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Abstract

Facial expression can be seen as the dynamic variation

of one’s appearance over time. Successful recognition thus

involves finding representations of high-dimensional spatio-

temporal patterns that can be generalized to unseen facial

morphologies and variations of the expression dynamics. In

this paper, we propose to learn Random Forests from hetero-

geneous derivative features (e.g. facial fiducial point move-

ments or texture variations) upon pairs of images. Those

forests are conditioned on the expression label of the first

frame to reduce the variability of the ongoing expression

transitions. When testing on a specific frame of a video,

pairs are created between this current frame and the pre-

vious ones. Predictions for each previous frame are used

to draw trees from Pairwise Conditional Random Forests

(PCRF) whose pairwise outputs are averaged over time to

produce robust estimates. As such, PCRF appears as a nat-

ural extension of Random Forests to learn spatio-temporal

patterns, that leads to significant improvements over stan-

dard Random Forests as well as state-of-the-art approaches

on several facial expression benchmarks.

Introduction

In the last decades, automatic facial expression recog-

nition (FER) has attracted an increasing attention, as it is

a fundamental step of many applications such as human-

computer interaction, or assistive healthcare technologies.

A good survey covering FER can be found in [23]. There

exists many impediments to successful deciphering of facial

expressions, among which the large variability in morpho-

logical and contextual factors as well as the subtlety of low-

intensity expressions. Because using dynamics of the ex-

pression helps disentangle those factors [4], most recent ap-

proaches aim at exploiting the temporal variations in videos

rather than trying to perform recognition on still images.

Figure 1. Flowchart of our PCRF FER method. When evaluating

a video frame indexed by n, dedicated pairwise trees are drawn

conditionally to expression probability distributions from previous

frames n−m1, n−m2, .... The subsequent predictions are aver-

aged over time to output an expression probability distribution for

the current frame. This prediction can be used as a tree sampling

distribution for subsequent frame classification.

Nevertheless, as a matter of fact, the semantics of acted

facial events is composed of successive onset, apex and off-

set phases that may occur with various offsets and at dif-

ferent paces. Spontaneous behaviors can however be much

more difficult to analyse in terms of such explicit sequence.

Hence, there is no consensus on either how to effectively ex-

tract suitable representations from those high dimensional

video patterns, or on how to combine those representations

in a flexible way to generalize to unseen data and possi-

bly unseen temporal variations. Common approaches em-

ploy spatio-temporal descriptors defined on fixed-size win-
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dows, optionally at multiple resolutions. Examples of such

features include the so-called LBP-TOP [25] and HoG3D

[10] descriptors, which are spatio-temporal extensions of

LBP and HoG features respectively. Authors in [14] use

histograms of local phase and orientations. However, such

representations may lack the capacity to generalize to facial

events that differ from training data on the temporal axis.

Other approaches aim at establishing relationships be-

tween high-level features and a sequence of latent states.

Wang et al. [19] integrate temporal interval algebra into a

Bayesian Network to capture complex relationships among

facial muscles. Walecki et al. [17] introduce a variable-

state latent Conditional Random Field that can automati-

cally select the optimal latent states for individual expres-

sion videos. Such approaches generally require explicit di-

mensionality reduction techniques such as PCA or K-means

clustering for training. In addition, training at the sequence

level considerably reduces the quantity of available training

and testing data as compared to frame-based approaches.

