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Abstract

We propose a new family of discrete energy minimiza-

tion problems, which we call parsimonious labeling. Our

energy function consists of unary potentials and high-order

clique potentials. While the unary potentials are arbitrary,

the clique potentials are proportional to the diversity of

the set of unique labels assigned to the clique. Intuitively,

our energy function encourages the labeling to be parsimo-

nious, that is, use as few labels as possible. This in turn

allows us to capture useful cues for important computer vi-

sion applications such as stereo correspondence and image

denoising. Furthermore, we propose an efficient graph-cuts

based algorithm for the parsimonious labeling problem that

provides strong theoretical guarantees on the quality of the

solution. Our algorithm consists of three steps. First, we

approximate a given diversity using a mixture of a novel

hierarchical Pn Potts model. Second, we use a divide-and-

conquer approach for each mixture component, where each

subproblem is solved using an efficient α-expansion algo-

rithm. This provides us with a small number of putative la-

belings, one for each mixture component. Third, we choose

the best putative labeling in terms of the energy value. Us-

ing both synthetic and standard real datasets, we show that

our algorithm significantly outperforms other graph-cuts

based approaches.

1. Introduction
The labeling problem provides an intuitive formulation

for several tasks in computer vision and related areas.

Briefly, the labeling problem is defined using a set of ran-

dom variables, each of which can take a value from a finite

and discrete label set. The assignment of values to all the

variables is referred to as a labeling. In order to quantita-

tively distinguish between the large number of putative la-

belings, we are provided with an energy function that maps

a labeling to a real number. The energy function consists of

two types of terms: (i) the unary potential, which depends

on the label assigned to one random variable; and (ii) the

clique potential, which depends on the labels assigned to a

subset of random variables. The goal of the labeling prob-

lem is to obtain the labeling that minimizes the energy.

A well-studied special case of the labeling problem is

metric labeling [2, 16]. Here, the unary potentials are ar-

bitrary. However, the clique potentials are specified by

a user-defined metric distance function of the label space.

Specifically, the clique potentials satisfy the following two

properties: (i) each clique potential depends on two ran-

dom variables; and (ii) the value of the clique potential (also

referred to as the pairwise potential) is proportional to the

metric distance between the labels assigned to the two ran-

dom variables. Metric labeling has been used to formulate

several problems in low-level computer vision, where the

random variables correspond to image pixels. In such sce-

narios, it is natural to encourage two random variables that

correspond to two nearby pixels in the image to take simi-

lar labels. However, by restricting the size of the cliques to

two, metric labeling fails to capture more informative high-

order cues. For example, it cannot encourage an arbitrary

sized set of similar pixels (such as pixels that define a ho-

mogeneous superpixel) to take similar labels.

We propose a natural generalization of the metric label-

ing problem for high-order potentials, which we call par-

simonious labeling. Similar to metric labeling, our energy

function consists of arbitrary unary potentials. However, the

clique potentials can be defined on any subset of random

variables, and their value depends on the set of unique la-

bels assigned to the random variables in the clique. In more

detail, the clique potential is defined using the recently pro-

posed notion of a diversity [3, 4], which generalizes metric

distance functions to all subsets of the label set. By min-

imizing the diversity, our energy function encourages the

labeling to be parsimonious, that is, use as few labels as

possible. This in turn allows us to capture useful cues for

important low-level computer vision applications.

In order to be practically useful, we require a computa-

tionally feasible solution for parsimonious labeling. To this

end, we design a novel three step algorithm that uses an ef-

ficient graph cuts based method as its key ingredient. The

first step of our algorithm approximates a given diversity as

a mixture of a novel hierarchical Pn Potts model (a gen-

eralization of the Pn Potts model [17]). The second step

of our algorithm solves the labeling problem correspond-
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ing to each component of the mixture via a divide-and-

conquer approach, where each subproblem is solved using

α-expansion [29]. This provides us with a small set of puta-

tive labelings, each corresponding to a mixture component.

The third step of our algorithm chooses the putative label-

ing with the minimum energy. Using both synthetic and

real datasets, we show that our overall approach provides

accurate results for various computer vision applications.

2. Related Work

In last few years the research community has witnessed

many successful applications of high-order random fields

to solve low level vision related problems such as object

segmentation [8, 9, 18, 22, 28, 30], disparity estimation [15,

31], and image restoration [23]. In this work, our focus is on

methods that (i) rely on efficient move-making algorithms

based on graph cuts; (ii) provide a theoretical guarantee on

the quality of the solution. Below, we discuss the work most

closely related to ours in more detail.

Kohli et al. [17] proposed the Pn Potts model, which

enforces label consistency over a set of random variables.

