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Abstract

We propose a novel camera calibration method for de-

focused images using a smartphone under the assumption

that the defocus blur is modeled as a convolution of a sharp

image with a Gaussian point spread function (PSF). In con-

trast to existing calibration approaches which require well-

focused images, the proposed method achieves accurate

camera calibration with severely defocused images. This ro-

bustness to defocus is due to the proposed set of unidirec-

tional binary patterns, which simplifies 2D Gaussian decon-

volution to a 1D Gaussian deconvolution problem with mul-

tiple observations. By capturing the set of patterns consecu-

tively displayed on a smartphone, we formulate the feature

extraction as a deconvolution problem to estimate feature

point locations in sub-pixel accuracy and the blur kernel

in each location. We also compensate the error in camera

parameters due to refraction of the glass panel of the dis-

play device. We evaluate the performance of the proposed

method on synthetic and real data. Even under severe defo-

cus, our method shows accurate camera calibration result.

1. Introduction

Camera calibration is a process to estimate the transfor-

mation between the image coordinate of a camera and the

real world coordinate. It is an essential step in computer vi-

sion fields and its accuracy highly influences the quality of

various computer vision applications such as 3D reconstruc-

tion [1, 26], depth estimation [25, 19], and robot naviga-

tion [20]. To achieve an accurate camera calibration result,

acquiring an exact set of correspondences between images

and the real world is extremely important [14, 4]. There-

fore, recent researches on camera calibration have focused

on developing patterns having distinctive feature points that

can be accurately localized in the images [27, 8, 16].

Among various patterns, a planar checkerboard has been

one of the most famous patterns because of the ease of de-
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Figure 1: The proposed camera calibration that is robust to

defocus using a smartphone display compared with a con-

ventional camera calibration using a checkerboard.

tection, low cost and simple structure [27, 12, 24, 17]. A

traditional way of producing a calibration pattern is to print

out the pattern on a piece of paper and attach it on a planar

board so that the pattern maintains the plane assumption.

Recently, the calibration methods using display devices

such as monitors, tablets or smartphones have come to the

forefront. Compared to the printed patterns, the displayed

patterns have the advantages of adjustable brightness, guar-

anteed flatness and known pixel sizes [29, 22, 11]. The de-

vices can display programmable patterns for higher level

features such as time-coded pattern which can help the cam-

era calibration to identify the feature location [6]. However,

since a display device is usually equipped with a glass panel

in front of the LCDs, the observed feature location in the im-

age may deviate from the actual feature location displayed

by the LCDs due to refraction by the glass panel.

For all sorts of planar pattern based calibration methods,

printed or displayed, an important condition is required to

the images used for the calibration: All images have to be

in focus for accurate feature detection. Defocused images

yield incorrect correspondences which lead to performance

degradation of the calibration. This requirement brings nat-

ural inconveniences to the data capture process. For exam-

ple, if we want to calibrate a camera focusing at a very short

distance to capture a small object, the calibration pattern

has to be small as well. On the other hand, if we mount a

camera on a vehicle to capture street views for autonomous

driving [23] or urban scene reconstruction purposes [18],

the camera is set to focus in the range from a few meters
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Figure 2: The overall procedure of the proposed camera calibration.

to a few hundred meters. Then, the pattern has to be large

enough for the features to be detected in the focused region,

and either the pattern or the camera has to move in a large

range to obtain the images in various poses.

In this paper, we present a novel camera calibration

method that is robust to defocus of the images using a

planar display device. Assuming that defocus blur is mod-

eled as a convolution with a Gaussian point spread function

(PSF), we propose to capture a series of unidirectional pat-

terns shown in Fig. 3 consecutively in order to estimate the

size of the convolved Gaussian kernel. Since our calibration

method is highly accurate in severe defocus, we can use a

display device as small as a mobile phone to display the pat-

terns to calibrate a camera focusing at a far distance, even at

infinity. The data capture process can be done in a small area

regardless of the focus distance of the camera (see Fig. 1).