In early work [6] we obtained promising results for acted

video FER by learning a restricted transition model that

we fused with a static one. However, this model lacks the

capacity to generalize to more complex spontaneous FER

scenarios where one expression may quickly follow an-

other one. Furthermore, because the transition and static

classifiers are applied as two separate tasks, it can not

integrate low-level correlations between static and spatio-

temporal patterns. In this paper, we introduce the Pairwise

Conditional Random Forest (PCRF) algorithm, which is a

new formulation for training trees using low-level heteroge-

neous static (spatial) and dynamic (spatio-temporal deriva-

tive) features within the RF framework. Conditional Ran-

dom Forests were used by Dantone et al. [5] as well as

Sun et al. [15] in the field of facial alignment and human

pose estimation, respectively. They generated collections of

trees for specific, quantized values of a global variable (such

as head pose [5] and body torso orientation [15]) and used

prediction on this global variable to draw dedicated trees,

resulting in more accurate predictions. In our case, we pro-

pose to condition pairwise trees upon specific expression

labels to reduce the variability of ongoing expression tran-

sitions from the first frame of the pair to the other one (Fig-

ure 1). When evaluating a video, each previous frame of the

sequence is associated with the current frame to give rise

to a pair. Pairwise trees are thus drawn from the dedicated

PCRFs w.r.t. a prediction for the previous frame. Finally,

predictions outputted for each pair are averaged over time

to produce a robust prediction for the current frame. The

contributions of this work are thus three-fold:

• A method for training pairwise random trees upon

high-dimensional heterogeneous static and spatio-

temporal derivative feature templates, with a condi-

tional formulation that reduces the variability.

• An algorithm that is a natural extension of the static

RF averaging, that consists in averaging over time pair-

wise predictions to flexibly handle temporal variations.

• A framework that performs FER from video that can

work on low-power engines thanks to an efficient im-

plementation using integral feature channels.

The rest of the paper is organized as follows: in Section

1 we describe our adaptation of the RF framework to learn

expression patterns on still images from high-dimensional,

heterogeneous features. In Section 2 we present the PCRF

framework to learn temporal patterns of facial expressions.

In Section 3 we show how our PCRF algorithm improves

the accuracy on several FER datasets as compared to a

static approach. We also show how our method outperforms

the state-of-the-art approaches and report its ability to run

in real-time. Finally, we give concluding remarks on our

PCRF for FER and discuss perspectives.

1. Random Forests for FER

1.1. Facial expression prediction

Random Forests (RFs) [2] is a popular learning frame-

work introduced in the seminal work of Breiman [2]. They

have been used to a significant extent in computer vision

and for FER tasks in particular due to their ability to nicely

handle high-dimensional data such as images or videos as

well as being naturally suited for multiclass classification

tasks. They combine random subspace methods for fea-

ture sampling and bagging in order to provide performances

similar to the most popular machine learning methods such

as SVM or Deep Neural Networks.

RFs are classically built from the combination of T deci-

sion trees grown from bootstraps sampled from the training

dataset. In our implementation, we downsample the major-

ity classes within the bootstraps in order to enforce class

balance. As compared to other methods for balancing RF

classifiers (i.e. class weighting and upsampling of the mi-

nority classes), downsampling leads to similar results while

substantially reducing the computational cost, as training is

performed on smaller data subsets.

Individual trees are grown using a greedy procedure that

involves, for each node, the measure of an impurity criterion

Hφ,θ (which is traditionally either defined as Shannon en-

tropy or Gini impurity measurement) relatively to a partition

of the images x with label l ∈ L, that is induced by candi-

date binary split functions {φ, θ} ∈ Φ. More specifically,

we use multiple parametric feature templates to generate

multiple heterogeneous split functions, that are associated

with a number of thresholds θ. In what follows, by abuse of

notations we will refer to φ(i) as the ith feature template and

k(i) as the number of candidates generated from this tem-

plate. The “Best” binary feature among all features from
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the different templates (i.e. the one that minimizes the im-

purity criterion Hφ,θ) is set to produce a data split for the

current node. Then, those steps are recursively applied for

the left and right subtrees with accordingly rooted data until

the label distribution at each node becomes homogeneous,

where a leaf node can be set. This procedure for growing

trees is summarized in Algorithm 1.