In [18], they presented a robust version of the Pn Potts

model that takes into account the number of random vari-

ables that have been assigned an inconsistent label. Both

the Pn Potts model and its robust version lend themselves to

the efficient α−expansion algorithm [17, 18]. Furthermore,

the α−expansion algorithm also provides a multiplicative

bound on the energy of the estimated labeling with respect

to the optimal labeling. While the robust Pn Potts model

has been shown to be very useful for semantic segmenta-

tion, our generalization of the Pn Potts model offers a natu-

ral extension of the metric labeling problem and is therefore

more widely applicable to several low-level vision tasks.

Delong et al. [8] proposed a global clique potential (label

cost) that is based on the cost of using a label or a subset of

labels in the labeling of the random variables. Similar to the

Pn Potts model, the label cost based potential can also be

minimized using α−expansion. However, the theoretical

guarantee provided by α−expansion is an additive bound,

which is not invariant to reparameterization of the energy

function. Delong et al. [7] also proposed an extension of

their work to hierarchical costs. However, the assumption

of a given hierarchy over the label set limits its applications.

Ladicky et al. [22] proposed a global co-occurrence cost

based high order model for a much wider class of energies

that encourage the use of a small set of labels in the esti-

mated labeling. Theoretically, the only constraint that [22]

enforces in high order clique potential is that it should be

monotonic in the label set. In other words, [22] can be re-

garded as a generalization of parsimonious labeling. How-

ever, they approximately optimize an upperbound on the ac-

tual energy function, which does not provide any optimality

guarantees. In our experiments, we demonstrate that our

move-making algorithm significantly outperforms their ap-

proach for the special case of parsimonious labeling.

Fix et al. [12] proposed an algorithm (SoSPD) for high-

order random fields with arbitrary clique potentials. Each

move of this algorithm requires us to approximately up-

perbound the clique potential into a submodular function

and then optimize it using the submodular max-flow algo-

rithm [19]. We show that our move making algorithm for

parsimonious labeling has a much stronger multiplicative

bound and better time complexity compared to [12].

3. Preliminaries
The labeling problem. Consider a random field defined

over a set of random variables x = {x1, · · · , xN} ar-

ranged in a predefined lattice V = {1, · · · , N}. Each

random variable can take a value from a discrete label set

L = {l1, · · · , lH}. Furthermore, let C denote the set of

maximal cliques. Each maximal clique consists of a set of

random variables that are all connected to each other in the

lattice. A labeling is defined as the assignment or mapping

of random variables to the labels. To assess the quality of

each labeling x we define an energy function as:

E(x) =
∑

i∈V

θi(xi) +
∑

c∈C

θc(xc). (1)

where θi(xi) is the unary potential of assigning a label xi

to the variable i, and θc(xc) is the clique potential for as-

signing the labels xc to the variables in the clique c. Clique

potentials are assumed to be non-negative. As will be seen

shortly, this assumption is satisfied by the new family of en-

ergy functions proposed in our paper. The total number of

putative labelings is HN , each of which can be assessed us-

ing its corresponding energy value. Within this setting, the

labeling problem is to find the labeling corresponding to the

minimum energy according to the function (1). Formally,

the labeling problem is: x∗ = argmin
x
E(x).

Pn Potts model. An important special case of the label-

ing problem, which will be used throughout this paper, is

defined by the Pn Potts model [17]. The Pn Potts model

is a generalization of of the well known Potts model [24]

for high-order energy functions (cliques can be of arbitrary

sizes). For a given clique, the Pn Potts model is defined as:

θc(xc) ∝

{

γk, if xi = lk, ∀i ∈ c,

γmax, otherwise,
(2)

where γk is the cost of assigning all the nodes to the label

lk ∈ L, and γmax > γk, ∀lk ∈ L. Intuitively, the Pn Potts

model enforces label consistency by assigning the cost of

γmax if there are more than one label in the given clique.

α-expansion for Pn Potts model. In order to solve the la-

beling problem corresponding to the Pn Potts model, Kohli

et al. [17] proposed to use the α−expansion algorithm [29].

The α−expansion algorithm starts with an initial labeling,
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for example, by assigning each random variable to the label

l1. At each iteration, the algorithm moves to a new labeling

by searching over a large move space. Here, the move space

is defined as the set of labelings where each random variable

is either assigned its current label or the label α. The key

result that makes α−expansion a computationally feasible

algorithm for the Pn Potts model is that the minimum en-

ergy labeling within a move-space can be obtained using

a single minimum st-cut operation on a graph that consists

of a small number (linear in the size of the variables and

the cliques) of vertices and arcs. The algorithm terminates

when the energy cannot be reduced further for any choice

of the label α. We refer the reader to [17] for further details.