We use a display device because it enables the camera

to capture a series of patterns at the same viewpoint. When

calibrated in close distances for the convenience of the data

capture, error due to refraction of the glass panel has a non-

negligible effect on the calibration performance. We correct

the error due to refraction in consideration of Snell’s law

(the law of refraction) and obtain highly accurate camera

parameters. To the best of our knowledge, this is the first

work that corrects the error due to refraction of the panel on

a display device for camera calibration.

The contributions of this paper is summarized as follows:

• A set of multiple unidirectional binary patterns to be

displayed consecutively on a display device is pro-

posed for accurate feature detection that is robust

against severe image defocus.

• Subpixel refinement for the proposed set of unidirec-

tional patterns is proposed to refine the detected feature

locations in a sub-pixel level of accuracy.

• Refraction correction that corrects the errors in camera

parameters due to refraction of the glass panel is pre-

sented for camera calibration using a display device.

The overall procedure of the proposed defocus-robust

camera calibration is illustrated in Fig. 2. The method con-

(a) Pv (b) Pvc (c) Ph (d) Phc (e) P0

Figure 3: The proposed set of complementary binary pat-

terns. (a)-(d) Two pairs of vertical and horizontal binary

patterns. (e) The black pattern is used to capture ambient

illumination.

sists of three stages. First, the proposed patterns are dis-

played on a screen, and the camera system captures the set

of patterns at various viewpoints regardless of its focus. For

each viewpoint, the same set of patterns are captured con-

secutively. Second, initial feature detection is carried out by

extracting and labeling the proposed features, which are the

intersection points of edges, followed by the refinement of

the feature points in sub-pixel level accuracy. Finally, the

camera parameters are estimated using the feature point lo-

cations and then refined by compensating the error due to

refraction of the glass panel of the display device. To em-

phasize the wide applicability of the proposed method, we

use an iPhone5 as the display device throughout the paper.

2. Accurate Feature Extraction

In this section, we describe how we extract an accurate

set of features from severely defocused pattern images. A

complementary set of unidirectional binary patterns is pro-

posed in Sec. 2.1 and the initial feature detection by com-

puting edginess images and a grid mask from the set of pat-

tern images is presented in Sec. 2.2. The feature refinement

in sub-pixel level accuracy is described in Sec. 2.3.

2.1. Complementary Binary Patterns

The feature extraction in defocus can be regarded as a

2D Gaussian deconvolution problem to estimate the size of

Gaussian blur and the feature location that can be used to

synthesize the sharp pattern image as long as the shape of

the pattern is known. However, in case of severe defocus,

the size of Gaussian blur becomes too large to be estimated

using the conventional deblurring approaches such as [28].

Thus, we simplify the 2D problem into a 1D problem with
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Figure 4: The principle of simplifying 2D Gaussian decon-

volution to a 1D Gaussian deconvolution problem using the

symmetric shape of unidirectional binary patterns.

multiple observations using the proposed set of patterns that

consists of two pairs of unidirectional complementary bi-

nary patterns, as shown in Fig. 3.

To achieve successful camera calibration using images

in severe defocus, we introduce a set of complementary bi-

nary patterns. These patterns are designed to have three ma-

jor characteristics: (1) unidirectional and binary, (2) paired

in complementary patterns, and (3) generating a sufficient

number of feature points for camera calibration.

Because of the symmetric shape of the proposed patterns

and the blur kernel, the 1D Gaussian deconvolution problem

along the axes of symmetry approximates the 2D localiza-

tion problem of an intersection point of edges, as described

in Fig. 4. Multiple observations of unidirectional binary pat-

terns instead of a single observation of a checkerboard fa-

cilitate such design of the 1D problem. A pair of comple-

mentary patterns helps to localize the edge adaptively to the

non-uniform brightness of the pattern images. The patterns

are designed to produce 6 × 10 features, which are consid-

ered as a sufficient number in common camera calibration.

Composition The proposed patterns are composed of five

binary patterns: two horizontal complementary patterns Ph

and Phc , two vertical complementary patterns Pv and Pvc ,

and one black pattern P0 (see Fig. 3). The black pattern is

used to capture the ambient illumination.

For simplicity, the set of complementary binary patterns

is described as B = {h, hc, v, vc} and a subscript b ∈ B is

adopted to represent an arbitrary one in the set B.