Algorithm 1 Tree Growing algorithm treeGrowing

input: images x with labels l, root node n, number of can-

didate features {k(i)}i=1,2,3 for templates {φ(i)}i=1,2,3

if image labels are homogeneous with value l0 then

set node as terminal, with probabilities pt to 1 for l0,

0 elsewhere

else

generate an empty set of split candidates Φ
for all feature templates i do,

generate a set Φ(i) of k(i) candidates {φ(i), θ}
Φ← Φ ∪ Φ(i)

end for

for {φ, θ} ∈ Φ do

compute the impurity criterion Hφ,θ(x)
end for

split data w.r.t. argmin{φ,θ}{Hφ,θ(x)} in left and

right subsets xl and xr

create left nl and right nr children of node n
call treeGrowing(xl,nl,{k

(i)}i=1,2,3)

call treeGrowing(xr,nr,{k(i)}i=1,2,3)

end if

During evaluation, an image x is successively rooted left

or right of a specific tree t according to the outputs of the

binary tests, until it reaches a leaf node. The tree thus re-

turns a probability pt(l|x) which is set to either 1 for the

represented class, or to 0. Prediction probabilities are then

averaged among the T trees of the forest (Equation (1)).

p(l|x) =
1

T

T
∑

t=1

pt(l|x) (1)

Note that the robustness of the RF prediction frame-

work comes from (a) the strength of individual trees and

(b) the decorrelation between those trees. By growing trees

from different bootstraps of available data and with the ran-

dom subspace algorithm (e.g. examining only a subset of

features for splitting each node) we generate individually

weaker, but less correlated trees that provide better combi-

nation predictions than standard CART or C4.5 procedures.

1.2. Heterogeneous feature templates

Feature templates φ(i) include both geometric (i.e. com-

puted from previously aligned facial feature points) and ap-

pearance features. Each of these templates have different in-

put parameters that are randomly generated during training

by uniform sampling over their respective variation range.

Also, during training, features are generated along with a

set of candidate thresholds θ to produce binary split candi-

dates. In particular, for each feature template φ(i), the upper

and lower bounds are estimated from training data before-

hand and candidate thresholds are drawn from a uniform

distribution in the range of these values.

We use two different geometric feature templates which

are generated from the set of facial feature points f(x)
aligned on image x with the SDM tracker [20]. The first

geometric feature template φ
(1)
a,b is the euclidian distance

between feature points fa and fb, normalized w.r.t. inter-

ocular distance iod(f(x)) for scale invariance (Equation 2).

φ
(1)
a,b(x) =

||fa − fb||2
iod(f)

(2)

Because the feature point orientation is discarded in fea-

ture φ(1) we use the angles between feature points fa, fb
and fc as our second geometric feature φ

(2)
a,b,c,λ. In order

to ensure continuity for angles around 0, we use the cosine

and sine instead of the raw angle value. Thus, φ(2) outputs

either the cosine or sine of angle f̂afbfc, depending on the

value of the boolean parameter λ (Equation (3)):

φ
(2)
a,b,c,λ(x) = λ cos(f̂afbfc) + (1− λ) sin(f̂afbfc) (3)

We use Histogram of Oriented Gradients (HoG) as our

appearance features for their descriptive power and robust-

ness to global illumination changes. In order to ensure fast

feature extraction, we use integral feature channels as intro-

duced in [8]. First, we rotate the image x in order to align

the inter-ocular axis on the horizontal axis. We then com-

pute horizontal and vertical gradients on the rotated image

and use these to generate 9 feature channels, the first one

containing the gradient magnitude. The 8 remaining chan-

nels correspond to a 8-bin quantization of the gradient ori-

entation. Finally, integral images are computed from these

feature maps to output 9 channels. Thus, we define the

appearance feature template φ
(3)
τ,ch,s,α,β,γ as an histogram

computed over channel ch within a window of size s nor-

malized w.r.t. the inter-ocular distance. Such histogram is

evaluated at a point defined by its barycentric coordinates

α, β and γ w.r.t. vertices of a triangle τ defined over feature

points f(x). Also, storing the gradient magnitude within

the first channel allows to normalize the histograms as in

standard HoG implementation. Thus, HoG features can be

computed very efficiently by using only 4 access to the in-

tegral channels (plus normalization).
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2. Learning temporal patterns with PCRF

2.1. Learning PCRF with heterogeneous derivative
feature templates

In this section we explain how we adapt the aforemen-

tioned RF framework to take into account the dynamics of

the expression. We now consider pairs of images (x′,x) to

train trees t that aim at outputting probabilities pt(l|x
′, x, l′)

of observing label l(x) = l given image x′ and subject to

l(x′) = l′, as illustrated in Figure 2.