Multiplicative Bound. An intuitive and commonly used

measure of the accuracy of an approximation algorithm

is the multiplicative bound. Formally, the multiplicative

bound of a given algorithm is said to be B if the following

condition is satisfied for all possible values of unary poten-

tial θi(.), and clique potentials θc(xc):

∑

i∈V

θi(x̂i) +
∑

c∈C

θc(x̂c) ≤
∑

i∈V

θi(x
∗
i ) +B

∑

c∈C

θc(x
∗
c). (3)

Here, x̂ is the labeling estimated by the algorithm and x
∗

is a globally optimal labeling. By definition of an optimal

labeling (one that has the minimum energy), the multiplica-

tive bound will always be greater than or equal to one [20].

The α−expansion algorithm for the Pn Potts model has

the multiplicative bound of λmin(M, |L|), where, M is

the size of the largest clique, |L| is the number of labels,

and λ = γmax

γmin , where γmin = minxc,θc(xc) 6=0 θc(xc) and

γmax = maxxc
θc(xc)[14].

4. Parsimonious Labeling
The parsimonious labeling problem is defined using an

energy function that consists of unary potentials and clique

potentials defined over cliques of arbitrary sizes. While the

parsimonious labeling problem places no restrictions on the

unary potentials, the clique potentials are specified using a

diversity function [3]. Before describing the parsimonious

labeling problem in detail, we briefly define the diversity

function for the sake of completion.

Definition 1. A diversity is a pair (L, δ), where L is the

label set and δ is a non-negative function defined on subsets

of L, δ : Γ→ R, ∀Γ ⊆ L, satisfying :

• Non Negativity: δ(Γ) ≥ 0, and δ(Γ) = 0, if and only

if, |Γ| ≤ 1.

• Triangular Inequality: if Γ2 6= ∅, δ(Γ1 ∪Γ2)+ δ(Γ2 ∪
Γ3) ≥ δ(Γ1 ∪ Γ3), ∀Γ1,Γ2,Γ3 ⊆ L.

• Monotonicity: Γ1 ⊆ Γ2 implies δ(Γ1) ≤ δ(Γ2).

Using a diversity function, we can define a clique poten-

tial as follows. We denote by Γ(xc) the set of unique labels

in the labeling of the clique c. Then, θc(xc) = wcδ(Γ(xc)),
where δ is a diversity function and wc is the non-negative

weight corresponding to the clique c. Formally, the parsi-

monious labeling problem amounts to minimizing the fol-

lowing energy function:

E(x) =
∑

i∈V

θi(xi) +
∑

c∈C

wcδ(Γ(xc)). (4)

Therefore, given a clique xc and the set of unique la-

bels Γ(xc) assigned to the random variables in the clique,

the clique potential function for the parsimonious labeling

problem is defined using δ(Γ(xc)), where δ : Γ(xc) → R

is a diversity function.

Intuitively, diversities enforces parsimony by choosing

a solution with fewer unique labels from a set of equally

likely solutions. This is an essential property in many vi-

sion problems, for example, in the case of image segmenta-

tion, we would like to see label consistency within superpix-

els in order to preserve discontinuity. Unlike the Pn Potts

model the diversity does not enforce the label consistency

very rigidly. It gives monotonic rise to the cost based on the

number of labels assigned to the given clique.

An important special case of the parsimonious labeling

problem is the metric labeling problem, which has been ex-

tensively studied in computer vision [2, 21] and theoretical

computer science [5, 16]. In metric labeling, the maximal

cliques are of size two (pairwise) and the clique potential

function is a metric distance function defined over the la-

bels. Recall that a distance function d : L × L → R is a

metric if and only if: (i) d(., .) ≥ 0; (ii) d(i, j) + d(j, k) ≥
d(i, k), ∀i, j, k; and (iii) d(i, j) = 0 if and only if i = j.

Notice that there is a direct link between the metric distance

function and the diversities. Specifically, metric distance

functions are diversities defined on subsets of size 2. In

other words, diversities are the generalization of the met-

ric distance function and boil down to a metric distance

function if the input set is restricted to the subsets with

cardinality of at most two. Another way of understand-

ing the connection between metrics and diversities is that

every diversity induces a metric. In other words, consider

d(li, li) = δ(li) = 0 and d(li, lj) = δ({li, lj}). Using

the properties of diversities, it can be shown that d(·, ·) is

a metric distance function. Hence, in case of energy func-

tion defined over pairwise cliques, the parsimonious label-

ing problem reduces to the metric labeling problem.