Preprocessing Given a set of captured complementary

pattern images, we first eliminate the ambient illumination

by subtracting the black pattern image from four comple-

mentary pattern images. We blur the pattern images with

a small Gaussian kernel to compress the error due to im-

age noise. Then we obtain the preprocessed set of pattern

images {Ib}. In this preprocessing, our assumption that the

defocus blur follows Gaussian distribution is not violated

and even satisfied in well-focused cases, since the convolu-

tion of two Gaussian kernels becomes another Gaussian.

Edginess ( )

Edginess ( )

1.0

0

0.5

Detected features

Grid mask

1.0

0

0.5

Figure 5: Feature detection procedure.

2.2. Initial Feature Detection

The initial feature detection is an important step for cali-

bration, since it provides crucial cues to automatically label

the feature points with 3D world coordinates and guarantee

a search range for subpixel refinement. Our initial feature

detection utilizes the vertical edges from Iv and Ivc , and

the horizontal edges from Ih and Ihc in Fig. 5.

For the set of pattern images {Ib}, we calculate two edgi-

ness images Ev and Eh for vertical and horizontal patterns,

respectively.

Ev =

{

1− max(Iv,Ivc )−min(Iv,Ivc )
0.5

∑
Ib

, if
∑

Ib > α,

0, otherwise,

Eh =

{

1− max(Ih,Ihc )−min(Ih,Ihc )
0.5

∑
Ib

, if
∑

Ib > α,

0, otherwise,

(1)

where
∑

Ib is the sum image of all the pattern images and

α is a threshold to filter out non-pattern regions. For α, we

use the intensity of 0.1.

From the edginess images Ev and Eh that have wide

ranges around the edges as shown in Fig. 5, two masks for

the vertical and horizontal edges are robustly obtained by

thresholding the edginess values. We then apply the skele-

ton extraction algorithm [15] on each mask to leave only the

skeletons having 1 pixel thickness. By adding the separately

calculated skeleton masks, the initial mask for our feature

grid is obtained. To find initial feature points on this grid

mask, we utilize the checkerboard detection algorithm pro-

posed in [17]. This detection algorithm finds initial feature

points on the given mask of feature point grid by checking

the numbers of neighbor pixels and label the feature points

according to their connected relationship as a graph.

2.3. Sub-pixel Feature Refinement

In order to refine the initially detected feature locations

to be more accurate in sub-pixel level, we first estimate

the axes of symmetry, vertical and horizontal, in the im-

age using the gradient direction of the intensity. Then, we

sample the pixels along each axis to obtain blurred inten-

sity profiles. Using the blurred intensity profiles, we syn-
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Figure 6: The procedure of our feature refinement. The feature locations are refined based on 1D Gaussian deconvolution.

thesize the original sharp intensity profiles assuming they

are in the shape of a step function. The standard deviation

of the Gaussian blur kernel is initially estimated by a sim-

ple Gaussian fitting on the gradient of one blurred intensity

profile. Finally, for each feature, its location and the size of

the blur kernel are refined through nonlinear optimization.

The procedure of feature refinement is described in Fig. 6.

Please note that each feature point is refined as the form of

point itself in this refinement step.

Axes of symmetry The proposed feature refinement is

carried out to localize each feature in sub-pixel level by

solving a 1D Gaussian deconvolution problem on the set of

pattern images. Since the simplification of the problem from

the 2D Gaussian deconvolution is based on the symmetric

shape of the patterns, we first estimate the axis of symme-

try in each pattern image using the gradient direction of the

image intensity. By filtering the pattern images with 3 × 3
Scharr operators [21], the gradient direction θb is calculated

for each pixel (p, q) in the pattern image Ib.

θ̄b(p, q)=tan−1

(

∑1
i=−1

∑1
j=−1sin(θb(p+i, q+ j))

∑1
i=−1

∑1
j=−1cos(θb(p+i, q+j))

)

, (2)

where θ̄b is the average of θb in a local 3 × 3 patch for

robustness to image noise. As each pair of complementary

patterns shares the axis of symmetry, but has opposite gradi-

ent directions, we estimate the angle φv of the vertical axis

by averaging the opposite angles from the complementary

vertical patterns as:

φv = tan−1

(

sin θ̄v + sin
(

θ̄vc − π
)

cos θ̄v + cos
(

θ̄vc − π
)

)

, (3)

where φv is the angle of the axis of symmetry in Iv and Ivc .

