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Abstract

In this paper, we address the problem of computing an

intrinsic decomposition of the colors of a surface into an

albedo and a shading term. The surface is reconstructed

from a single or multiple RGB-D images of a static scene

obtained from different views. We thereby extend and im-

prove existing works in the area of intrinsic image decompo-

sition. In a variational framework, we formulate the prob-

lem as a minimization of an energy composed of two terms:

a data term and a regularity term. The first term is related to

the image formation process and expresses the relation be-

tween the albedo, the surface normals, and the incident il-

lumination. We use an affine shading model, a combination

of a Lambertian model, and an ambient lighting term. This

model is relevant for Lambertian surfaces. When available,

multiple views can be used to handle view-dependent non-

Lambertian reflections. The second term contains an effi-

cient combination of ℓ2 and ℓ1-regularizers on the illumina-

tion vector field and albedo respectively. Unlike most pre-

vious approaches, especially Retinex-like techniques, these

terms do not depend on the image gradient or texture, thus

reducing the mixing shading/reflectance artifacts and lead-

ing to better results. The obtained non-linear optimiza-

tion problem is efficiently solved using a cyclic block co-

ordinate descent algorithm. Our method outperforms a

range of state-of-the-art algorithms on a popular bench-

mark dataset.

1. Introduction

Intrinsic image decomposition is the process of decom-

posing a given image into shading and reflectance compo-

nents. Such decomposition can be used in multiple appli-

cations such as image editing, 3D shape reconstruction, and

object recognition.

While intrinsic decomposition has been studied since the

1970’s, it still remains a challenging problem. It is a highly

under-constrained problem in which two unknowns (shad-

ing and reflectance) are to be estimated for each observation

(image color) that is available. To overcome the fundamen-

tal ill-posedness, several approaches have been introduced

utilizing additional information such as user interaction[6],

priors [10, 2], multiple images [28], videos [30, 14] and

depth cues [2, 8].

1.1. Related work

One of the earliest works addressing intrinsic image de-

composition was the Retinex algorithm [16, 20]. This tech-

nique relies on the simple heuristic of associating strong

edge gradients with reflectance changes and small gradients

with illumination changes. Based on the same assumption,

many approaches have been then proposed, using different

strategies such as image gradient thresholding [13, 18] or

learning gradient variations [27, 26]. A major drawback

of these approaches is that the decomposition is analyzed

within a small window. To extend beyond local analy-

sis, several works use additional global consistency terms

based on textures [24, 31], reflectance clustering [10, 4], and

sparsity priors [10, 25]. Nevertheless, the problem remains

severely under-constrained. The performance of existing al-

gorithms on complex real-world images remains limited.

Depth cues have also been used in intrinsic decomposi-

tion of RGB-D images to further constrain the solution and

improve the results. In [3], Barron and Malik present a uni-

fied model for a joint estimation of a smoothed depth map,

chromatic spatially-varying illumination, and reflectance

from a single RGB-D image. They constrain the solution

by learning novel priors on albedo local smoothness and

global sparsity, and on absolute color. They also introduce

generic Gaussian priors on the illumination environment

represented using spherical harmonics.

Chen and Koltun [8] showed that high quality decom-

position results can be obtained by properly constraining

shading components using surface normals. To constrain

the albdeo, they use a non-local term that penalizes pairwise

albedo differences between image pixels. A set of nearest

neighbors for each pixel is defined based on their spatial po-

sitions and normals; the shading component of each pixel is
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(a) Input (b) Ground truth (c) Barron-Malik [3] (d) Chen et al. [8] (e) Bell et al. [4] (f) Our approach

Figure 1. Intrinsic decomposition of two images from the MIT dataset [11]. (a) Input RGB images. (b) Ground truth albedo and shading

images. (c-e) Intrinsic decomposition obtained by state-of-the-art techniques. (f) Intrinsic decomposition obtained by our approach.

constrained to be similar to those of its neighbors.