More specifically, for each tree t among the T trees of

a RF dedicated to transitions starting from expression label

l′, we randomly draw a fraction of subjects S̃ ⊂ S . Then,

for each subject s ∈ S̃ we randomly draw images x′
s that

specifically have label l′. We also draw images xs of every

label l and create as many pairs (x′
s, xs) with label l. Note

that the two images of a pair do not need to belong to the

same video. Instead, we create pairs from images sampled

across different sequences for each subject to cover all sorts

of ongoing transitions. We then balance the pairwise boot-

strap by downsampling the majority class w.r.t. the pairwise

labels. Eventually, we construct tree t by calling algorithm

1. Those steps are summarized in Algorithm 2.

Algorithm 2 Training a PCRF

input: images x with labels l, number of candidate features

{k(i)}i=1,...,6 for templates {φ(i)}i=1,...,6

for all l′ ∈ L do

for t = 1 to T do

randomly draw a fraction S̃ ⊂ S of subjects

pairs← {}
for all s ∈ S̃ do

draw samples x′
s with label l′

draw samples xs for each label l
create pairwise data (x′

s, xs) with label l
add element (x′

s, xs) to pairs
end for

balance bootstrap pairs with downsampling

create new root node n
call treeGrowing(pairs,n,{k(i)}i=1,...,6)

end for

end for

Candidates for splitting the nodes are generated from an

extended set of 6 feature templates {φ(i)}i=1,...,6, three of

which being the static features described in Section 1, that

are applied to the second image x of the pair (x′, x), for

which we want to predict facial expressions. The three re-

maining feature templates are dynamic features defined as

the derivatives of static templates φ(1), φ(2), φ(3) with the

exact same parameters. Namely, we have:







































φ
(1)
a,b(x

′, x) = φ
(1)
a,b(x)

φ
(2)
a,b,c,λ(x

′, x) = φ
(2)
a,b,c,λ(x)

φ
(3)
τ,ch,s,α,β,γ(x

′, x) = φ
(3)
τ,ch,s,α,β,γ(x)

φ
(4)
a,b(x

′, x) = φ
(1)
a,b(x)− φ

(1)
a,b(x

′)

φ
(5)
a,b,c,λ(x

′, x) = φ
(2)
a,b,c,λ(x)− φ

(2)
a,b,c,λ(x

′)

φ
(6)
τ,ch,s,α,β,γ(x

′, x) = φ
(3)
τ,ch,s,α,β,γ(x)− φ

(3)
τ,ch,s,α,β,γ(x

′)
(4)

As in Section 1, thresholds for the derivative features

φ(4), φ(5), φ(6) are randomly drawn from uniform distribu-

tions with new dynamic template-specific ranges estimated

from the pairwise dataset beforehand. Also note that, as

compared to a static RF, a PCRF model is extended with

new derivative features that are estimated from a pair of im-

ages. When applied on a video, predictions for several pairs

are averaged over time in order to produce robust estimates

of the probability predictions.

2.2. Model averaging over time

We denote by pn(l) the prediction probability of label l
for a video frame xn . For a purely static RF classifier this

probability is given by Equation (5):

pn(l) =
1

T

T
∑

t=1

pt(l|x
n) (5)

In order to use spatio-temporal information, we ap-

ply pairwise RF models to pairs of images (xm, xn)

with {xm}m=n−1,...,n−N the previous frames in the video.