We estimate the angle φh in Ih and Ihc analogously. The

axis of symmetry is illustrated in Fig. 6-(b).

Blurred intensity profiles For each feature location, we

extract four intensity profiles from the pattern images. A

blurred intensity profile is a vector of image intensities

along the axis of symmetry in each pattern image. We sam-

ple a line crossing the feature point in one pixel width.

Fv[x|p, q]= Iv(p+x cosφv(p, q),q+x sinφv(p, q)),

Fvc [x|p, q]= Ivc(p+x cosφv(p, q),q+x sinφv(p, q)),
(4)

where Fv and Fvc are the blurred intensity profiles ex-

tracted from vertical pattern images Iv and Ivc along the

axis of angle φv . The blurred intensity profiles Fh and Fhc

are analogously extracted from horizontal pattern images Ih
and Ihc along the axis of angle φh.

Sharp intensity profiles The sharp intensity profiles are

synthesized by using the blurred intensity profiles in the as-

sumption that the original intensity profiles of the focused

pattern images are in the shape of a step function. The sharp

intensity profiles Hv and Hvc for vertical complementary

patterns are estimated as:

Hv [x|p, q]=

⎧

⎪

⎨

⎪

⎩

Fv[x|p, q]+Fvc [x|p, q], x>0,
1
2 (Fv[0|p, q]+Fvc [0|p, q]) , x=0,

0, x<0,

Hvc [x|p, q]=

⎧

⎪

⎨

⎪

⎩

0, x>0,
1
2 (Fv[0|p, q]+Fvc [0|p, q]) , x=0,

Fv[x|p, q]+Fvc [x|p, q], x <0,

(5)

where Hv and Hvc are the sharp intensity profiles synthe-

sized from blurred intensity profiles Fv and Fvc . The sharp

intensity profiles Hh and Hhc for horizontal complemen-

tary patterns are estimated in the same way using Fh and

Fhc . This process is described in Fig. 6-(c).

In Eq. 5, it is implied that the sum of two complemen-

tary pattern images would be the same as a white pattern

image. The sharp intensity profiles are synthesized by cut-

ting the sum of two complementary pattern images at the

current feature location. In this way, the sharp intensity pro-

files estimate the original step-shaped patterns adaptively

in non-uniform brightness of the images. Even though the

sum of two complementary intensity profiles is the blurred

intensity profile of the white pattern image, it can be ap-

proximated to the sharp intensity profile by assuming that

the white pattern image contains only low-frequency com-

ponents.

Gaussian blur kernel The Gaussian blur kernel to be

estimated is a normalized Gaussian function such as:

G[x|σ] = 1

σ
√
2π

e−x2/2σ2

, (6)

where σ is the standard deviation of the normalized Gaus-

sian function. For each feature point, we initially estimate

the σ by fitting a Gaussian function on the gradient of one

blurred intensity profile, which is roughly the integral of the

Gaussian blur kernel.
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Optimization Finally, for each feature point, its location

(p, q) and the size of the Gaussian blur kernel σ are refined

by minimizing the differences between the blurred intensity

profiles and the convolution of the sharp intensity profiles

with the blur kernel as follows:

(p∗, q∗, σ∗) = arg min
p,q,σ

∑

b∈B

||Fb − Hb ∗ G||2, (7)

where Fb, Hb and G follow Eq. 4, Eq. 5 and Eq. 6. By us-

ing the Levenberg-Marquardt (LM) method [10, 13], the pa-

rameters (p, q, σ) are iteratively updated until convergence

to solve this problem.

3. Refraction Correction

We estimate the intrinsic and extrinsic camera param-

eters based on Zhang’s calibration method [27] using the

estimated feature points from the previous section. Since

we utilize a display device to show multiple patterns at the

same viewpoint, the detected feature locations contain the

error due to the light refraction by the glass panel of the

device.