In the remaining part of this section we talk about a spe-

cific type of diversity called the diameter diversity. We

show its relation with the well known Pn Potts model. Fur-

thermore, we propose a hierarchical Pn Potts model based

on the diameter diversity defined over a hierarchical clus-

tering (defined shortly). However, note that our approach is

applicable to any general parsimonious labeling problem.
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Figure 1: An example of r-HST for r = 2. The cluster asso-

ciated with root p contains all the labels. As we go down,

the cluster splits into subclusters and finally we get the sin-

gletons, the leaf nodes (labels). The root is at depth of 1

(τ = 1) and leaf nodes at τ = 3. The metric defined over

the r-HST is denoted as dt(., .), the shortest path between

the inputs. For example, dt(l1, l3) = 18 and dt(l1, l2) = 6.

The diameter diversity for the subset of labels at cluster p is

max{li,lj}∈{l1,l2,l3,l4} d
t(li, lj) = 18.

Diameter Diversity. In this work, we are primarily in-

terested in the diameter diversity [3]. Let (L, δ) be a di-

versity and (L, d) be the induced metric of (L, δ), where

d : L × L → R and d(li, lj) = δ({li, lj}), ∀li, lj ∈ L, then

for all Γ ⊆ L, the diameter diversity is defined as:

δdia(Γ) = max
li,lj∈Γ

d(li, lj). (5)

Clearly, given the induced metric function defined over a

set of labels, diameter diversity over any subset of labels

gives the measure of the dissimilarity (or diversity) of the

labels. More the dissimilarity, based on the induced metric

function, higher is the diameter diversity. Therefore, using

diameter diversity as clique potentials enforces the similar

labels to be together. Thus, a special case of parsimonious

labeling in which the clique potentials are of the form of

diameter diversity can be defined as below:

E(x) =
∑

i∈V

θi(xi) +
∑

c∈C

wcδ
dia(Γ(xc)). (6)

Notice that the diameter diversity defined over uniform met-

ric is nothing but the Pn Potts model where γi = 0. In what

follows we define a generalization of the Pn Potts model,

the hierarchical Pn Potts model, which will play a key role

in the rest of the paper.

The Hierarchical Pn Potts Model. The hierarchical Pn

Potts model is a diameter diversity defined over a special

type of metric known as the r-HST metric. A rooted tree, as

shown in Figure 1, is said to be an r-HST, or r-hierarchically

well separated [1] if it satisfy the following properties: (i)

all the leaf nodes are the labels; (ii) all edge weights are

positive; (iii) the edge lengths from any node to all of its

children are the same; and (iv) on any root to leaf path the

edge weight decrease by a factor of at least r > 1. We

can think of a r-HST as a hierarchical clustering of the given

label set L. The root node is the cluster at the top level of

the hierarchy and contains all the labels. As we go down in

the hierarchy, the clusters break down into smaller clusters

until we get as many leaf nodes as the number of labels in

the given label set. The metric distance function defined

on this tree dt(., .) is known as the r-HST metric. In other

words, the distance dt(·, ·) between any two nodes in the

given r-HST is the length of the unique path between these

nodes in the tree. The diameter diversity defined over dt(., .)
is called the hierarchical Pn Potts model. Figure 1 shows

an example of diameter diversity defined over an r-HST.

5. The Hierarchical Move Making Algorithm

In the first part of this section we propose a move making

algorithm for the hierarchical Pn Potts model (defined in

the previous section). In the second part, we show how our

hierarchical move making algorithm can be used to address

the general parsimonious labeling problem with optimality

guarantees (strong multiplicative bound).

5.1. The Hierarchical Move Making Algorithm for
the Hierarchical Pn Potts Model

In the hierarchical Pn Potts model the clique potentials

are of the form of the diameter diversity defined over a given

r-HST metric function. The move making algorithm pro-

posed in this section to minimize such an energy function is

a divide-and-conquer based approach, inspired by the work

of [21]. Instead of solving the actual problem, we divide the

problem into smaller subproblems where each subproblem

is a Pn Potts model, which can be solved efficiently using

α−expansion [17]. More precisely, given an r-HST, each

node of the r-HST corresponds to a subproblem. We start

with the bottom node of the r-HST, which is a leaf node, and

go up in the hierarchy solving each subproblem associated

with the nodes encountered.

