .

Cvn = wt
P (vn),vn

C↑
P (vn)+(1−(wt

vn,P (vn)
)2)C↑

vn
(12)

The updating algorithm is very useful and can be applied in

many computer vision applications [1, 3, 22]. In this paper,

we employ Eqs.(11) (12) to perform our fully connected

guided image filtering.

4. Fully Connected Guided Filtering

In order to arm GF with the fully connected filtering,

we design the fully connected guided filter (FCGF) by re-

laxing the explicit local support region to the entire image

domain Ω and introducing wt
ij to GF. Following the local

multipoint filtering framework [11], we take the fully con-

nected regression model (13) to compute linear coefficients

αi = (α1
i , α

2
i ) in the first multipoint estimation step. Note

that the regression is different from the regression mod-

els (2) (7) in which the explicit local support region sepa-

rates pixels into two categories and assigns the same weight

to the pixels in the same category.

E(αi) =
∑

j∈Ω
wt

ij(R(αi, Ij)− qj)
2 + ǫ(α1

i )
2 (13)

Let Ew(x) (16) and Dw(x) (17) denote the weighted av-

erage and the weighted variance of x in the entire image

domain Ω, the closed form solution can be written as

α1
i =

Ew(Iq)− Ew(I)Ew(q)

Dw(I) + ǫ
(14)

α2
i = Ew(q)− α1

iE
w(I) (15)

Ew(x) =

∑

j∈Ω wt
ijxj

∑

j∈Ω wt
ij

(16)

Dw(x) = Ew(x2)− (Ew(x))2 (17)

As the index j in the linear model R(αi, Ij) is chosen

from the entire image domain Ω, we have multiple estimates

for point i from regularization results around different j.

Hence, in the aggregation step, the filtering result pi of pixel

i is given as a weighted average over these estimates:

pi =

∑

j∈Ω wt
ijR(αi, Ij)

∑

j∈Ω wt
ij

= Ew(α1)Ii + Ew(α2) (18)

The fully connection and its weights wt
ij distinguish

Eqs.(14) (15) (18) from their counterparts Eqs.(3) (4) (5) (6)

(9). Note that Eqs.(14) (15) (18) depend on Ew(x) com-

puted by three steps: 1) for each pixel we establish a full

connection with the remaining pixels; 2) we assign weights

to linking edges according to the tree distance between each

given pixel and its connected pixels; 3) we aggregate the

contribution of every pixel based on the weights. Although

Ew(x) is similar to the local arithmetical average EΩi
(x)

used by other GF-like filters, the meaning is different. First,

Ew(x) takes all of the information in the entire image do-

main because the explicit local support region is removed.

Second, the arithmetical aggregation is transformed to the

weighted aggregation by wt
ij . Last but not the least, the

pixels with large weights compose the implicit support re-

gion and the implicit support region is more sensitive to the

underlying geometric structure than the explicit geometric-

adaptive support regions shown in Fig.1.

Besides the linear model R(αi, Ij), CLMF and MLPA

take a constant model C(α1
i ) = α1

i . Putting the model

into Eq.(13), we can define the FCGF-0 filter. Similarly,

Eqs.(14) (15) (18) taking a linear model are called as FCGF-

1. In addition, FCGF can be easily extended to color im-

ages. When the filtering input q is multichannel, we can ap-

ply the filter to each channel independently. When the guid-

ance image I is multichannel, we follow the way of GF and

rewrite the local linear model R(αi, Ij) = α1
i I

1
j + α2

i I
2
j +

α3
i I

3
j + α4

i . The filter formulae of FCGF-0 and the color

version FCGF are similar to the corresponding versions of

CLMF and MLPA. Interested readers can refer to [14, 18]

for more details.

Our filter also has a connection with Yang’s aggregation

method [22] and the tree filter (TF) [1] as all the three meth-

ods are built on an MST. Yang first proposes Eqs.(11) (12)

and employs them to perform aggregation in stereo match-

ing. However, his wt
vn,P (vn)

in Eqs.(11) (12) is computed

from the intensity difference instead of the Euclidean dis-

tance. Moreover, the aggregation operation is not weighted

average and thus cannot be directly applied to smooth im-

age. Bao et al. [1] exploit Eqs.(11) (12) to define the tree-

mean filter (TMF) which is equivalent to our weighted av-

erage operator Ew(x) and sequently uses TMF and FCBF

to produce the TF filtering result. However, TF costs more

running time than our filter because of FCBF.