Those pairwise predictions are averaged over time to pro-

vide a new probability estimate pn that takes into account

past observations up to frame n. Thus, if we do not have

prior information for those frames the probability pn is:

pn(l) =
1

NT

n−N
∑

m=n−1

T
∑

t=1

pt(l|x
m, xn) (6)

In what follows, Equation (6) will be refered to as the full

model. Trees from the full model are likely to be stronger

that those of the static one since they are grown upon an

extended set of features. Likewise, the correlation between

the individual trees is also lower thanks to the new features

and the fact that they will be evaluated on multiple, distinct

pairs when averaging over time. However, spatio-temporal

information can theoretically not add much to the accuracy

if the variability of the pairwise data points is too large.

In order to decrease this variability, we assume that there

exists a probability distribution pm0 (l′) to observe the dis-

crete expression label l′ at frame m. Note that probabilities

p0 can be set to purely static estimates (which is necessarily

the case for the first video frames) or dynamic predictions

estimated from previous frames. A comparison between
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Figure 2. Expression recognition from pairs of images using PCRF. Expression probability predictions of previous images are used to

sample trees from dedicated pairwise tree collections (one per expression class) that are trained using subsets of the (pairwise) training

dataset, with only examples of ongoing transitions from a specific expression towards all classes. The resulting forest thus outputs an

expression probability for a specific pair of images.

those approaches can be found in Section 3.3. In such a

case, for frame m, pairwise trees are drawn conditionally to

distributions pm0 , as shown in Figure 2. More specifically,

for each expression label l′ we randomly select N (l′) trees

over a PCRF model dedicated to transitions that start from

expression label l′, trained with the procedure described in

Section 2.1. Equation (6) thus becomes:

pn(l) =
1

NT

n−N
∑

m=n−1

∑

l′∈L

N (l′)
∑

t=1

pt(l|x
m, xn, l′) (7)

Where N (l′) ≈ T.pm0 (l′) and T =
∑

l′∈LN (l′) being

the number of trees dedicated to the classification of each

transition, which can be set in accordance with CPU avail-

ability. In our experiments, we will refer to Equation (7)

as the conditional model. This formulation reduce the vari-

ability of the derivative features for each specialized pair-

wise RF. Section 3 shows that using PCRF models leads to

significant improvements over both static and full models.

3. Experiments

In this section, we report comparisons between different

classification models on two well-known FER databases,

the Extended Cohn-Kanade and BU-4DFE databases. Fur-

thermore, in order to evaluate the capabilities of the learned

models to generalize on new, potentially more complicated

FER scenarios, we report classification results for cross-

database evaluation on two spontaneous databases, namely

the FG-NET FEED and BP4D databases. We highlight that

our conditional formulation of dynamic integration substan-

tially increases the recognition accuracy on such tasks. Fi-

nally, we show the real-time capacitbility of our system.

3.1. Databases

The CK+ or Extended Cohn-Kanade database [12]

contains 123 subjects, each one associated with various

numbers of expression records. Those records display a

very gradual evolution from a neutral class towards one of

the 6 universal facial expressions (anger, happiness, sad-

ness, fear, digust and surprise) plus the nonbasic expression

contempt. Expressions are acted with no head pose varia-

tion and their duration is about 20 frames. From this dataset

we use 309 sequences, each one corresponding to one of the

six basic expressions, and use the three first and last frames

from these sequences for training. We did not include se-

quences labelled as contempt because CK+ contains too few

subjects performing contempt and other expressions to train

the pairwise classifiers.

The BU-4DFE database [22] contains 101 subjects,

each one displaying 6 acted facial expressions with moder-

ate head pose variations. Expressions are still prototypical

but they are generally exhibited with much lower intensity

and greater variability than in CK+, hence the lower base-

line accuracy. Sequences duration is about 100 frames. As

the database does not contain frame-wise expression anno-

tations, we manually select neutral and apex of expression

frames for training.