In more detail, consider a node p of the given r-HST. Re-

call that any node p in the r-HST is a cluster of labels de-

noted as Lp ⊆ L (Figure 1). In other words, the leaf nodes

of the subtree rooted at p belongs to the subset Lp. Thus,

the subproblem defined at node p is to find the labeling x
p

where the label set is restricted to Lp, as defined below.

x
p = argmin

x∈(Lp)N

(

∑

i∈V

θi(xi) +
∑

c∈C

wcδ
dia(Γ(xc))

)

. (7)

If p is the root node, then the above problem (equation

(7)) is as difficult as the original labeling problem (since

Lp = L). However, if p is the leaf node then the solution

of the problem associated with p is trivial, x
p
i = p for all

i ∈ V , that is, assign the label p to all the random vari-

ables. This insight leads to the design of our approximation

algorithm, where we start by solving the simple problems

corresponding to the leaf nodes, and use the labelings ob-

tained to address the more difficult problem further up the
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Figure 2: An example of solving the labeling problem at

non-leaf node (p) by combining the solutions of its child

nodes {p1, p2}, given clique c and the labelings that it has

obtained at the child nodes. The labeling fusion instance

shown in this figure is the top two levels of the r-HST in the

Figure 1. The diameter diversity of the labeling of clique c

at node p1 is 0 as it contains only one unique label l1. The

diameter diversity of the labeling at p2 is dt(l3, l4) = 6 and

at p is max{li,lj}∈{l1,l3,l4} d
t(li, lj) = 18.

hierarchy. In what follows, we describe how the labeling of

the problem associated with the node p, when p is a non-leaf

node, is obtained using the labelings of its children node.

Solving the Parent Labeling Problem. Before delving

into the details, let us define some notations for the purpose

of clarity. Let T be the depth (or the number of levels) of

the given r-HST andN (τ) be the set of nodes at level τ . The

root node is at the top level (τ = 1). Let η(p) denotes the set

of child nodes associated with a non-leaf node p and η(p, k)
denotes its kth child node. Recall that our approach is bot-

tom up. Therefore, for each child node of p we already have

an associated labeling. We denote the labeling associated

with the kth child of the node p as x
η(p,k). Thus, x

η(p,k)
i

denotes the label assigned to the ith random variable by the

labeling of the kth child of the node p. We also define an N

dimensional vector tp ∈ {1, · · · , |η(p)|}N , where |η(p)| is
the number of child nodes of node p. More precisely, for a

given t
p, t

p
i = k denotes that the label for the ith random

variable comes from the kth child of the node p. Therefore,

the labeling problem at node p reduces to finding the opti-

mal tp. Thus, the labeling problem at node p amounts to

finding the best child index k ∈ {1, · · · , |η(p)|} for each

random variable i ∈ V so that the label assigned to the ran-

dom variable comes from the labeling of the kth child (step

7, Algorithm 1).

Using the above notations, associated with a tp we define

a new energy function as:

E(tp) =
∑

i∈V

θ̄i(t
p
i ) +

∑

c∈C

wcθ̄c(t
p
c). (8)

where

θ̄i(t
p
i ) = θi(x

η(p,k)
i ) if t

p
i = k. (9)

Algorithm 1 The Move Making Algorithm for the Hierar-

chical Pn Potts Model.

input r-HST Metric; wc, ∀c ∈ C; and θi(xi), ∀i ∈ V
1: τ = T , the leaf nodes

2: repeat

3: for each p ∈ N (τ) do

4: if |η(p)| = 0, leaf node then

5: x
p
i = p, ∀i ∈ V

6: else

7: Fusion Move

t̂
p = argmin

tp∈{1,··· ,|η(p)|}N

E(tp) (10)

8: x
p
i = x

η(p,t̂p
i
)

i .

9: end if

10: end for

11: τ ← τ − 1
12: until τ > 0.

In other words, the unary potential for t
p
i = k is the unary

potential associated to the ith random variable correspond-

ing to the label x
η(p,k)
i .

The new clique potential θ̄c(t
p
c) is as defined below:

θ̄c(t
p
c) =

{

γ
p
k , if t

p
i = k, ∀i ∈ c,

γp
max, otherwise,

(11)

where γ
p
k = δdia(Γ(x

η(p,k)
c )) is the diameter diversity of

the set of unique labels associated with x
η(p,k)
c and γp

max =

δdia(L̄
p). The set L̄p = ∪k∈η(p)Γ(x

η(p,k)
c ) is the union

of the unique labels associated with the child nodes of

p. Recall that, because of the construction of the r-HST,

Lq ⊂ L̄p ⊆ Lp for all q ∈ η(p). Hence, the monotonic-

ity property of the diameter diversity (Definition 1) ensures

that γp
max > γ

p
k , ∀k ∈ η(p). This is the sufficient criterion

to prove that the potential function defined by equation (11)

is a Pn Potts model. Therefore, the α−expansion algorithm

can be used to obtain the locally optimal tp for the energy

function (8). Given the locally optimal t̂p, the labeling x
p at

node p can be trivially obtained as follows: x
p
i = x

η(p,t̂p
i
)

i .