5. In-depth analysis

In this section, we discuss the distance-aware weights

of FCGF as well as its implicit geometric-adaptive support

region and show that these advantages come very cheap as

the complexity of FCGF is linear.
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(a) Input (b) GF (c) CLMF-1 (d) MLPA-2 (e) FCBF (f) TF (g) FCGF-1

Figure 2: Filtering kernels computed by GF, CLMF-1, MLPA-2, FCBF, TF and FCGF-1. The amplitudes of GF and CLMF-1

are nearly same. On the contrary, MLPA-2, FCBF, TF and FCGF-1 attenuate amplitudes with increasing distance.

5.1. A linear time filtering algorithm

The computational cost of our algorithm consists of two

parts: one is the cost of finding an MST, the other is the

cost for data aggregation. The computational complexity

of Eqs.(14) (15) (18) depends on the complexity of the

weighted average operator Ew(x). Further, Ew(x) needs to

compute the fully connected aggregation Ci =
∑

j w
t
ijxj .

Therefore, the overall complexity is determined by the com-

plexity of Ci =
∑

j w
t
ijxj . As detailed in [22], the whole

cost aggregation process can be completed by two pass

travel along MST using Eqs.(11) (12). The aggregation

algorithm is in extremely low computational complexity:

only a total of 2 addition/subtraction operations and 3 multi-

plication operations are required for each pixel. Therefore,

FCGF can be computed in linear time. As for finding an

MST, Bao [1] proposed a linear time algorithm. Even we

choose the nonlinear Kruskal algorithm [2], the algorithm

still does not degrade the speed of our filter because the run-

ning time is dominated by inverting a symmetric matrix. For

instance, FCGF-1 only needs to invert a 2× 2 matrix which

is a low cost operation and the running time approaches to

GF.

We compare our FCGF with GF, CLMF, MLPA, FCBF

and TF on a laptop with a 2.0 GHz CPU and 4GB RAM,

where FCGF and CLMF contain two filters, MLPA is con-

sisted of three filters, and all filters are implemented with

C++ without SIMD instructions. Table 1 lists the running

time for filtering a 1-megapixel full-color image. The run-

ning times of MLPA and FCGF are higher than GF as they

adopt the geometric-adaptive explicit/implicit support re-

gion. Although the computational cost of the special case

CLMF-0 of CLMF is the lowest in the small window test,

the running time of its support region determining method

depends on the size of support region. We can expect the

computational cost of CLMF becomes larger with increas-

ing support region size. In contrast, MLPA’s adaptive sup-

port region determining method is not affected by the size of

the support region, but its filtering speed is heavily deceler-

ated by the regularization term S(βi, xj , yj). As for FCGF,

its overall running cost is almost same as GF and does not

depend on the adaptive support region size. In contrast, the

speed of the brute-force implementations of TF and FCBF

is extremely slow as TF bases on FCBF and FCBF relaxes

the box support region Ωb
i of BF to Ω.

(a) Guidance (b) Input (c) Groundtruth (d) GF

(e) CLMF-1 (f) MLPA-2 (g) TF (h) FCGF-1

Figure 3: Fully connected filtering. (a) is the guidance im-

age I . (b) is the corrupted input q. (c) is the groundtruth.

(d) is the result of GF (ǫ = 0.12). (e) is the result of

CLMF-1 (τ = 25, ǫ = 0.13). (f) is the result of MLPA-2

(k = 0.001/255, ǫs = 0.012, ǫr = 0.052). (g) is the result

of TF (σ = 0.01, σr = 0.05, σs = 2). (h) is the result of

FCGF-1 (σ = 0.5, ǫ = 0.14).

5.2. Distance­aware Weights

The tree distance dtij can reflect the Euclidean distance

deij . For arbitrary two pixels i and j on a grid, we always

have dtij ≥ |xi−xj |+|yi−yj | ≥ deij . Theoretically, the first

inequality holds as |xi − xj |+ |yi − yj | is the minimal tree

distance between i and j on a grid. The second inequality

is just the triangle inequality. Specifically, for two pixels in

the same region, dtij approaches to deij . For two pixels on

either side of an edge, we also have dtij > deij as the two

pixels are connected by a long path. Indeed, no matter how

dtij changes, dtij is always greater than deij . Therefore the

tree similarity wt
ij (10) is a spatial affinity.

Due to wt
ij , our filter kernel W fc

ij considers the spatial

affinity. We can observe this from Eq.(19) clearly.