In this section, we present the refraction correction of the

camera parameters when a display device is used in cam-

era calibration. Since a display device is usually equipped

with a transparent panel made of glass in front of LCDs, the

light is refracted on the surface of the panel. Thus, the ob-

served feature positions through the panel are shifted from

the actual feature position displayed by the LCDs. Physi-

cally, this shift of position cannot be larger than the thick-

ness of panel, which is normally small and ignorable com-

pared to the camera-display distance. However, as the pro-

posed method covers a wide range of image capture dis-

tances including extremely close distances, we need to con-

sider the small feature shifts due to refraction to achieve

accurate camera calibration.

Fig. 7 describes the refraction model of the display de-

vice. By the effect of refraction, an actual point located at

p is observed at an apparent position p′ on the line along

the incident ray direction l. To compensate this difference

of positions while preserving projective geometry, we cal-

culate c, which is the 3D vector to move the point at p to

q where the plane and the line of incidence are intersect-

ing. As long as n and l are known unit vectors, their dot

product gives |n · l| = cos θ1. When n1 and n2 are the re-

fractive indices of the air and the medium of the panel re-

spectively, and θ1 and θ2 are the angles of incidence and

refraction measured from the normal of the plane, we know

n1 sin θ1 = n2 sin θ2 by the Snell’s law. Then, the vector c

for refraction compensation can be calculated as:

c = D

⎛

⎝

1

|n · l| −
1

√

n2
2 − 1 + (n · l)2

⎞

⎠(l−(n · l)n) , (8)

Front panel

LCD

Air

Apparent position 
Actual position 

Refraction-compensated position 

Figure 7: The light refraction model of the panel and the

refraction correction of our method.

where D is the thickness of the panel.

Then, for each j-th feature point in the i-th image, the

projection of the corresponding 3D point Xj to the camera

coordinate system is represented as:

λxij = RiXj + ti + cij , (9)

where Xj = [Xj , Yj , Zj ]
T is the world coordinate of the j-

th feature point, xij = [xij , yij , 1]
T is its normalized cam-

era coordinate, and λ is a scaling factor. Ri and ti are the

rotation matrix and the translation vector of the i-th image

with respect to the world coordinate system. cij is individ-

ually calculated according to Eq. 8 using n = Ri [0, 0, 1]
T

and

l =
π−1

(

k,p,K−1ũij

)

||π−1 (k,p,K−1ũij) ||2
. (10)

The function π−1 is the inverse function of the lens distor-

tion model, which returns an undistorted camera coordinate

of the given distorted camera coordinate K−1ũij using the

radial distortion parameters k and the tangential distortion

parameters p. ũij denotes the image coordinate of the j-th

feature point in the i-th image, and K denotes the camera

intrinsic matrix.

Finally, the previously estimated camera parameters

K,k,p,Ri, and ti are refined to minimize the following:

m
∑

i

n
∑

j

||ũij − uij(K,k,p,Ri, ti, D | n2,Xj)||2 , (11)

where uij = K [π(k,p,xij)]. In our implementation, this

optimization is also solved by using the LM method.

Since the refractive index n2 and the thickness of the

glass panel D, are usually not provided for a display device,

the convergence and the possibility of overfitting in this step

have been tested for two cases. Unfortunately, it is found

out that refining both parameters in the proposed optimiza-

tion has a serious overfitting problem. The reprojection er-

ror reaches to zero by abnormally changing the parameters.

On the other hand, refining either one of the two parameters

converge to a reasonable value and has shown good results.

Therefore, we fix the refractive index n2 and refine the

thickness D because the refractive index of glass is typi-

cally in a small range from 1.52 (crown glass) to 1.62 (flint
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glass) and also has less influence than the thickness D in

the proposed refraction correction model. The reliability in

selecting the refractive index value has been investigated in

our experiments (Sec. 4.2).

4. Experimental Results

In this section, we investigate the performance of the

proposed camera calibration in severely defocused condi-

tions. Our experiments include a synthetic experiment and

three real experiments. In the synthetic experiment, the sub-

pixel accuracy of the proposed feature refinement algorithm

is evaluated with various Gaussian blur conditions. In real

experiments, the accuracy and the validity of the proposed

method are verified in various perspectives.

