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Abstract

Hashing is very effective for many tasks in reducing the

processing time and in compressing massive databases. Al-

though lots of approaches have been developed to learn

data-dependent hash functions in recent years, how to learn

hash functions to yield good performance with acceptable

computational and memory cost is still a challenging prob-

lem. Based on the observation that retrieval precision is

highly related to the kNN classification accuracy, this paper

proposes a novel kNN-based supervised hashing method,

which learns hash functions by directly maximizing the kNN

accuracy of the Hamming-embedded training data. To make

it scalable well to large problem, we propose a factorized

neighborhood representation to parsimoniously model the

neighborhood relationships inherent in training data. Con-

sidering that real-world data are often linearly inseparable,

we further kernelize this basic model to improve its perfor-

mance. As a result, the proposed method is able to learn

accurate hashing functions with tolerable computation and

storage cost. Experiments on four benchmarks demonstrate

that our method outperforms the state-of-the-arts.

1. Introduction

With the rapidly increasing amount of available data,

such as image, text and video, fast similarity search and effi-

cient data storage/indexing techniques become increasingly

important in many tasks, e.g., matching [28], retrieval [29],

video segmentation [23] and graph construction [35]. Tra-

ditional methods, for example kd-tree [2], are inefficien-

t in dealing with tens of thousands high-dimensional da-

ta. Hashing [1, 6, 22, 26, 32], as an emerging and popular

technique, enables both fast search and efficient storage by

mapping high-dimensional data to low-dimensional binary

codes while maintaining some similarity and structural in-

formation of the original data.

Many hashing methods are proposed in the literature.

Early ones are data-independent [1, 3, 13]. For exam-

ple, locality-sensitive hashing (LSH) [1] uses random pro-

jections as the hash functions. To preserve the geome-

try of high-dimensional data, lots of hash bits are needed

as it does not explore the data distribution when choos-

ing the hashing functions. Recent researches are main-

ly focused on developing data-dependent or learning-based

hashing to automatically learn compact binary codes from

data. In general, according to the level of supervision, the

learning-based hashing can be categorized into unsuper-

vised [6, 7, 10, 21, 27, 32], semi-supervised [31] and su-

pervised [6, 12, 16, 17, 18, 22, 26] methods. Among them,

supervised hashing has attracted extensive attention due to

its superiority on preserving the semantic similarity.

Perhaps the most intuitive idea to learn hash function-

s is to preserve the (dis-)similarity defined in input s-

pace [6, 12, 22, 32]. Inspired by this, binary reconstruction

embedding (BRE) [12] explicitly preserves the pairwise dis-

tances between data, while kernel-based supervised hashing

(KSH) [22] learns binary codes to preserve semantic simi-

larity. An alternative objective for hashing is maximizing

the precision of a certain classifier applied in Hamming s-

pace. Lin et al. proposed FastHash [18] to learn hash func-

tions for high-dimensional data with a two-step strategy,

where the second step comes down to training binary clas-

sifiers, e.g., decision trees. Although this framework is sim-

ple and flexible, the decomposition may lead to suboptimal

performance. More recently, Shen et al. improved FastHash

by proposing the supervised discrete hashing (SDH) [26] to

generate binary codes with the minimal classification loss

of a linear classifier. It shows great advantages over the

similarity-preserving based hashing paradigm. However, as

retrieval is essentially a neighbor search problem, optimiz-

ing the accuracy of a kNN classifier might be more reason-

able. Therefore, in this paper, we formulate the problem

of learning hash functions by directly maximizing the kNN

classification accuracy on the binary embeddings of training

data. To tackle the problem of discreteness of kNN accura-

cy, the stochastic neighborhood representation [5, 8, 24] is

resorted to define a surrogate objective function. By approx-

imating the involved sign function with a smooth function,

we finally obtain a tractable unconstrained problem.
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Expensive computational and memory cost in train-

ing have long been plaguing many learning-based hashing

methods, such as BRE and KSH. To address such potential

difficulties in our model, we propose a tractable factorized

stochastic neighborhood representation to model the neigh-

borhood structure inherent in data. Compared to the full

Gaussian affinity based representations [5, 8, 24], it is more

economical for computing and storing. With this represen-

tation, an approximate lower bound of the original objective

function is constructed favorably. By optimizing on this

bound, desirable hash functions can be generated without

expensive computational and memory cost.

Real-world data is often linearly inseparable, and it has

been shown that the hashing performance for such data

could be dramatically boosted by using nonlinear hash func-

tions [13, 22, 26]. A simple yet effective approach for non-

linear hashing learning is utilizing kernel tricks. Here, we

also use this technique to extend our basic model to the non-

linear case so as to further improve its performance.