W fc
ij =

∑

k∈Ω

(

1 +
(Ii−Ew(I))(Ij−Ew(I))

Dw(I)+ǫ

)

wt
ikw

t
kj

(
∑

k∈Ω wt
ik)(

∑

k∈Ω wt
kj)

(19)

Compared with the kernel W gf
ij (1) of GF, W fc

ij contains an

extra term wt
ij that measures the spatial-affinity. For more

clearly illustration, we visualize six kernels in Fig.2, where

only MLPA-2, FCBF, TF and FCGF-1 shrink the kernel’s

amplitudes with increasing distance and consider the spatial
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(a) Input (b) GF (c) CLMF-1 (d) MLPA-2 (e) FCBF (f) TF (g) FCGF-1 (h) FCGF-1 (i) FCGF-1

Figure 4: Support region comparison. (a) is the input image. (b) (c) and (d) are the implicit support regions of GF, CLMF-1

and MLPA-2 in the predefined explicit support regions, where the threshold T = 0.001, the maximal arm length or the radius

of box window are 10. (e) and (f) are the implicit support regions of FCBF and TF with the same threshold T = 0.001.

(g) demonstrates the kernel weights of FCGF-1 between A and the rest points in the image domain. (h) and (i) exhibit the

implicit support regions composed by the pixels with weights larger than 0.001 and 0.0001, respectively. The shapes of two

implicit support regions are almost same and both choose almost all the most relevant points. Compared with (e) (f) (h) and

(i), (b) (c) and (d) obviously lose many relevant points.

affinity. Compared with FCGF-1, MLPA-2 is constrained

by a local support region and selects few pixels in Fig.2d.

Hence, it is inferior to our filter. Compared with FCBF,

FCGF-1 attenuates the kernel weights along with the shape

of the arrow man. In contrast, FCBF has no idea of the ar-

row man and simply attenuates its kernel weights according

to the Euclidean distance as shown in Fig.2e, where the red

arrow indicates the direction of attenuation and the concen-

tric circles denote the isoline of amplitudes. Since TF is

implemented by TMF followed by FCBF, the tree distance

in TMF is apt to be corrupted by the Euclidean distance in

FCBF. Hence the kernel of TF in Fig.2f is similar to the

kernel of FCBF in Fig.2e.

The spatial affinity is critical when we perform the fully

connected filtering under the guidance of an image which

is consisted of several color regions as illustrated in Fig.3a

because the intensity similarity fails to distinguish the dif-

ferences of pixels in the same color region. To illustrate the

function of the spatial affinity, we relax the local support

regions of GF, CLMF-1 and MLPA-2 to the entire image

domain Ω and evaluate filtering results using PSNR, where

GF is 10.3dB, CLMF-1 is 10.6dB, MLPA-2 is 17.4dB, TF

is 17.7dB and FCGF-1 is 18.2dB. The results of TF and

MLPA-2 are almost same because TF considers the spa-

tial affinity and MLPA-2 takes into account a spatial term.

The fully connected filtering results of GF and CLMF-1 are

overly smoothed due to missing the spatial affinity. TF and

MLPA-2’s PSNR are similar to FCGF-1, but the running

cost of our filter the cheapest according to Table 1.

5.3. Implicit geometric­adaptive support regions

Whether the implicit support region defined by the ker-

nel of a filter can efficiently present complicated support re-

gions determines the filtering performance. In this section

we compute all-pairwise-weights on three synthesized pic-

tures, including a concave object image, a slender structure

image and a tree image, and select the pixels with weights

larger than 0.001 as the implicit support region for compar-

ison. If the weights outside the explicit support region are

assumed to be zeros, GF, CLMF and MLPA also have im-

plicit support regions. But the possible pixels composing

the implicit support region are constrained by the explicit

support region. For comprehensive comparison, we demon-

strate the two kinds of implicit support regions in Fig.4. Al-

though CLMF-1 and MLPA-2 determine the support region

in data-drive manner, their implicit support regions also lose

much information as the implicit support region of GF does

because all their implicit support regions are limited by the

maximal size of the explicit local support region (i.e. the

maximal radius of the box window of GF or the maximal

arm length of the crossed based support region of CLMF-1

and MLPA-2). Specifically, for the slender structure image,

they only select a tiny part of the entire region. For the

tree image, the three methods completely lose many branch

structures. The implicit support region of FCBF can present

the complicated support regions in Fig.4, but FCBF is apt

to introduce separated regions to the implicit support region

because the Euclidean distance cannot reflect the underly-

ing structure of the guidance image. The tree distance con-

quers the shortcoming and therefore the support region of

FCGF is rather stable for different thresholds as illustrated

in Figs.4h 4i. Under the guidance of the tree distance, the

implicit support region of TF also removes the disconnected

regions. These comparisons prove that the MST based im-

plicit support region is geometric-adaptive and better than

the other kinds of support regions.
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(a) Guidance (b) Mask (c) GF (d) CLMF-1 (e) MLPA-2 (f) TF (g) FCGF-1

Figure 5: Image matting. A binary mask (b) is filtered under the guidance of (a). We compare FCGF-1 (σ = 0.1, ǫ = 1)

with GF (σ = 60, ǫ = 0.12) , CLMF-1 (r = 60, τ = 70, ǫ = 0.12), MPLA-2 (k = 0.005/255, ǫs = 0.3, ǫr = 0.14), TF

(σ = 0.5, σs = 10, σr = 0.05).