In other words, the final label of the ith random variable is

the one assigned to it by the (t̂pi )
th child of node p.

Figure 2 shows an instance of the above mentioned algo-

rithm to combine the labelings of the child nodes to obtain

the labeling of the parent node. The complete hierarchical

move making algorithm for the hierarchical Pn Potts model

is shown in the Algorithm 1.

Multiplicative Bound. Theorem 1 gives the multiplica-

tive bound for the move making algorithm for the hierarchi-

cal Pn Potts model.
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Algorithm 2 The Move Making Algorithm for the Parsimo-

nious Labeling Problem.

input Diversity (L, δ); wc, ∀c ∈ C; θi(xi), ∀i ∈ V; L; k

1: Approximate the given diversity as the mixture of k hi-

erarchical Pn Potts model using Algorithm 3.

2: for each hierarchical Pn Potts model in the mixture do

3: Use the hierarchical move making algorithm defined

in the Algorithm 1.

4: Compute the corresponding energy.

5: end for

6: Choose the solution with the minimum energy.

Algorithm 3 Diversity to Mixture of Hierarchical Pn Potts

Model.

input Diversity (L, δ), k
1: Compute the induced metric, d(., .), where d(li, lj) =

δ({li, lj}), ∀li, lj ∈ L.

2: Approximate d(., .) into mixture of k r-HST metrics

dt(., .) using the algorithm proposed in [10].

3: for each r-HST metrics dt(., .) do

4: Obtain the corresponding hierarchical Pn Potts

model by defining the diameter diversity over dt(., .)
5: end for

Theorem 1. The move making algorithm for the hierarchi-

cal Pn Potts model, Algorithm 1, gives the multiplicative

bound of
(

r
r−1

)

min(M, |L|) with respect to the global

minima. Here,M is the size of the largest maximal-clique

and |L| is the number of labels.

Proof Sketch. The factor of min(M, |L|) comes from the

fact that each subproblem amounts to solving α−expansion

for the Pn Potts models. The factor of
(

r
r−1

)

comes from

the fact that the edge lengths of the r-HST forms a geometric

progression (refer to Figure 1), therefore, the distance be-

tween any two leaf node is upperbounded by emax
(

r
r−1

)

,

where emax is the length of the longest edge. Please see the

technical report for the detailed proof.

5.2. The Move Making Algorithm for the Parsimo­
nious Labeling

In the previous subsection, we proposed a hierarchical

move making algorithm for the hierarchical Pn Potts model

(Algorithm 1). This restricted us to a small class of clique

potentials. In this section we generalize our approach to the

much more general parsimonious labeling problem.

The move making algorithm for the parsimonious label-

ing problem is shown in Algorithm 2. Given diversity based

clique potentials, non-negative clique weights, and arbitrary

unary potentials, Algorithm 2 approximates the diversity

into a mixture of hierarchical Pn Potts models (using Al-

gorithm 3) and then use the previously defined Algorithm 1

on each of the hierarchical Pn Potts models.

The algorithm for approximating a given diversity into a

mixture of hierarchical Pn Potts models is shown in Algo-

rithm 3. The first and the third steps of the Algorithm 3 have

already been discussed in the previous sections. The second

step, which amounts to finding the mixture of r-HST metrics

for a given metric, can be solved using the randomized al-

gorithm proposed in [10]. We refer the reader to [10] for

further details of the algorithm for approximating a metric

using a mixture of r-HST metrics.

Multiplicative Bound. Theorem 2 gives the multiplica-

tive bound for the parsimonious labeling problem, when the

clique potentials are any general diversity. Notice that the

multiplicative bound of our algorithm is significantly bet-

ter than the multiplicative bound of SoSPD [12], which is

Mmaxc δ(Γ(xc)
minc δ(Γ(xc)

.

Theorem 2. The move making algorithm defined in Al-

gorithm 2 gives the multiplicative bound of
(

r
r−1

)

(|L| −

1)O(log |L|)min(M, |L|) for the parsimonious labeling

problem (equation (4)). Here, M is the size of the largest

maximal-clique and |L| is the number of labels.

Proof Sketch. The additional factor of (|L| − 1) and

O(log |L|) comes from the inequalities δ(L) ≤ (|L| −
1)δdia(L) [4] and d(., .) ≤ O(log |L|)dt(., .) [10], respec-

tively. Technical report contains the detailed proof.