To sum up, our main contributions are: 1) A kNN-

based hashing (kNNH) is proposed to improve the existing

retrieval performance, and a relaxed objective function is

devised to speedup the training procedure and reduce the

memory cost; 2) A systematic analysis of approximating

the sign function with different kinds of smooth function-

s, whose influence on hashing learning has been largely

ignored in previous methods; 3) A kernelized version of

kNNH is proposed to further improve its performance.

2. The Proposed Method

2.1. Formulation

Let our training data be represented by a set of N D-

dimensional vectors, given by X = [x1, . . . ,xN ] ∈ R
D×N .

The associated labels are y = [y1, . . . , yN ] whose en-

tries are in Y = {1, . . . , C}, where C is the number of

classes. Our target is to learn K hyperplane hash func-

tions {hk(x) = sgn(wT
k x)}Kk=1, where wk is the hy-

perplane of the k-th hash function and sgn(·) is the sign

function. The binary code for a sample x is h(x) =
[h1(x), . . . , hK(x)]T = sgn(WTx) ∈ H

K with W =
[w1, . . . ,wK ] ∈ R

D×K the projection matrix and H
K the

K-dimensional Hamming space.

Different from the existed supervised hashing tech-

niques, we propose to learn hash functions by maximizing

the kNN classification accuracy which is closely related to

the retrieval precision. The core idea of our method is il-

lustrated in Fig. 1. For a test sample xi with the label yi,
its probability of correct classification under the kNN rule

applied in H
K is πi =

∑N
j=1 sijδ(j ∈ Nkt

(xi))/kt. Here,

sij is 1 if yi = yj , and 0 otherwise. Nkt
(xi) is the set of kt

nearest neighbors of h(xi) according to Hamming distance,

and so δ(j ∈ Nkt
(xi)) is an indicator function showing

whether j is among the kt-NN of h(xi). From the retrieval

point of view, when kt items are returned for the query xi

by Hamming ranking, its retrieval precision (i.e., the frac-

tion of retrieved relevant samples) is also πi. Therefore, if

the classification accuracy of kNN is optimized, both the

retrieval performance (i.e., precision) and the classification

performance (w.r.t. the kNN classifier) could be ensured.

However, the direct optimization of πi is hard because

the neighbors of every datum in H
K constantly change with

W. The neighborhood component analysis (NCA) [5] over-

came this problem by using the stochastic neighborhood

representation. We borrow this idea and define the stochas-

tic neighbors for each sample in H
K . More specifically, the

probability that xi chooses xj as its neighbor is

πij =
exp

(

− 2θ2‖h(xi)− h(xj)‖H
)

∑N
j=1 exp

(

− 2θ2‖h(xi)− h(xj)‖H
)
, (1)

where ‖h(xi) − h(xj)‖H denotes the Hamming distance

between h(xi) and h(xj), which counts the number of dif-

ferent bits between them. θ is a parameter controlling the

number of neighbors that affect h(xi): when θ → 0, al-

l samples are viewed as its neighbor; when θ → ∞, only

h(xi) itself is viewed as the neighbor. Considering the re-

lation ‖h(xi)− h(xj)‖H = 1/2K − 1/2hT (xi)h(xj), one

can convert πij into

πij =
exp

(

θ2hT (xi)h(xj)
)

∑N
j=1 exp

(

θ2hT (xi)h(xj)
)
. (2)

Based on the above definition of the stochastic neigh-

bors, πi can be approximated as πi ≈ ∑N
j=1 sijπij . As

done in NCA, we use the Kullback-Leibler divergence to

measure the kNN classification accuracy:

Jo(W) =
∑N

i=1
ln(πi). (3)

One major limitation of this model is that in order to evalu-

ate Jo(W) w.r.t. W, a N ×N normalized similarity matrix

Π = [πij ] must be calculated and stored, which is imprac-

tical for large N . Note that, NCA [5] and other related al-

gorithms [8, 24, 30] also suffer from this problem.

2.2. Factorized Neighborhood Representation

To make the above model flexible to large problem, we

propose to factorize Π as the production of two smaller

parametric similarity matrices, i.e., Π = PQT . The en-

tries of P = [pim] ∈ R
N×M and Q = [qjm] ∈ R

N×M are

defined as

pim =
exp

(

θ2hT (xi)h(zm)
)

∑M
m=1 exp

(

θ2hT (xi)h(zm)
)
, (4)

qjm =
exp

(

θ2hT (xj)h(zm)
)

∑N
j=1 exp

(

θ2hT (xj)h(zm)
)
, (5)
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Figure 1. The core idea of kNN hashing. In the leftmost panel, sij represents the pairwise semantic relation between xi and xj . In the

middle panel, the optimal hash functions are learned so that the neighbors of every sample in H
K are as pure as possible. In the rightmost

panel, the normalized similarity πij is defined as the two-step transition probability from the i-th node to the j-th node.

where Z = [z1, . . . , zM ] ∈ R
D×M (M ≪ N ) can be

viewed as the prototypes or anchors that should be learned.