A related challenge is intrinsic decomposition using sev-

eral images of the same static scene under different lighting

conditions. For time-lapse sequences, Weiss [28] applies a

median operator on the log-intensity over all the images as

a robust estimator of the log-reflectance derivatives. Laf-

font et al. [15] used multi-view stereo to automatically re-

construct 3D points and normals, from which they derive

relationships between reflectance values at different loca-

tions across multiple views. These are later used to robustly

estimate reflectance ratios between pairs of points. The re-

flectance ratios are then taken as constraints to enforce a

coherent solution across multiple views and illuminations.

Lee et al. [17] developed a model for intrinsic decompo-

sition of a sequence of RGB-D video frames acquired from

a Kinect camera. Their model builds on Retinex with non-

local constraints, enforcing relationships among the shading

components of different surface points according to their

similarity in surface orientation. To improve the handling of

view-dependent effects, they use temporal constraints that

favor consistency in the intrinsic color of a surface point

seen in different video frames. The obtained optimization

problem depends on a linear system that allows for an effi-

cient solution.

1.2. Our approach

In this paper, we propose a novel technique for intrinsic

static scene decomposition using one or more RGB-D im-

ages obtained from different views. To achieve that, we for-

mulate an energy minimization problem to jointly estimate

the albedo and illumination of each point of the scene. The

energy is composed of a data term and a regularity term.

The first term is related to the image formation process and

expresses the relation between the color, the albedo, the sur-

face normals, and the incident illumination. To constrain

the problem, we use an efficient combination of priors. We

assume that illumination changes smoothly and can be con-

strained by an ℓ2-term, while the albedo tends to be piece-

wise smooth for which an ℓ1-regularization is suited.

The main novelty of our approach is a robust estimation

of the intrinsic properties by considering, for each scene

surface position, all related points both in the same and in

different views. The contribution of each neighbor is quan-

tified using some weights, taking into account spatial dis-

tance and view-coherence. This alleviates misalignment er-

rors caused by depth and reconstruction errors that appear

in approaches based on image correspondence as in [17]

and view-dependent non-Lambertian reflection artifacts en-

countered in single RGB-D image decomposition [2, 8].

Moreover, unlike previous approaches, albedo and illumi-

nation smoothness terms used in this paper do not depend

on the image values, gradients, or textures. Therefore, some

decomposition artifacts are corrected by avoiding mixing

the color with the albedo. In fact, we believe that this is bet-

ter justified theoretically because priors should not depend

on observations. Also, the ℓ1-regularization of the albedo

constitutes a global coherence sparsity prior. In Figure 1,

we show some comparative results of our method.

811



2. Methodology

2.1. Overview

The input data of our algorithm is a colored point cloud,

representing a static scene. Such a point cloud can be ob-

tained from a single or a set of aligned RGB-D images. In

the latter case, each point is labeled by the index of the cam-

era it was taken from.

A surface is extracted from the point cloud using a Pois-

son reconstruction technique [12]. Based on an implicit rep-

resentation with a volumetric indicator function, this tech-

nique produces surfaces with added parts through hole fill-

ing. We apply a post-processing step which removes all

surface vertices beyond a chosen distance from the initial

point cloud.

Then, we determine intrinsic surface properties by

jointly estimating the albedo and illumination of each sur-

face vertex. This is achieved by minimizing an energy com-

posed of a similarity term defined using the data point cloud

and a smoothness term. These terms are described in Sec-

tions 2.2 and 2.3. The optimization strategy, explained in

Section 2.5, is based on cyclic block coordinate descent.

The algorithm is initialized by a rough intrinsic image de-

composition. We propose in Section 2.4 a technique to ef-

ficiently project the initial image decomposition on the sur-

face. More details are given in the supplementary material.

Next, we introduce the notation used in the rest of the paper.