Methods for comparison The proposed feature refine-

ment algorithm is compared with three existing methods:

the Harris corner detector [7] which is one of the most rep-

resentative corner detectors, and the two recent corner re-

finement methods by Geiger et al. [5] and Placht et al. [17].

Given an initial feature location, Geiger et al. [5] estimate

the corner by finding the local maximum point of corner-

ness. Placht et al. [17], so-called ROCHADE, finds the sad-

dle point of the polynomial around the corner. Also, a sim-

ple method, the zero-crossing detection of the difference

image of the proposed patterns, is compared.

Implementation All methods including the proposed

method have been implemented in MATLAB. For fair com-

parison, we utilize the open sources for the existing meth-

ods. We also try to set a reliable parameter for each method:

We set 41 pixels as the intensity profile length for the pro-

posed method and as the patch size for the Harris corner. We

set 9 pixels as the patch size for [5] and [17]. These param-

eters have been used in all synthetic and real experiments.

For the zero-crossing detection, the zero-crossing point is

refined to minimize the sum of squared differences between

the complementary patterns.

4.1. Synthetic Experiment

Experimental setup For synthetic dataset, we first create

the proposed unidirectional binary patterns and a checker-

board pattern to have only one feature point at the center.

The proposed patterns are used to evaluate the proposed

method, and the checkerboard is used to evaluate three other

methods. We generate multiple images of each pattern at

300 random viewpoints within ±30◦ from the front view.

The image resolution is set to 300 × 300 pixels. Then, we

Bouguet’s camera calibration toolbox, http://www.vision.

caltech.edu/bouguetj/calib_doc

MATLAB and Computer Vision System Toolbox Release 2015a, The

MathWorks, Inc., Natick, Massachusetts, United States.

ROCHADE: Robust Checkerboard Detection, http://www.

metrilus.de/blog/portfolio-items/rochade/

Figure 8: Accuracy of the feature refinement methods ac-

cording to blur sizes. (Left) The mean distance error of the

refined features from the ground truth location. (Right) The

number of refined features with error less than 0.1 pixel.

Figure 9: The stereo camera system in the real experiments.

synthesize the defocused pattern images by convolving all

the images with the same Gaussian kernel. We change the

standard deviation of the Gaussian kernel from 0 to 20 pix-

els, which result in a maximum blur size of 120 pixels in

diameter. Finally, we add signal-dependent noise [9] with

1% intensity variance. As the initial feature location, a ran-

dom location within 3 pixels from the ground truth location

is used for all methods.

Accuracy of feature refinement The accuracy of the five

methods are shown in Fig. 8. The left graph shows the mean

distance errors of refined features from the ground truth lo-

cation according to the different Gaussian blur sizes. The

right graph shows the number of refined features with error

less than 0.1 pixel. Harris corner [7] shows excellent per-

formance under small blur conditions. As the size of the

blur gets larger, Geiger et al. [5] and ROCHADE [17] show

better performances than Harris corner, but still they show

lower accuracy than the zero-crossing detection and the pro-

posed method. And the proposed method shows slightly

better performance while the synthetic images have uniform

brightness which is the prerequisite of the zero-crossing de-

tection to be mathematically true.

4.2. Real Experiments

Experimental setup For real experiments, the proposed

patterns (Fig. 3) and a checkerboard pattern that are de-

signed to have the same feature locations are captured at

50 viewpoints within 15cm distance by the stereo camera

system focused at infinity. The 6 × 10 features are uni-

formly distributed with the interval of 92 pixels which is

7.1681mm as the pixel density of iPhone5 is 326 pixels

per inch. The auto-brightness of the display and the auto-
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Table 1: Mean reprojection errors (pixel) from the calibration of the stereo camera system (Fig. 9) focused at infinity. Two

single camera calibrations and one stereo camera calibration are evaluated using different methods.