P and Q reflect the relation between samples and proto-

types, with which the similarity between every pair of sam-

ples is defined implicitly. To utilize the supervisory infor-

mation, we pre-assign a label ŷm ∈ Y for each anchor zm,

and keep them fixed throughout. In this paper, we simply

adopt the balanced assignment of labels, i.e., every M/C
(C is the number of classes) anchors share a same label.

More complex strategies, e.g. unbalanced assignment, can

also be used, which we would leave for future work.

The above factorized neighborhood representation is rea-

sonable and meaningful due to the following reasons: 1)

The factorized form of Π meets the nonnegative normal-

ization constraints (
∑N

j=1 πij = 1 and πij ≥ 0) that are

implied in Eqn. (2). These can be checked by applying the

nonnegativity and normalization property of P and Q. 2)

πij =
∑M

m=1 pimqjm can be seen as the inner product of a

specific kernel-mapped features of h(xi) and h(xj), which

makes it a reasonable description of the underlying similar-

ity. 3) As shown in Fig. 1, the decomposed Π has a proba-

bilistic explanation: it can be seen as the two-step transition

probability matrix of the nodes defined on {h(xi)}Ni=1.

To further explain this point, we introduce a bipartite

graph B(V,U , E), where each element of V = {vi}Ni=1

and U = {um}Mm=1 represent the Hamming embeddings

of a training sample and a prototype, respectively, and E
contains the edges between V and U . The nodes vi and

um are connected by an undirected edge with the weight

ωim = exp(θ2hT (xi)h(zm)). The full adjacency ma-

trix of B is B = [0,Ω;ΩT ,0] ∈ R
(M+N)×(M+N) with

Ω = [ωim] ∈ R
N×M . Over B, we build stationary Markov

random walks with the one-step transition probability ma-

trix P(1) = D−1B, where D is a diagonal matrix whose di-

agonal entries are the row sums of B. By this, the transition

probabilities in one step time are p
(1)
m|i = pim, p

(1)
j|m = qjm

and p
(1)
j|i = p

(1)
i|j = 0. About the two-step transition proba-

bility p
(2)
j|i , we have the following proposition.

Proposition 1. Given the one-step transition probability

matrix P(1) of B, the two-step transition probabilities are

p
(2)
j|i = πij , i, j = 1, . . . , N. (6)

The proof of this proposition is supplied in supplemen-

tary. It is reasonable to see that the designed neighbor-

hood representation matrix Π describes the probabilities of

transition from one sample node to another in two step-

s. The idea of factorizing a full similarity matrix into t-

wo smaller similarity matrices has been applied in Liu et

al. [20, 21]. However, their approaches do not aim to de-

sign the neighborhood representation matrix that should be

singly stochastic, but to design the adjacency matrix for

semi-supervised learning that is doubly stochastic. More-

over, the anchors for constructing Π used in the work are

learned in a supervised manner instead of being simply set

by K-means as they did.

With the factorization form of Π, we have the following

theorem about Jo(W).

Theorem 1. Given the non-negative similarity matrices Π,

P and Q that satisfy Π = PQT , the objective function

Jo(W) is lower bounded by

Jα(W,Z) =
∑N

i=1
ln(pi) +

∑M

m=1
αm ln(qm), (7)

where pi =
∑M

m=1 rimpim, qm =
∑N

j=1 rjmqjm, αm =
∑N

i=1 rimpim/pi; rim is 1 if yi = ŷm and 0 otherwise.

Please refer to the supplementary material for the proof

of this theorem. Actually, the first term in Eqn. (7) is to

maximize the classification accuracy of the training sam-

ples by using the learned prototypes; while the second ter-

m is to maximize the classification accuracy of the learned

prototypes by using the training samples. αm can be seen as

trade-off parameters. For simplicity, we fix them as an iden-

tical positive constant α, which results in the kNN hashing

model (kNNH)

J(W,Z) =
∑N

i=1
ln(pi) + α

∑M

m=1
ln(qm). (8)
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Figure 2. (a) Different approximation functions of sgn(·); (b) The

average approximation error of different functions ψ(u, v). In (b),

‘lin’ denotes the linear approximation glin(u)glin(v) = glin(uv);
‘tnh’ and ‘sqr’ denote the holistic approximations gtnh(uv) and

gsqr(uv), respectively; ‘tnh-tnh’ and ‘sqr-sqr’ denote the separa-

ble approximations gtnh(u)gtnh(v) and gsqr(u)gsqr(v), respectively.