Notation

• The input point cloud is denoted by

Y = {up = (xp, yp, zp) ∈ R
3 × [0, 1]3 × N

, p ∈ {1, ...,Np}}, (1)

where Np is the size of the point cloud (number of

points). For a given point indexed by p, xp repre-

sents the position, yp represents the color, and zp rep-

resents the label (camera index). We denote the vec-

tor components with subscripts (for example yp =

(yp,1, yp,2, yp,3)
T ). Images are supposed to be normal-

ized with color values in the set [0, 1]3.

• The reconstructed surface is denoted by

S = {(si, ci, ni) ∈ T ; i ∈ {1, ...,Ns}}, (2)

where Ns represents the size of the surface (the number

of vertices) and T = R
3 × [0, 1]3 × (S2 × {1}). We

denote the location of a surface point by si, its color by

ci, while ni represents the augmented normal vector

obtained by appending a fourth dimension with unity

value (ni = (n1
i , n

2
i , n

3
i , 1)

T ). The normals belong to

S
2, the unit sphere of normalized vectors in R

3. For

each point si, the set of indices of neighboring vertices

is denoted by Ni ⊂ {1, ...,Ns}.

• With each surface point i, we associate two vectors:

its albedo ai ∈ [0, 1]3 and incident illumination vec-

tor li ∈ [0, 1]4. Thus, we also augment the illumina-

tion vector with a fourth component as explained in

the next section. For the sake of compact notation, we

form a 3×Ns matrix A whose columns are the albedo

vectors (ai)i∈{1,...,Ns} of all the vertices. Similarly, we

form a 4 × Ns light matrix L. When images are ac-

quired under different lighting conditions, light matrix

L is also labeled by its corresponding camera index.

• Furthermore, we consider weights wi
p ∈ [0, 1] repre-

senting the coherence of a point cloud point p with a

surface point i. These weights are explained in Section

2.2.1.

• We use the notation ‖.‖ for the Euclidean norm of R3.

2.2. Data term

The intensity of diffuse lambertian objects can be ex-

plained by parametric low dimensional global lighting mod-

els such as spherical harmonics or quadratic functions

[23, 29]. Here, we use a first order model to represent a

local vertex-dependent lighting. We describe the surface

color formation model by:

∀i : ci = lTi ni ai, (3)

= (li,1ni,1 + li,2ni,2 + li,3ni,3 + li,4) ai.(4)

Hence, the color of each surface vertice is the product of a

scalar shading value and an albedo vector. We handle non

lambertian view-dependent reflections with this model by

using multiple views of the surface. Besides, we make a

white light assumption for the sake of simplicity. This can

be relaxed by estimating colored light which generates a

vector-valued shading. Note that the fourth lighting com-

ponent is usually considered as an ambient lighting term.

Since this model is local (vertex-dependent), it can take into

account attached and detached shadows.

As the scene surface is reconstructed from a point cloud,

a surface vertex can be related to many data points ; espe-

cially when multiple RGB-D images are fused. Thus, we

define some weights wi
p ∈ [0, 1] to express the coherence

of a surface vertex i with each data point p, as detailed in

Section 2.2.1. The higher the weight, the more their colors

are expected to be similar. Using these weights, we express

the data constraint as

ED(A,L) =

Ns
∑

i=1

Np
∑

p=1

wi
p

∥

∥yp − ci
∥

∥ ,

=

Ns
∑

i=1

Np
∑

p=1

wi
p

∥

∥yp − ain
T
i li

∥

∥ . (5)

812



The energy term ED is the sum of individual data terms

ED,i, where:

ED,i(A,L) =

Np
∑

p=1

wi
p||yp − ci||. (6)

Hence, the color of each vertex ci is a robust weighted spa-

tial median of the point cloud colors. It is worth noting,

however, that this color is not estimated directly but implic-

itly determined from the estimated light and albedo.

2.2.1 Weights

The role of the weights (wi
p)i,p is twofold. First, they are

used to implicitly estimate a surface color for each vertex

from the point cloud colors. Basically, this is based on

the spatial distance between the vertex and the data points.