Time Complexity. Each expansion move of our Algo-

rithm 2 amounts to solving a graph-cut on a graph with 2|C|
auxiliary variables and |C|(2M + 2) edges (in worst case),

therefore, the time complexity is O((|V| + |C|)2|C|M). In

addition, each subproblem in our algorithm is defined over

a much smaller label set (number of child nodes). Further-

more, Algorithm 2 can be parallelized over the trees and

over the subproblems at any level of the hierarchy. In con-

trast, each expansion move of SoSPD [12] amounts to solv-

ing submodular max-flow, which is O(|V|2|C|2M) [11], ex-

ponential in the size of the largest clique. Furthermore,

each expansion move of Ladicky et al. [22] amounts to

solving a graph-cut on a graph with |C||L| auxiliary nodes

and |C|(2M + |L|) edges having a time complexity of

O((|V|+ |C||L|)2|C|(M+ |L|)) [13]. As can be seen from

the above discussion, our move-making algorithm is signifi-

cantly more efficient for the parsimonious labeling problem.

6. Experiments
We demonstrate the utility of parsimonious labeling on

both synthetic and real data. In the case of synthetic data,

we perform experiments on a large number of grid lattices

and evaluate our method based on the energy and the time

taken. We show the modeling capabilities of the parsimo-

nious labeling by applying it on two challenging real prob-

lems: (i) stereo matching, and (ii) image inpainting. We use
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the move-making algorithm for the co-occurrence based en-

ergy function proposed by Ladicky et al. [22] as our base-

line. Based on the synthetic and the real data results, sup-

ported by the theoretical guarantees, we show that the move

making algorithm proposed in our work outperforms [22].

Recall that the energy function we are interested in min-

imizing is defined in the equation (4). In our experiments,

we frequently use the truncated linear metric. We define it

below for the sake of completeness.

θi,j(la, lb) = λmin(|la − lb|,M), ∀la, lb ∈ L. (12)

where λ is the weight associated with the metric and M is

the truncation constant.

6.1. Synthetic Data

We consider following two cases: (i) given the hierarchi-

cal Pn Potts model, and (ii) given a general diversity based

clique potential. In each of the two cases, we generate lat-

tices of size 100 × 100, 20 labels, and use λ = 1. The

cliques are generated using a window of size 10 × 10 in a

sliding window fashion. The unary potentials are randomly

sampled from the uniform distribution defined over the in-

terval [0, 100]. In the first case, we randomly generate 100
lattices and random r-HST trees associated with each lattice,

ensuring that they satisfy the properties of the r-HST. Each

r-HST is then converted into hierarchical Pn Potts model by

defining diameter diversity over each of them. The hierar-

chical Pn Potts model is then used as the actual clique po-

tential. We performed 100 such experiments. On the other

hand, in the second case, for a given value of the truncation

M , we generate a truncated linear metric and 100 lattices.

We treat this metric as the induced metric of a diameter

diversity and apply Algorithm 1 for the energy minimiza-

tion. We used four different values of the truncation factor

M ∈ {1, 5, 10, 20}. For both the experiments, we used 7
different values of wc: wc ∈ {0, 1, 2, 3, 4, 5, 100}.

The average energy and the time taken for both the meth-

ods and both the cases are shown in the Figure 3. It is evi-

dent from the figures that our method outperforms [22] both

in terms of time and the energy. In case (ii), despite the

fact that our method first approximates the given diversity

into mixture of hierarchical Pn Potts models, it outperforms

[22]. This can be best supported by the fact that our algo-

rithm has a strong multiplicative bound.

6.2. Real Data

In case of real data, the high-order cliques are the super-

pixels obtained using the mean-shift method [6], the clique

potentials are the diameter diversity of the truncated lin-

ear metric (equation (12)). A truncated linear metric en-

forces smoothness in the pairwise setting, therefore, its di-

ameter diversity will naturally enforce smoothness in the

high-order cliques, which is a desired cue for the two appli-

cations we are dealing with. In both the real experiments we

use wc = exp−
ρ(xc)

σ2 (for high order cliques), where ρ(xc)
is the variance of the intensities of the pixels in the clique

xc and σ is a hyperparameter.

6.2.1 Stereo Matching

Given two rectified stereo pair of images, the problem of

stereo matching is to find the disparity (gives the notion of

depth) of each pixel in the reference image [26, 27]. We ex-

tend the standard setting of the stereo matching [26] to high-

order cliques and test our method to the images, ‘tsukuba’

and ‘teddy’, from the widely used Middlebury stereo data

set [25]. The unaries are the L1−norm of the difference in

the RGB values of the left and the right image pixels. Notice

that the index for the right image pixel is the index for the

left image pixel minus the disparity, where disparity is the

label. For ‘tsukuba’ and ‘teddy’ we used 16 and 60 labels

respectively. In case of ‘teddy’ the unaries are trucated at

16. The weights wc for the pairwise cliques are set to be

proportional to the L1−norm of the gradient of the intensi-

ties of the neighboring pixels ‖∇‖1. In case of ‘tsukuba’, if

‖∇‖1 < 8, wc = 2, otherwise wc = 1. In case of ‘teddy’, if

‖∇‖1 < 10, wc = 3, otherwise wc = 1. As mentioned ear-

lier, wc for the high-order cliques is set to be proportional

to the variance. We used different values of σ, λ, and M .