By this new objective function, the lower bound of Jo(W)
is sufficiently approximated given the proper α. The time

and space complexity of maximizing Eqn. (8) are both

O(N), which are much lower than that of maximizing

Jo(W) directly, i.e., O(N2).
Although the first term in Eqn. (8) is similar to the s-

tochastic neighborhood compression (SNC) model [14], it

is worthy to note that Eqn. (8) is essentially used to approxi-

mate Eqn. (3), which is basically different from SNC. More-

over, kNNH could learn prototypes both in R
D and H

K . By

contrast, SNC and many other prototype learning method-

s [33, 36] only learn prototypes in R
D.

2.3. Approximation of the Sign Function

Due to the sign function, the objective function J(W,Z)
given in Eqn. (8) is non-smooth, making its optimization a

big challenge. In general, there are two strategies to solve

this kind of problem: two-step optimization and continuous

relaxation. The former one decouples the original problem

into two separate tractable subproblems [17, 18]. Although

the decoupling allows fast training, it losses the global op-

timality. The latter replaces the sign function by a smooth

function [22, 31], which could lead to good solution if the

relaxation is appropriate. In this paper, we adopt the sec-

ond scheme and obtain a tractable unconstrained optimiza-

tion problem finally. As different approximation function-

s have different approximation abilities and computational

complexities, it is necessary to compare them in detail.

Since pim and qjm only depend on the product h(u, v) =
hk(x)hk(z) = sgn(u) sgn(v) with u = wT

k x and v =
wT

k z, we only need to approximate it with some smooth

function ψ(u, v). Generally, there are two types of function-

s to achieve this goal: ψ(u, v) = g(u)g(v) and ψ(u, v) =
g(uv). Many functions can be used as g(·): glin(u) = u,

gtnh(u) = tanh(u), and gsqr(u) = u/
√
u2 + ε with ε a pos-

itive constant. As shown in Fig. 2(a), all these odd func-

tions are smooth and strictly increasing, which are reason-

able approximations of sgn(·). Different from the other t-

wo, gsqr(u) has a parameter ε that can regulate the quality

of approximation.

Since all reasonable approximation functions ψ(u, v)
have the same minimal approximation error 0 when u =
v = 0, it is more meaningful to evaluate the mean approx-

imation error. Assume that the ℓ2-norm of samples and

prototypes have the upper bound L1, i.e., ‖xi‖2 ≤ L1,

i = 1, . . . , N , ‖zm‖2 ≤ L1, m = 1, . . . ,M , and wk

satisfies ‖wk‖2 ≤ L2, k = 1, . . . ,K. Based on the

Cauchy inequality, we have |u| = |wT
k x| ≤ ‖wk‖2‖x‖2 ≤

L1L2 , L, which also holds for v. Within the domain

[−L,L] × [−L,L] that (u, v) is defined, the average ap-

proximation error of h(u, v) by ψ(u, v) is defined as

e(L) =
1

4L2

∫ L

−L

∫ L

−L

|h(u, v)− ψ(u, v)| du dv. (9)

The analytical formulations of e(L) for different functions

are given in the supplementary file. To intuitively inspec-

t the approximation error, Fig. 2(b) shows how it changes

with L for different functions, from which it is clear that the

error of linear approximation is unbounded. Even though

additional constraints could be imposed on Eqn. (8) to make

L = 1.5 (the extreme point), the obtained minimal average

error is still too large (i.e., 0.589 per bit), which will lead

to serious performance degradation. As a result, the linear

approximation is actually not a good choice.

All the other approximations have a limited upper bound

of error (i.e., 1.0), and their approximation errors decrease

with the increasing L but with different rates. Among these

approximations, gsqr(u)gsqr(v) and gsqr(uv) with sufficient-

ly small ε can acquire the lowest errors with different L.

However, as they may reduce the smoothness of the objec-

tive function and make the subsequent optimization prob-

lematic, the performance cannot be guaranteed. In other

words, when using them we should set a proper ε. From

the implementation viewpoint, it is more desirable to use

the separable approximation g(u)g(v), as the derivatives of

the objective function can be expressed in compact matrix

forms conveniently. According to the above analysis, we fi-

nally use gtnh(u)gtnh(v) to approximate h(u, v) in our mod-

el. By this approximation, maximizing the objective func-

tion in Eqn. (8) will be a smooth and unconstrained prob-

lem, which can be solved by the famous limited-memory

BFGS (L-BFGS) algorithm [19]. Please refer to the supple-

mental material for detailed derivations of the derivatives.