Camera Setup
Without refraction correction With refraction correction

[7] [5] [17] Zero-crossing Proposed [7] [5] [17] Zero-crossing Proposed

Left camera 1.1432 0.6447 0.6429 0.2125 0.1159 1.2457 0.6354 0.6341 0.1999 0.0896

Right camera 1.2343 0.7405 0.7401 0.2310 0.1293 1.3758 0.7304 0.7300 0.2184 0.1079

Stereo(Left+Right) 1.2178 0.7728 0.7735 0.3646 0.3406 1.1565 0.7014 0.7024 0.2272 0.1158
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Figure 10: The differences of the extrinsic parameters be-

tween single and stereo camera calibrations. R.C. stands for

refraction correction. r1, r2 and r3 are the rotation parame-

ters, and t1, t2 and t3 are the translation parameters.

settings of the camera are turned off. Two Grasshopper3

cameras (3376 × 2704 pixels) mounted together on a rig

are used as in Fig. 9. The refractive index of 1.52 has been

used in refraction correction, unless stated otherwise.

For evaluation, we perform two single camera calibration

on left and right cameras independently and a stereo camera

calibration on both cameras.

4.2.1 Performance Evaluation

The three checkerboard-based methods, the zero-crossing

detection and the proposed method are compared by cali-

brating the left, right and stereo cameras. The initial feature

locations are extracted by the proposed feature detection al-

gorithm described in Sec. 2.2 because other methods usu-

ally fail in severe defocus. Then the feature refinement of

five methods are evaluated with and without the proposed

refraction correction.

The mean reprojection errors of the five methods are

shown in Table. 1. Without the refraction correction, the

proposed method presents high performance with errors

around 0.12 pixel for single camera calibration and 0.34
pixel for stereo camera calibraiton, while the checkerboard-

based methods show relatively poor performances with

large errors around 0.72 pixel. With the refraction correc-

tion, the proposed method exhibits considerable improve-

ments. Especially, the superior performance in the stereo

camera calibration is established by the error of 0.12 pixel.

Meanwhile, the zero-crossing detection shows quite lower

accuracy than the proposed method in contrast to the re-

sult of the synthetic experiment because of the non-uniform

brightness of the images.

In another aspect, the extrinsic parameters estimated by

Table 2: The mean reprojection errors (pixel) of a full cam-

era calibration using the checkerboard corners extracted by

each method (Original) and of extrinsic-parameter-only cal-

ibration with our intrinsic parameters (Validation).

Left camera Right camera

Corner method Original Validation Original Validation

Harris [7] 0.8733 0.9615 0.8823 0.9527

Geiger et al. [5] 0.8616 0.9423 0.8617 0.9274

ROCHADE [17] 0.8617 0.9416 0.8602 0.9248

Checkerboards for validationOur patterns used in calibration

Figure 11: Visualization of extrinsic parameters. (Left) The

camera and the proposed patterns used in the estimation

of our intrinsic parameters. (Right) The camera and the

checkerboard patterns used in the validation experiment.

the single and stereo calibrations are compared. The 50 sets

of relative extrinsic parameters are calculated by applying

the chain rule between the synchronous left and right cam-

era poses from the single camera calibrations, and compared

with one set of parameters estimated by the stereo calibra-

tion in Fig. 10. Even though the parameters estimated by

the stereo camera calibration are not the ground truth for

the relative extrinsic parameters between two cameras, the

consistency of the parameter estimation is clearly shown.

Table. 1 and Fig. 10 show the accuracy of the features

refined by the proposed method and the effectiveness of the

proposed refraction correction.

4.2.2 Validation on estimated intrinsic parameters

The proposed calibration method allows the use of small-

sized patterns captured at close distances. To validate the

intrinsic parameters estimated in such setup using the pro-

posed method, we perform the following experiment.

We capture 107 images of a 0.7m×0.9m-sized checker-

board from 5m distance. The images are slightly defocused

because the cameras are focused at infinity. We extract cor-

ners from the images using the conventional methods and
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Table 3: The mean projection errors (M.R.E.) [pixel] and the

focal lengths (fx, fy) [pixel/mm] obtained without or with

refraction correction using different refractive index values.