Because of the space constraints we are showing results for

the following setting: for ‘tsukuba’, λ = 20, σ = 100, and

M = 5; for ‘teddy’, λ = 20, σ = 100, and M = 1. Fig-

ure 4 shows the results obtained. Notice that our method

significantly outperforms [22] in terms of energy and the

visual quality for both ‘tsukuba’ and ‘teddy’.

6.2.2 Image Inpainting and Denoising

Given an image with added noise and obscured regions (re-

gions with missing pixels), the problem is to denoise the

image and fill the obscured regions such that it is consis-

tent with the surroundings. We perform this experiment on

the images, ‘penguin’ and ‘house’, from the widely used

Middlebury data set. The images under consideration are

gray scale, therefore, there are 256 labels in the interval

[0, 255], each representing an intensity value. The unaries

for each pixel (or node) corresponding to a particular label

is the squared difference between the label and the inten-

sity value at that pixel. The weights wc for the pairwise

cliques are all set to one. We used different values of σ, λ,

and the truncation M . Because of the space constraints we

are showing results for the following setting: ‘penguin’, the

λ = 40, σ = 10000 and M = 40; for ‘house’, the λ = 50,

σ = 1000 and M = 50. Notice that our method (Figure 5)

significantly outperforms [22] in terms of energy and visual

quality for both ‘penguin’ and ‘house’.

7. Discussion

We proposed a new family of labeling problems, called

parsimonious labeling, where the energy function is defined

using a diversity measure. Our energy function includes the
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(a) Energy (b) Time (in seconds) (c) Energy (d) Time (in seconds)

Figure 3: Synthetic (Blue: Our, Red: Co-occ [22]). The x-axis of all the figures is the weight associated with the cliques (wc).
Figures (a) and (b) are the plots when the hierarchical Pn Potts model is known. Figures (c) and (d) are the plots when a

diversity (diameter diversity over truncated linear metric) is given as the clique potentials which is then approximated using

the mixture of hierarchical Pn Potts model. Notice that in both the cases our method outperforms the baseline [22] both in

terms of energy and time. Also, for very high value of wc = 100, both the methods converges to the same labeling. This is

expected as a very high value of wc enforces rigid smoothness by assigning everything to the same label.

(a) Tsukuba

(Energy, Time (sec))

(b) Our

(1387300, 773)
(c) Co-occ [22]

(2117804,306)
(d) Teddy

(Energy, Time (sec))

(e) Our

(3196400, 2918)
(f) Co-occ [22]

(3256200,1392)

Figure 4: Stereo Matching Results. Figures (a) and (d) are the ground truth disparity for the ‘tsukuba’ and ‘teddy’ respec-

tively. Our method significantly outperforms the baseline Co-ooc [22] in both the cases in terms of energy. Our results are

visually more appealing also. Figures (b) and (e) clearly shows the influence of ‘parsimonious labeling’ as the regions are

smooth and the discontinuity is preserved. Recall that we use super-pixels obtained using the mean-shift as the cliques.

(a) Penguin

(Energy, Time (sec))

(b) Our

(12547000, 1964)
(c) Co-occ [22]

(14710302,358)
(d) House

(Energy, Time (sec))

(e) Our

(36840076, 2838)
(f) Co-occ [22]

(41980784,912)

Figure 5: Image inpainting results. Figures (a) and (d) are the input images of ‘penguin’ and ‘house’ with added noise and

obscured regions. Our method, (b) and (e), significantly outperforms the baseline [22] in both the cases in terms of energy.

Visually, our method gives much more appealing results. We use super-pixels obtained using the mean-shift as the cliques.

novel hierarchical Pn Potts model, which allows us to de-

sign an efficient and accurate move-making algorithm based

on iteratively solving the minimum st-cut problem.

The large class of energy functions covered by parsimo-

nious labeling can be used for various computer vision tasks

such as semantic segmentation (where diversity function

can be used to favor certain subsets of semantic classes),

or 3D reconstruction (where diversity function can be used

to favor certain subsets of depth values).

An interesting direction for future research would be to

explore different diversities and propose specific algorithms

for them, which may provide better theoretical guarantees.

Another interesting work would be to directly approximate

diversities into a mixture of hierarchical Pn Potts model,

without the use of the intermediate r-HST metrics. This

may also lead to better multiplicative bounds.
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