2.4. Kernelized kNN Hashing

Following KSH [22] and kernelized LSH [13], by us-

ing kernel tricks, kNNH can better deal with linearly insep-

arable data. To this end, we define a prediction function

fk : RD 7→ R for each hash function hk(·) with the kernel
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κ : RD × R
D 7→ R plugged in as follows

fk(x) =
∑M

m=1
κ(zm,x)amk − bk, (10)

where z1, . . . , zM are the anchors, κ(·, ·) is a Mercer kernel

function, amk is the coefficient and bk is the bias. On the ba-

sis of fk(x), the k-th hash function is hk(x) = sgn(fk(x)).
Similar tricks have been used in [12, 13, 22], however, the

anchors therein are randomly selected and kept fixed during

the hash function learning procedure. By contrast, we learn

these anchors from the training data in a supervised man-

ner, which could better capture the data distribution, and

thus make the hash functions be more powerful.

For simplicity, we set every bias to be 0. So that, the

prediction function for the k-th hash function has a simpler

form fk(x) = aTk k(x), where ak = [a1k, . . . , aMk]
T and

k(x) = [κ(z1,x), . . . , κ(zM ,x)]
T . By this, the Hamming

embedding of x in H
K is h(x) = sgn(f(x)), where f(x) =

[f1(x), . . . , fK(x)]T = ATk(x) with A = [a1, . . . ,aK ] ∈
R

M×K . By using the separable approximation of the sign

function, the inner product in pim can be expressed as

hT (xi)h(zm) ≈ g
(

fT (xi)
)

g
(

f(zm)
)

. (11)

The kernelization enables the learned prototypes to capture

the nonlinearity in data. In the kernel version, we learn A

instead of W. Thus, we denote the objective function in E-

qn. (8) as J(A,Z), and call this method as kernelized kNN

hashing (k2NNH). The optimization of k2NNH is similar to

the linear case except for more complicated derivations of

derivatives caused by wrapping Z in the kernel functions,

which are detailed in the supplemental material.

3. Experiments

3.1. Methods and Evaluation Protocols

We evaluate kNNH and k2NNH on three small bench-

marks (Mnist [15], CIFAR10 [11] and SUN397 [34]) and

a large benchmark (ILSVRC14 [4]). They are compared a-

gainst other popular unsupervised (ITQ [6] and AGH [21]),

semi-supervised (SSH [31]), and supervised (BRE, ITQC-

CA [6], KSH, CGH [16] and SDH) methods covering both

linear (ITQ, ITQCCA, SSH and linCGH (linear CGH)) and

nonlinear (AGH, BRE, KSH, kerCGH (CGH with Gaussian

kernel) and SDH) ones. For our methods, M is set to 30C,

30C, 3C and 3C (C is the number of classes) on Mnist, CI-

FAR10, SUN397 and ILSVRC14, respectively; α is set to

10−4N/M ; θ is set as (sθE[‖h(xi) − h(xj)‖H ])−1 where

E[·] denotes the expectation and sθ is set between 0 and 1.

In k2NNH, the Gaussian kernel κ(z,x) = exp(− 1
2γ

2‖z −
x‖22) is used, where γ is estimated by (sγE[‖z0 − x‖2])−1

with z0 the initial prototype obtained by K-means and sγ set

between 0 and 1. For the compared methods, the number of

anchors is set to M if any, and other parameters are set ac-

cording to their authors for a fair comparison. We conduct

experiments on both retrieval and recognition.

To evaluate the retrieval quality, we report the fol-

lowing results: mean average precision (MAP), precision

curves within Hamming radius 2 using hash lookup, preci-

sion curves w.r.t. different number of top returned images,

precision-recall curves.

To evaluate the classification performance of differen-

t hashing methods, the kNN classification precisions are re-

ported, which are obtained by classifying the test data in

Hamming space. Except for the above hashing method-

s, other related data compression techniques are also com-

pared, which include: 1) Using all training data (Full) as

baseline; 2) Learning M/C prototypes per class by opti-

mizing the 1-nearest prototype classifier (ONPC) [33]; 3)

Learning M/C prototypes per class by SNC [14]. With the

compressed training sets produced by these methods, the

kNN classification precisions are computed. The k of the

kNN classifier is obtained by 5-fold cross validation.

3.2. Datasets

We use the 784-dimensional image gray value and the

512-dimensional GIST [25] as the feature for Mnist and CI-

FAR10, respectively. On SUN397 and ILSVRC14, we first

extract the convolutional features (ConvFeat) on ‘fc7’ layer

by the pre-trained CaffeNet [9] and then reduce the features

to 512 dimensions by PCA.