The BP4D database [24] contains 41 subjects. Each

subject was asked to perform 8 tasks, each one supposed to

give rise to 8 spontaneous facial expressions (anger, hap-

piness, sadness, fear, digust, surprise, embarrassment or

pain). In [24] the authors extracted subsequences of about

20 seconds for manual FACS annotations, arguing that these

subsets contains the most expressive behaviors.
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The FG-NET FEED database [18] contains 19 sub-

jects, each one recorded three times while performing 7

spontaneous expressions (the six universal expressions, plus

neutral). The data contain low-intensity emotions, short ex-

pression displays, as well as moderate head pose variations.

3.2. Experimental Setup

7-class RF (static) and PCRF (full and conditional) clas-

sifiers are trained on the CK+ and BU-4DFE datasets using

the set of hyperparameters described in Table 1. These pa-

rameters were obtained by cross-validation. Note however

that extensive testing showed that the values of these hyper-

parameters had a very subtle influence on the performances.

This is due to the complexity of the RF framework, in which

individually weak trees (e.g. that are grown by only ex-

amining a few features per node) are generally less corre-

lated, still outputting decent predictions when combined al-

together. Nevertheless, we report those settings for repro-

ducibility concerns. Also, for a fair comparison between

static and pairwise models, we use the same total number

of feature evaluations for generating the split nodes. More-

over, for all the models the maximum accuracy was reached

for T ≈ 100 trees. However, we generated large numbers

of trees so that the variance in prediction accuracy for the

following benchmarks becomes very low over all the runs.

Table 1. Hyperparameters settings

Hyperparameters value(static) value(dynamic)

Nb. of φ(1) features 40 20

Nb. of φ(2) features 40 20

Nb. of φ(3) features 160 80

Nb. of φ(4) features - 20

Nb. of φ(5) features - 20

Nb. of φ(6) features - 80

Data ratio per tree 2/3 2/3
Nb. of thresholds 25 25

total nb. of features 6000 6000

Nb. of trees 500 500

During the evaluation, the prediction is initialized at the

first frame using the static classifier. Then, for the full

and conditional models, probabilities are estimated for each

frame using transitions from previous frames only, bring-

ing us closer to a real-time scenario. However, although it

uses transitional features, our system is essentially a frame-

based classifier that outputs an expression probability for

each separate video frame. This is different from, for exam-

ple, a HMM, that aims at predicting a probability related to

all the video frames. Thus, in order to evaluate our classifier

on video FER tasks, we acknowledge correct classification

if the maximum probability outputted for all frames corre-

sponds to the ground truth label. This evaluates the capabil-

ity of our system to retrieve the most important expression

mode in a video, as well as the match between the retrieved

mode and the ground truth label.

For the tests on CK+ and BU-4DFE databases, both

static and transition classifiers are evaluated using the Out-

Of-Bag (OOB) error estimate [2]. More specifically, boot-

straps for individual trees of both static and pairwise clas-

sifiers are generated at the subject level. Thus, during eval-

uation, each tree is applied only on subjects that were not

used for its training. The OOB error estimate is an un-

biased estimate of the true generalization error [2] which

is faster to compute than Leave-One-Subject-Out or k-fold

cross-evaluation estimates. Also, it has been shown to be

generally more pessimistic than other error estimates [3],

further empathizing the quality of the proposed results.

3.3. Evaluation of PCRF

In order to validate our approach, we compared our con-

ditional model to a purely static model and a full model, for

a variety of dynamic integration parameters (the length of

the temporal window N and the step between those frames

Step) on the BU-4DFE database. We also evaluated the in-

terest of using a dynamic probability prediction for previous

frames (i.e. the output of the pairwise classifier for those

frames) versus a static one. Average results are provided in

Figure 3. For CK+ database, sequences are generally too

short to show significant differences when varying the tem-

poral window size or the step size. Thus we only report ac-

curacy for full and conditional models with a window size

of 30 and a step of 1. Per-expression accuracies and F1-

Scores for both Cohn-Kanade and BU-4DFE databases are

shown in Figure 4.