Second, they impose temporal constraints that favor consis-

tency in the intrinsic properties of a surface vertex seen in

different views. This improves the decomposition in cases

of non-lambertian reflections with view-dependent effects

such as specular highlights. Thus, we use the next formula:

wi
p = ds(si, xp)

Spatial distance

. dv(si, xp)
view-coherence

, (7)

where the spatial distance is expressed as

ds(si, xp) = exp
||si − xp||

2

σ2
s

, σs > 0. (8)

View-coherence is defined upon the scalar product of the

surface normal ni = (n1
i , n

2
i , n

3
i )

T and the axis of the cam-

era labeled zp, denoted by ozp :

dv(si, xp) = max(−ni.ozp , 0). (9)

2.3. Smoothness terms

To constrain our ill-posed problem, we add the following

terms as regularizers. First, as noted by several authors, the

albedo tends to be piece-wise smooth. So, we use a ℓ1-norm

on the albedo variations:

EA(A) = λa

Ns
∑

i=1

∑

j∈Ni

||ai − aj ||, (10)

where λa > 0. The double sum is the ℓ1,1-sparse norm

of the matrix whose coefficients are given by: αi,j =
||ai − aj ||. Therefore, this ℓ1-regularization of the albedo

constitutes a global coherence sparsity prior (sparsity on

gradients encourages homogeneous regions and so reduces

the total number of colors). On the other hand, assum-

ing that the illumination component changes smoothly over

the scene, we add the following constraint that ensures that

lighting variation over all surface vertices is small:

EL(L) = λl

Ns
∑

i=1

∑

j∈Ni

||li − lj ||
2, (11)

where λl > 0. Similarly, the double sum here is a ℓ2,2-

norm of the matrix of lighting variation norms. The idea

of a spatially-varying model of illumination has also been

used in [9]. In this paper, the illumination is modeled as a

vector field and regularized by minimizing the ℓ2−norm of

its gradient.

2.4. Initialization

To initialize the surface intrinsic decomposition, we first

perform an initial image decomposition using a simple and

fast ℓ2−ℓp image decomposition of the log-intensity deriva-

tives as described in [5]. The obtained shading and albedo

images are projected on the surface using depth information

and camera parameters. This gives an initial surface albedo

and shading (shi)i∈{1,...,Ns}. Then, we estimate an initial

illumination field by minimizing the following energy:

min
L

J(L) =

Ns
∑

i

(shi − lTi ni)
2 + λ0

l

Ns
∑

i=1

∑

j∈Ni

||li − lj ||
2

s.t. 0 ≤ li,0 ≤ 1 , 0 ≤ lTi ni ≤ 1 , i = 1, . . . ,Ns,

where λ0
l > 0 is a smoothness parameter (different from

λl) and ρ > 0 (set to 0.01 in all experiments). This is a

constrained convex optimization problem. We use the Al-

ternating Direction Method of Multipliers to solve it [7].

This method considers the following equivalent problem:

min
L

L + g(Z)

s.t. L − Z = 0,

where g is the indicator function of the constraints set C.

This problem is then solved by iterating three steps:

Lk+1 := argmin
L

(

J(L) + ρ/2
∥

∥L − Zk + Uk
∥

∥

2
)

,

Zk+1 := ΠC(L
k+1 + Uk),

Uk+1 := Uk + Lk+1 − Zk+1),

where ΠC is the projection operator on the set C. The pro-

jection is achieved for each vertex i by double threshold-

ing of li,0 and orthogonal projection on the plane oriented

by the normal vector. We found this image-to-surface pro-

jection technique very effective to regularize the shading

whenever the normal information is available (Figure 2).
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Figure 2. Intrinsic image decomposition initialization (middle im-

age) and its image-to-surface projection (right image).

2.5. Optimization

Combining the data constraint with the regularization

terms, we obtain the global energy:

E(A,L) =

Ns
∑

i=1

Np
∑

p=1

wi
p||yp − ain

T
i li||

+ λa

Ns
∑

i=1

∑

j∈Ni

||ai − aj ||+ λl

Ns
∑

i=1

∑

j∈Ni

||li − lj ||
2. (12)

The optimization problem is expressed as

min
A,L

E(A,L)

s.t. 0 ≤ ai,k ≤ 1 , k = 1, . . . , 3,

0 ≤ li,0 ≤ 1 , 0 ≤ lTi ni ≤ 1 , i = 1, . . . ,Ns.