On Mnist and CIFAR10, we randomly select 100 images

per class as the queries and the remaining images are taken

as the database. For ITQ and AGH we use the database for

training. For the supervised methods, we randomly select

1K images per class from the database as labeled images for

training. For SSH, the 10K labeled images combined with

the remaining unlabeled images in the database are used

for training. On SUN397 and ILSVRC14, the data split-

ting and the usage are similar, but the size of the query set

and the labeled training subset are 10, 30 images per class

for SUN397 and 10, 10 images per class for ILSVRC14.

3.3. Results

Retrieval. The retrieval results on three small dataset-

s are reported in Table 2 and Fig. 3(a-c). From Table 2,

we can see that in most cases k2NNH acquires the highest

MAP. With 64-bit binary code, the improvements of MAP

over KSH, kerCGH and SDH are at least 0.04, 0.04 and 0.05

on Mnist, CIFAR10 and SUN397, respectively. For the lin-

ear case, kNNH has a comparable MAP to that of ITQCCA,

both of which outperform other linear methods.

The hash lookup precisions shown in Fig. 3(a) reveal that

k2NNH outperforms most methods when search speed is

the first concern in which case the used bits are as few as

possible. Even with more bits, k2NNH still returns lots of
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Figure 3. Retrieval and classification performance of different hashing methods on Mnist, CIFAR10 and SUN397 (from top to bottom). (a)

Precision within Hamming radius 2 using hash lookup with different number of hash bits; (b) Precision curves with 48 bits w.r.t. different

number of top returned images; (c) precision-recall curves with 48 bits; (d) kNN classification precision with various hash bits.

Method 12 bits 16 bits 24 bits 32 bits 48 bits 64 bits

ITQCCA 0.0338 0.0434 0.0629 0.0803 0.1076 0.1322

kNNH 0.0515 0.0620 0.0655 0.0804 0.1077 0.1265

KSH 0.0333 0.0434 0.0615 0.0834 0.1115 0.1316

kerCGH 0.0400 0.0471 0.0540 0.0584 0.0797 0.0949

SDH 0.0333 0.0501 0.0805 0.1083 0.1486 0.1757

k
2NNH 0.1010 0.1289 0.1529 0.1655 0.1786 0.1825

Table 1. MAP of different hashing methods on ILSVRC14.

correct neighbors by hash lookup. This demonstrates that

k2NNH can map similar samples to the closer buckets as

many as possible. From Fig. 3(b), k2NNH is much better

than the other methods on Mnist and CIFAR10 when the

top returned images are relatively more, e.g., 50+, and it ac-

quires the highest Hamming ranking precisions with differ-

ent number of returned images on SUN397. From Fig. 3(c),

k2NNH acquires the highest precisions for most recalls.

To further demonstrate the effectiveness of our methods,

we also conduct the experiments on ILSVRC14. The re-

sults are shown in Table 1. From this table, kNNH is as

good as ITQCCA, if not better. For nonlinear case, k2NNH

obtains the highest MAP on all bits, which is significantly

better than other methods. Thus, by maximizing the kNN

accuracy and learning anchors, our method does learn good

hash functions.

Exemplar-based recognition. The need of storing al-

l training exemplars and the costly brute-force neighbor

search are two bottlenecks of the kNN-based object/scene

recognition. The classical prototype learning [14, 33] is a

common technique in reducing the storage and computa-

tion of the kNN classifier. Hashing, as a new data reduction

method, has seldom been explored in this field except for a

few scattered works [14, 29]. This part will systematacially

compare the ability of these two groups of methods in the

context of kNN classification. The comparison is carried

out in terms of kNN precision, storage cost and test time.

The kNN precision of different hashing methods with

different hash bits are shown in Fig. 3(d), and the compre-

hensive evaluation of hashing and prototype leaning is given

in Table 3. In Table 3, the storage includes the cost for data

pre-processing (e.g., saving the mean vector), storing hash

functions and the compressed training samples (in R
N or

H
K) as well as their labels. Here, we use 16-bit integer, 8-

bit integer and double to store the labels, the binary features

and the other data, respectively. The test time consists of the

time for pre-processing the query feature (e.g., subtracting

the mean), Hamming encoding and 1NN classification.