n2 Camera Method M.R.E. fx fy

N/A Left Single 0.1159 3370.9 3371.1

1.52 Left Single 0.0896 3365.7 3365.7

1.62 Left Single 0.0897 3366.1 3366.0

N/A Left Stereo 0.3406 3385.7 3386.4

1.52 Left Stereo 0.1157 3367.6 3367.6

1.62 Left Stereo 0.1155 3367.7 3367.7

N/A Right Single 0.1293 3371.4 3370.7

1.52 Right Single 0.1079 3367.5 3366.6

1.62 Right Single 0.1080 3367.9 3367.0

N/A Right Stereo 0.3406 3392.3 3392.8

1.52 Right Stereo 0.1157 3367.1 3366.1

1.62 Right Stereo 0.1155 3367.2 3366.2

perform the camera calibration. For validation, we perform

the same camera calibration using the same set of features

with the intrinsic parameters fixed as the estimates using the

proposed method. Then, we compare the mean reprojection

errors of the conventional calibration methods and those of

the validation calibration. In Table. 2, the former are listed

as ”Original” and the latter are listed as ”Validation”.

Though the mean reprojection errors for validation

slightly increase, the differences are marginal considering

the cameras are focused at infinity and the image resolu-

tion is 10M pixels. Moreover, considering the compelling

size differences of the patterns for the proposed method and

the checkerboard-based methods as in Fig. 11, these small

differences in errors are meaningful results to show the pos-

sibility of calibration setup free from the camera focus.

4.2.3 Self-comparison on refractive index values

The dependency of the proposed method to different refrac-

tive index values has been investigated to show that the fixed

value 1.52 of the refractive index is reasonable.

The calibrations are performed (1) without the refraction

correction, and with refraction correction using (2) the re-

fractive index of 1.52 and (3) 1.62. For each case, the mean

reprojection errors (MRE) and the focal lengths from the

calibrations of the left, right and stereo cameras are shown

in Table. 3. Insignificant differences are observed in both

MREs and the focal lengths when the refractive index value

changes from 1.52 to 1.62. The focal lengths obtained with

the refraction correction using the different refractive index

values are very similar to each other while those obtained

without the refraction correction show visible changes.

In this experiment, it is shown that the proposed re-

fraction correction improves the accuracy with little depen-

dency to the refractive index values in the typical range,

which reflects the practicality of the proposed method that

needs no additional information about the display device.

80 90 100 110 120 130 140 150 160 170
10

12

14

16

18

20

22

24

26

28

30

DepthEs
tim

at
ed

 b
lu

r s
iz

e 
σ

(mm)

(p
ix

el
)

Left camera
Right camera

Figure 12: The relationship between the depth of the scene

and the size (standard deviation) of the defocus blur ob-

tained by the proposed method.

5. Discussions

Application The relationship between the depth of the

scene and the size of the defocus blur may be explored by

the proposed method. Since the size of the defocus blur for

each feature is estimated in our feature refinement and the

depth of the feature is estimated in our camera calibration,

the depth-defocus information is obtained (see Fig. 12).

Defocus-deblurring or depth-from-defocus may be strong

applications.

Limitations The proposed method can handle the defo-

cus as large as the interval between the features. To handle

larger defocus, we can simply display the binary patterns

with sparser features on the same device. The images cap-

tured with auto-settings of a camera such as auto-exposure

do not ensure the best performance of the proposed method

because our feature extraction assumes the images captured

in the same illumination condition. Due to the similar rea-

son, the JPEG compression of images is not recommended.

Conclusion In this paper, a novel framework for accurate

camera calibration that is robust to defocus using a display

device has been proposed. To handle the image blurs due

to defocus, the proposed patterns for display are designed

to be a complementary set of unidirectional binary patterns.

The features are defined as the intersection points of their

edges. By utilizing the patterns, it has been shown that a

severe defocus blur can be estimated together with the ac-

curate feature location by the proposed feature extraction

algorithm. The feature localization problem is modeled as

the Gaussian deconvolution given the set of 1D observa-

tions. Moreover, the errors in the camera calibration due to

refraction of the panel are corrected by refining the camera

parameters in consideration of the refraction model.

The proposed method presents a solution to the conven-

tional difficulties in using defocused images for camera cal-

ibration. Even though the method requires a set of patterns

to be captured in the same physical location, it can cali-

brate cameras regardless of their focus distances. This ad-

vantage allows the use of defocused images and the calibra-

tion between cameras focusing at different distances which

becomes practicable with high accuracy by the proposed

method. The effectiveness of the proposed method has been

emphasized in several real experiments using a compact dis-

play device such as a smartphone.
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