This is a non linear optimization problem. To solve it, we

apply a cyclic block coordinate descent algorithm. This is

achieved by minimizing along one direction at a time. We

cyclically iterate through each surface vertex index i and

minimize E with respect to (ai, li). Thus, we define the

following ith-subproblem:

min Ei(ai, li)

s.t. 0 ≤ ai,k ≤ 1 , 0 ≤ li,0 ≤ 1 , 0 ≤ lTi ni ≤ 1.
(13)

where

Ei(ai, li) =

Np
∑

p=1

wi
p||yp − ain

T
i li||

+ λa

∑

j∈Ni

||ai − aj ||+ λl

∑

j∈Ni

||li − lj ||
2. (14)

Inspired by [19], we solve this problem by applying a fixed-

point scheme to find the solution of the Euler-Lagrange

equation ∇Ei = 0. Such an approach has the advantage of

being parameter-free, compared to other descent algorithms

requiring the choice or computation of a descent step. The

associated iterative scheme for the albedo estimation at ver-

tice i is given by:

ak+1

i =
1

αk





Np
∑

p=1

wi
p (nT

i li) yp

||yp − ak
i nT

i li||
+ λa

∑

j∈Ni

aj

||aki − aj ||



 ,

(15)

where

αk =

Np
∑

p=1

wi
p (nT

i li)
2

||yp − aki nT
i li||

+ λa

∑

j∈Ni

1

||ak
i − aj ||

. (16)

Similar equations apply for the estimation of li. To satisfy

the inequality constraints, we adopt a projection approach.

For each variable, the obtained value is projected on the in-

terval [0, 1].

2.6. Albedo images

In our model, albedo and shading variables are defined

on a coarse mesh rather than on a pixel grid. In some cases,

the estimated albedo is over-smooth. Thus, when project-

ing the surface albedo into the image space, the textures are

blurred and fine structures are filtered out. To cope with

this limitation, an albedo image can be generated by divid-

ing the input RGB image by the estimated shading in such

a way that high frequency details are preserved when the

shading is smooth. This provides a slight boost in perfor-

mance when the albedo is estimated in Section 3.2.

3. Experimental

We evaluated and compared our method against recent

state-of-the-art techniques for intrinsic decomposition of

RGB-D images: Barron and Malik [2, 3], Chen and Koltun

[8], and Bell et al. [4]. For these competing techniques, re-

sults were computed using their software, publicly available

on their web pages. In the following, we present quantita-

tive and qualitative evaluations of some simulation results.

More results are reported in the supplementary material.

3.1. Single RGB­D images

The four algorithms were applied to several images se-

lected from version 2 of the NYU Depth Dataset [21], which

consists of RGB images and aligned Kinect depth maps.

Comparative results are shown in Figure 3.

To apply our method on a single RGB-D image, a 3D

point cloud was generated from the depth image using the

intrinsic camera parameters. A surface was estimated us-

ing a Poisson reconstruction technique [12]. This technique

produces smooth surfaces. Thus, no depth pre-processing

(inpaiting and smoothing) was needed. However, large parts

have been added through hole filling. We only kept points

whose distance to the original point cloud is less than a

threshold value. We cross validate the parameters to maxi-

mize performance (λ0
l = 50, λl = 0.1, and λa = 1). For

[2] and [8], we used parameters provided by their authors

as they were optimized for the NYU images.