Figure 3. Average accuracy rates obtained for various temporal

integration parameters on the BU-4DFE database

We observe that the conditional model significantly out-

performs the static model on both CK+ and BU-4DFE

databases. This is due to the extra dynamic features that

provide both robustness and decorrelation of the individual

decision trees, further enhancing their prediction accuracy.

Figure 4 shows that the conditional model also outperforms

the full model on both databases, which is probably due to

the fact that using only a restricted set of ongoing expression

transitions for training allows to better capture the variabil-
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Figure 4. Per-class recognition accuracy rates and F1-scores on CK+ and BU-4DFE databases

ity of the spatio-temporal features for the dedicated pair-

wise forests. This is particularly true on the CK+ database,

where the number of pairwise data points is not enough for

the full model to capture the variability of all possible on-

going transitions, hence justifying the lower accuracy. This

seems particularly relevant for expressions such as fear or

sadness which are the less represented ones in the dataset.

Table 3 also shows that it is better to look backward for

more frames in the sequence (N = 60) with less correlation

between the frames (Step = 3 or 6). Again, such setting al-

lows to take more decorrelated paths in the individual trees,

giving a better recombination after averaging over time.

A compilation of comparisons to other state-of-the-art

approaches for FER from video sequences can be found in

Table 2. On the CK+ dataset, we compare our algorithms

with recent work results for FER from video on the same

subset of sequences (i.e. not including contempt). However

the comparisons are to be put into perspective as the eval-

uation protocols differ between the methods. PCRF pro-

vides results similar to those reported in [17] as well as

in [14, 9, 6], although the latter approaches explicitly con-

sider the last (apex) frame. We also consistently outperform

HMM and interval-based DBN presented in [19], although

the evaluations protocols are not the same. Furthermore,

to the best of our knowledge, our approach gives the best

results on the BU-4DFE database for automatic FER from

videos using 2D information only. Our approach provides

better results than the dynamic 2D approach [16], as well

as the frame-based approach presented in [21]. Recently,

Meguid et al. [1] obtained impressive results using an orig-

inal RF/SVM system, from training upon the BU-3DFE

database which is a purely static database. They employ a

post-classification temporal integration scheme, which we

believe may be weaker than using dynamic information at

the feature level. Finally, the restricted transition model in-

troduced in our early work [6] face difficulties on sponta-

neous FER tasks where one expression can quickly succeed

to another. Conversely, we show that the method proposed

in this paper translates well to such spontaneous scenarios.

Table 2. Comparisons with state-of-the-art approaches. § 7-class

expression recognition with contempt label. † results respectively

reported for two methods (average-vote) from the paper.

Ck+ database Protocol Accuracy

Wang et al. [19] 15-fold 86.3§

Shojaeilangari et al. [14] LOSO 94.5

Walecki et al. [17] 10-fold 94.5

Khan et al. [9] 10-fold 95.3

Dapogny et al. [6] OOB 96.1− 94.8†

This work, RF OOB 93.2

This work, PCRF OOB 96.4

BU-4DFE database Protocol Accuracy

Xu et al. [21] 10-fold 63.8

Sun et al. [16] 10-fold 67.0

Dapogny et al. [6] OOB 72.2− 75.8†

Meguid et al. [1] Cross-db 73.1

This work, RF OOB 70.0

This work, PCRF OOB 76.1

FEED database Protocol Accuracy

Dapogny et al. [6] Cross-db 53.0− 53.5†

Meguid et al. [1] Cross-db 53.7

This work, RF Cross-db 51.9

This work, PCRF Cross-db 57.1

BP4D database Protocol Accuracy

Dapogny et al. [6] Cross-db 72.2− 66.2†

Zhang et al. [24] Cross-db 71.0

This work, RF Cross-db 68.6

This work, PCRF Cross-db 76.8

For that matter, Table 2 also reports results for

cross-database evaluation (with training on the BU-4DFE

database) on the FEED database. In order to provide a
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fair comparison between our approach and the one pre-

sented in [1], we used the same labelling protocol as them.