6. Experiments and Applications

To achieve different smoothing effects, researchers de-

signed different edge-preserving filters. TF employs the

spatial-intensity similarity to perform weighted average.

GF adopts an edge-preserving linear model. Both CLMF

and MLPA introduce a local geometric-adaptive support re-

gion to the edge-preserving linear model. We introduce the

tree similarity to the linear ridge regression model and re-

lax the local support region to the entire image domain. In

this section, we verify these edge-preserving techniques and

demonstrate our filter’s advantages on a variety of computer

vision and graphics applications.

Image Matting Thanks to the fully connection defined on

the MST, our filter is able to preserve the tiny curved tassels

structure illustrated in Fig.5a. To show this, we apply GF,

CLMF-1, MLPA-2, FCGF-1 and TF on a binary mask and

refine it to appear an alpha matte near the object boundaries

and illustrate the matting results in Fig.5, where the binary

mask is obtained from segmentation and the guidance I is a

color image. In order to map the tassels of I into the final

result, GF has to choose a large box Ωb
i which leaks infor-

mation and blurs the sharp boundaries. As for CLMF-1 and

MLPA-2, their support regions fail to represent the curved

tassels, thereby the matting results are rather unsatisfying.

Unlike these GF-like filters, our filter is able to transfer the

tiny tassels from the guidance image to the matting results

while preserving sharp edges for the reason that MST does

not cross the color/intensity edges of an image and automat-

ically drags away two dissimilar pixels that are close to each

other in the spatial domain. TF also takes MST to represent

the underlying geometric structure, hence it can produce the

similar matting result as our filter. However, compared with

our filter, its speed is extremely slow according to Table 1.

Specifically, our filter spends 0.6s. In contrast, TF costs

nearly 20s in our laptop.

HDR compression and Detail enhancement TF and

FCGF have similar behavior in some applications. We can

observe this from their implicit support regions in Fig.4 and

the matting result in Fig.5 clearly. This is because the two

filters are built on the weighted average operator Ew(x) (or

equivalently TMF ) which takes advantage of MST. The

(a) Input

(b) TF

(c) FCGF-1 (d) Input

(e) TF

(f) FCGF-1

Figure 6: Quantization artifacts in HDR compression and

gradient reversal artifacts in detail enhancement. The pa-

rameters are (σ = 0.5, σs = 5, σr = 0.1) for TF and

(σ = 1, ǫ = 1) for FCGF-1.

major difference between them is that FCGF is a GF-like

filter and TF is a BF-like filter. Hence TF is likely to in-

herit the shortcoming of BF. One problem shared by TF

and BF is that their brute-force implementations are time-

consuming. Bao et al. in the paper [1] exploit acceleration

techniques [17] to speed up TF, but these methods may have

noticeable quantization artifacts in HDR compression [7] as

shown in Fig.6b. In contrast, the naive implementation of

FCGF can be computed in linear time and thus avoid the

quantization artifacts produced by acceleration techniques.

Another problem is the gradient reversal artifacts [5, 23] in

detail enhancement [6], which has been solved by GF. Since

FCGF is a GF-like filter, it does not have this problem. We

can observe this in Figs.6e 6f.

Flash/no-Flash Detail Transfer with Denoising A flash

image is able to capture the high-frequency texture and de-

tail. On the contrary, a no-flash image captures the overall

appearance with noisy. To take the visual richness of a real

environment, we use the relatively noise-free flash image

to reduce noise in the no-flash image and to transfer high-

frequency detail from the flash image to the denoised im-

age. Following the procedure described in [16], we produce

the results of GF, CLMF-1, MLPA-2, TF and FCGF-1 and

demonstrate them in Fig.7. Compared with other filters, our

filter not only takes the advantage of large filter kernels to

suppress noises as much as possible but also transfers the

detail information in the flash image while removing the

shadow regions under the guidance of the flash image. This

is because the flash image’s structure is represented by an
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