From Fig. 3(d), the kNN classification precision of

k2NNH outperforms all other hashing methods. From Ta-

ble 3, we have the following observations: 1) In general,

prototype leaning (ONPC and SNC) is indeed a good data

compression technique for kNN—high precision, relative-

ly low storage and fast test speed. 2) Although the current

hashing methods have shown effectiveness in retrieval, most

of them are not proficient in the exemplar-based recogni-

tion. In other words, their precision, storage and test speed
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Method

Mnist (70K, 784-Pixel) CIFAR10 (60K, 512-GIST) SUN397 (108K, 512-ConvFeat)

MAP Time(s) MAP Time(s) MAP Time(s)

24 bits 48 bits 64 bits 48 bits 24 bits 48 bits 64 bits 48 bits 24 bits 48 bits 64 bits 48 bits

ITQ 0.4286 0.4399 0.4473 9.0 0.1696 0.1731 0.1742 5.9 0.0414 0.0577 0.0641 10.6

AGH 0.6508 0.6256 0.6185 393.9 0.1638 0.1542 0.1525 220.0 0.0578 0.0732 0.0779 1377.1

SSH 0.5368 0.5659 0.5878 189.3 0.2114 0.2172 0.2128 199.1 0.0335 0.0457 0.0482 336.1

ITQCCA 0.7477 0.7682 0.7723 18.9 0.3039 0.3232 0.3278 8.2 0.0546 0.0861 0.1009 34.9

linCGH 0.7869 0.8042 0.7994 2526.9 0.2989 0.3129 0.3122 2217.4 0.0496 0.0697 0.0788 1942.3

kNNH 0.7944 0.8165 0.8149 549.0 0.2968 0.3300 0.3222 332.3 0.0412 0.0772 0.0808 816.1

BRE 0.6099 0.6571 0.6696 48345.9 0.1869 0.2058 0.2147 29599.8 0.0211 0.0345 0.0414 44784.6

KSH 0.8555 0.8771 0.8780 6637.0 0.3222 0.3485 0.3613 6419.2 0.0408 0.0628 0.0774 14090.1

kerCGH 0.8638 0.8802 0.8899 2224.1 0.3104 0.3366 0.3402 2260.3 0.0439 0.0562 0.0653 2701.6

SDH 0.8597 0.8924 0.8974 5.9 0.3148 0.3385 0.3431 5.1 0.0399 0.0703 0.0815 15.4

k
2NNH 0.8615 0.9288 0.9395 359.1 0.3487 0.4005 0.4108 368.7 0.0944 0.1243 0.1327 1689.1

Table 2. MAP and training time of different hashing methods on Mnist, CIFAR10 and SUN397.

Method

Mnist (70K, 784-Pixel) CIFAR10 (60K, 512-GIST) SUN397 (108K, 512-ConvFeat)

kNN Pre.(%) Str.(KB) Time(µs) kNN Pre.(%) Str.(KB) Time(µs) kNN Pre.(%) Str.(KB) Time(µs)

48 bits 64 bits 48 bits 48 bits 48 bits 64 bits 48 bits 48 bits 48 bits 64 bits 48 bits 48 bits

Full 94.60 61269.5 255.0 52.40 40019.5 198.3 33.58 47663.3 167.7

ONPC 95.00 1838.1 16.0 59.00 1200.6 18.9 38.21 4766.3 21.3

SNC 94.80 1838.1 18.7 58.40 1200.6 18.3 40.15 4766.3 20.5

ITQ 92.10 91.30 378.3 103.6 40.30 41.90 274.1 104.2 21.21 22.77 289.1 112.7

AGH 89.60 91.00 1972.3 141.8 41.50 40.00 1334.8 127.9 18.69 20.65 5080.7 177.8

SSH 80.50 84.30 734.3 107.3 47.30 48.30 519.6 100.7 21.69 24.16 534.6 112.5

ITQCCA 87.50 87.50 378.3 101.4 54.30 55.10 274.1 99.7 21.41 25.24 289.1 111.6

linCGH 90.30 90.40 385.1 112.8 55.60 56.00 278.9 109.1 24.79 27.93 293.8 121.8

kNNH 86.70 87.30 302.5 10.5 53.00 51.80 198.4 7.2 21.08 21.86 205.3 16.0

BRE 89.10 90.80 13165.3 238.5 43.90 46.00 8630.3 191.3 18.87 21.51 8785.3 180.0

KSH 92.40 92.80 2030.5 104.9 55.10 57.10 1393.0 106.0 22.59 25.42 5313.0 135.1

kerCGH 93.00 94.20 2043.5 132.3 53.30 55.30 1401.7 118.6 24.08 26.22 5321.7 154.5

SDH 85.40 93.40 2028.5 113.8 54.30 53.00 1391.0 115.9 26.73 29.32 5304.1 138.4

k2NNH 94.30 95.40 1958.5 23.9 58.00 61.60 1318.9 15.0 29.32 30.03 5224.0 38.6

Table 3. kNN classification performance, i.e., precision (kNN Pre.), storage (Str.), and test time per sample, of different methods.

are less satisfactory than prototype learning. 3) By directly

modeling on the kNN classification, our proposed kNNH

acquires the fastest test speed, the lowest storage and mod-

erate precision on all datasets. Thus, it is very suitable for

large-scale data or the applications on low-memory devices.