One can see that the performances of their system are bet-

ter than those of our static RF model, which can be at-

tributed to the fact that they use a more complex classifi-

cation and posterior temporal integration flowchart. Nev-

ertheless, our PCRF model provides a substantially higher

accuracy, which, again, is likely to be due to the use of

spatio-temporal features as well as an efficient conditional

integration scheme.

We also performed cross-database evaluation on the

BP4D database. Again, for a fair comparison, we used the

same protocol as in [24], with training on the BU-4DFE

database and using only a subset of the tasks (i.e. tasks

1 and 8 corresponding to expression labels happy and dis-

gust respectively). However, we do not retrain a classifier

with a subset of 3 expressions as it is done in [24], but in-

stead use our 7-class static and PCRF models with a forced

choice between happiness (probability of class happiness)

and disgust (probability sum of classes anger and disgust).

Such setting could theoretically increase the confusion in

our conditional model, resulting in a lower accuracy. How-

ever, as can be seen in Table 2, using dynamic information

within the PCRF framework allows to substantially increase

the recognition rate as compared to a static RF framework.

We also overcome the results reported in [24] by a signifi-

cant margin, further showing the capability of our approach

to deal with complex spontaneous FER tasks. Also note that

in [24], the authors used the so-called Nebulae 3D polyno-

mial volume features which are by far more computation-

ally expensive than our geometric and integral HoG 2D fea-

tures. All in all, we believe our results show that the PCRF

approach provides significant improvements over a tradi-

tional static classification pipeline that translates very well

to more complicated spontaneous FER scenarios, where a

single video may contain samples of several expressions.

3.4. Complexity of PCRF

An advantage of using conditional models is that with

equivalent parallelization they are faster to train than an

hypothetical full model learnt on the whole dataset. Ac-

cording to [11] the average complexity of training a RF

classifier with M trees is O(MKN log2 N), with K be-

ing the number of features to examine for each node and

N the size of (2/3 of) the dataset. Thus if the dataset is

equally divided into P bins of size Ñ upon which condi-

tional forests are trained (and such that N = PÑ ), the av-

erage complexity of learning a conditional model now be-

comes O(MKN log2 Ñ).

Same considerations can be made concerning the evalu-

ation, as trees from the full model are bound to be deeper

than those from the conditional models. Table 3 shows an

example of profiling a PCRF on one video frame with an

averaging over 60 frames and a step of 3 frames. Thus the

total number of evaluated trees is 20M with M being the

number of trees dedicated to classifying each frame.

Table 3. Profiling of total processing time for one frame (in ms)

Step time (ms)

Facial alignment 10.0

Integral HoG channels computation 2.0

PCRF evaluation (M = 50) 4.8

PCRF evaluation (M = 100) 7.8

PCRF evaluation (M = 300) 19.0

This benchmark was conducted on a Intel Core I7-4770

CPU with 32 Go RAM within a C++/OpenCV environment,

without any code parallelization. As such, the algorithm al-

ready runs in real-time. Furthermore, evaluations of pair-

wise classification or tree subsets can easily be parallelized

to fit real-time processing requirements on low-power en-

gines such as mobile phones. In addition, the facial align-

ment step can be performed at more than 300 fps on a smart-

phone with similar performances using the algorithms from

[13].

Conclusion and perspectives

In this paper, we introduced the PCRF framework, which

integrates high-dimensional, low-level spatio-temporal in-

formation through averaging over time pairwise conditional

trees. These trees are drawn by considering previous predic-

tions. We showed that our model can be trained and eval-

uated efficiently, and leads to a significant increase of per-

formances compared to a static RF. In addition, our method

works on real-time without specific optimization schemes,

and could be run on low-power architectures such as mo-

bile phones by using an appropriate paralellization. Fu-

ture works will consist in employing conditional models for

pose and occlusion handling to adapt the proposed PCRF

framework for “in the wild” FER datasets such as the one in

[7]. Furthermore, we would like to investigate applications

of PCRF for other video classification/regression problems

such as Facial Action Unit intensity prediction or body and

hand gesture recognition.
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