As shown in Figure 3, our albedo images generally look

better than those produced by the other techniques. Thanks

to the ℓ1-regularization, albedo estimation is more robust to
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MSE MSE MSE LMSE LMSE LMSE

(albedo) (shading) (average) (albedo) (shading) (average)

Barron and Malik [2] 152.5 111.9 132.2 53.6 32.0 42.8
Chen and Koltun [8] 130.4 106.9 118.6 51.5 31.1 41.3
Bell et al. [4] 145.9 152.3 149.1 40.4 42.4 41.4
Our approach 124.5 75.0 99.7 40.5 25.2 32.9
Our approach (Multiple images) 95.1 71.3 83.2 36.5 26.8 31.7

Table 1. Quantitative comparison of different intrinsic image decomposition techniques: MSE and LMSE error metrics on the MIT dataset

[11] (×10
3).

illumination variations and tends to be piece-wise smooth.

However, our method failed in recovering fine details in

the albedo in the second image (e.g., text on the wall and

the fire extinguisher) due to the over-smooth albedo estima-

tion. Furthermore, albedo results obtained with the other

methods contain many artifacts and are actually very sim-

ilar to the RGB images. The method of Barron and Malik

is based on a hard decomposition constraint which elimi-

nates the reflectance as a free parameter. Therefore, most

of the decomposition errors are seen in the reflectance. In

Chen and Koltun’s method, the reflectance prior is defined

on the RGB image intensities leading to a strong correlation

between the albedo and the RGB images.

On the other hand, our shading results are globally con-

sistent and less correlated to the image colors. Barron and

Malik’s shading estimation is strongly related to the esti-

mated depth and a color image soft-segmentation. The re-

sults of the two other techniques lack global consistency

(e.g., the bed in the first scene and the chair in the second).

In addition, we applied our algorithm using multiple images

containing various lighting conditions. Performances of the

five algorithms are evaluated quantitatively using the stan-

dard MSE and LMSE metrics defined in [11]. Results are

reported in Table 1 and Figure 4. We can see that our single

view method outperforms other methods considering global

metrics (MSE) and local metrics (LMSE). As expected, the

multi-view method leads to even better results.

3.2. Quantitative evaluation on MIT dataset

To quantitatively evaluate our model, we used the MIT

Intrinsic Images dataset [11], which provides ground truth

albedo and illumination for images of 20 objects along with

their depth produced by Barron and Malik [1]. We selected

5 images of each of the 20 objects, obtained with different

lighting conditions. Our dataset therefore consists of 100
images. Some images are shown in Figure 4. As in the pre-

vious section, we manually set our parameters to λ0
l = 50,

λl = 1, λa = 0.01. We kept the same parameters of Barron

and Malik as in their implementation (optimized for MIT

dataset). For Chen and Koltun [8], as there is no automatic

parameter selection, we manually selected the best set of

parameters (w = (1, 0.1, 1, 1, 0.1, 1)). We mention that for

an MIT database image of size 334×334, the computational

time was about 30 seconds for Bell et al. [4], three minutes

for our algorithm, and more than one hour for the technique

of Barron and Malik [3].

4. Conclusion

In this paper, we propose a novel approach to intrin-

sic RGB-D decomposition of a static scene, using one or

more RGB-D images. In doing so, we extend and improve

existing works dedicated to intrinsic image decomposition.

The main contribution of this work is a robust method for

the estimation of the intrinsic properties and an improved

definition of priors, leading to better results in both albedo

and shading estimation. The use of color-independent pri-

ors corrects some decomposition artifacts by avoiding mix-

ing the color with the albedo. In addition, our method

can optionally make use of multiple views to reduce view-

dependent non-lambertian reflection artifacts encountered

in single RGB-D image decomposition methods. However,

our method relies on a good surface reconstruction and nor-

mal estimation. Incorrect and missing depth values limit

the performance of our method in some images. Thus, for

future work, we would like to investigate learning-based

approaches to improve and inpaint depth measurements.

Furthermore, we believe that our proposed model can be

used in conjunction with or incorporated in popular RGB-D

SLAM methods (e.g. Kinect Fusion [22, 32]) to produce

improved 3D geometry, along with, color and lighting re-

construction of the scene. In fact, our intrinsic decomposi-

tion model can be viewed as another regularization term in

the SLAM framework.
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