These advantages are owing to the fact that kNNH com-

bined prototype learning and hashing learning in an effec-

tive way. 4) Compared to the prototype learning, k2NNH

acquires higher classification precisions on Mnist and CI-

FAR10 with comparable storage and test time, demonstrat-

ing the effectiveness of kernel strategy. On SUN397, al-

though all the hashing methods perform worse than proto-

type learning, the classification precision gaps of k2NNH to

prototype learning are remarkably lower than others.

Training time. Many prior supervised hashing method-

s are slow in training due to the operations on the N × N
similarity matrix. For example, for about 10K training sam-

ples, BRE needs 20K+ seconds and KSH needs 6K+ sec-

onds to learn 48-bit hash functions (c.f . Table 2), limiting

their ability to process larger dataset effectively. By con-

trast, with the help of neighborhood factorization, our meth-

ods can easily deal with the large-size dataset. For exam-

ple, we only need less than 400s for training on CIFAR10

for both kNNH and k2NNH, which is 16 times faster than

KSH and 78 times faster than BRE. Furthermore, from the

first row of Fig. 4, compared to many other methods, the

training times of kNNH and k2NNH grow slowly with K.

Although kNNH and k2NNH are slower than ITQCCA and

SDH in training, k2NNH achieves much better retrieval and

recognition performance (c.f . Table 2 and Table 3) and they

spend much less time for classification (c.f . Table 3).

Different approximations to sign function. The Ham-

ming ranking precisions with different approximation func-

tions are shown in the second row of Fig. 4. These curves

validate that a proper approximation of the sign function is

important. Even though the ‘lin-lin’ approximation is sim-

ple and commonly-used, its large approximation error leads

to poor performance. The ‘sqr-sqr’ approximation can af-

ford different approximation accuracies, however, it needs

selecting the best ε. The ‘tnh-tnh’ approximation acquires

the comparable performance to the best ‘sqr-sqr’ approxi-

mation, and it does not have additional parameter to set.
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Figure 4. Training time and the effect of different approximation functions on three methods. First row: training time; Second row:

Hamming ranking precision of top-2K ranked neighbors with different approximation functions ψ(u, v). Note that ε is only used in

‘sqr-sqr’, and so other methods have constant results.
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Figure 5. Anchor type and anchor number. (a) Learned anchors vs

fixed anchors; (b) MAP with varying anchor number.

Performance Method 16 bits 24 bits 32 bits 48 bits

Train. Time(s)
linNCA 1100.9 1114.6 1113.1 1124.3
kNNH 222.3 362.4 193.5 332.3

MAP
linNCA 0.2485 0.2824 0.3055 0.3259
kNNH 0.2645 0.2968 0.3161 0.3300

Table 4. The performance of linNCA and kNNH on CIFAR10.

Effectiveness of neighborhood factorization. The

training time and MAP of directly solving the original ob-

jective function in Eqn. (3) (called linNCA) and solving the

relaxed objective function in Eqn. (8) (i.e., kNNH) are com-

pared in Table 4. We can see that kNNH achieves compa-

rable MAP to linNCA with much shorter training time for

most hash bits. We found that the training time of linNCA

decreases with the increased hash bits as it practically needs

fewer iterations to converge when the number of hash bit-

s increases. It is worth to note that when the number of

training samples is further increased, the computation time

of linNCA in each iteration will largely increase while that

of kNNH is less influenced due to the factorized neighbor-

hood representation. Moreover, linNCA is also impractical

for large training set considering its high memory cost.

Different anchor types and anchor numbers. The ef-

fect of anchor type and number is studied on CIFAR10 and

the results are shown in Fig. 5. From Fig. 5(a), one can

note that, in the nonlinear case, picking anchors by K-means

(k2NNH-fix) only achieves a half MAP of that obtained

by learning them in k2NNH. For the linear case, optimiz-

ing anchors also helps, even not very much. The results of

k2NNH-fix are worse than those of linear models might be-

cause the quality of feature mapping relies heavily on the

anchor quality. From Fig. 5(b), it is obvious that k2NNH

could achieve equal MAP to other methods with much few-

er anchors. For instance, with only 200 anchors, k2NNH

reaches the MAP of SDH using 1000 anchors. Thus, its

query time and storage cost reduce to 1/5 of SDH.

4. Conclusions

This paper proposes a novel hashing method that learns

hash functions by optimizing the kNN accuracy of the bina-

ry embeddings of the training data. By introducing a factor-

ized neighborhood system, it scales well to large problems.

By extending the linear model to the nonlinear case using k-

ernel tricks, the performance is significantly improved. Ex-

periments on retrieval and recognition demonstrate that the

proposed method outperforms prior hashing methods.
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