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Abstract

We present a novel approach to 3D reconstruction which

is inspired by the human visual system. This system uni-

fies standard appearance matching and triangulation tech-

niques with higher level reasoning and scene understand-

ing, in order to resolve ambiguities between different inter-

pretations of the scene. The types of reasoning integrated

in the approach includes recognising common configura-

tions of surface normals and semantic edges (e.g. convex,

concave and occlusion boundaries). We also recognise the

coplanar, collinear and symmetric structures which are es-

pecially common in man made environments.

1. Introduction

Understanding the 3D structure in an environment purely

from visual observations is one of the oldest and most

widely exploited problems in computer vision. It is also one

of the most challenging problems for general scenes; many

ambiguities result from different combinations of structure,

texture and illumination leading to the same observed im-

ages. We present a novel formulation for the problem,

which makes it possible to unify both bottom-up appear-

ance matching and top-down scene reasoning, in a single

approach.

This formulation is inspired by the human visual system.

Recognising matches between the observations of both eyes

allows depth to be estimated via triangulation. This (along

with assumptions about the smoothness of the scenes struc-

ture) can be seen as the traditional approach to stereo re-

construction dating back as far as the 1960s [2, 22]. In

computer vision this is generally achieved by estimating the

epipolar geometry (equivalent to a humans innate knowl-

edge of their eyes characteristics) followed by some form

of appearance based matching. In this paper we refer to this

as bottom-up reconstruction, as the reconstruction emerges

from the matching of small scene sub-units.

However, humans also use many strong high-level cues

to understand the structure of their environment. This can

(a) Input data (b) Appearance matching

(c) Scene reasoning (d) Resulting reconstruction

Figure 1: Illustration of bottom-up matching (b) and top-

down understanding (c) cues used in our unified approach.

be seen intuitively, by noticing that people can easily un-

derstand the layout of objects within a photo or video, even

though triangulation indicates that all objects lie on a sin-

gle plane. Many of these cues have been explored in com-

puter vision, particularly when working from a single im-

age (e.g. single-image reconstruction and scene understand-

ing). Some of the most commonly used cues are assump-

tions about the viewing orientation and gravity, assumptions

about the type of surfaces in manmade-environments (i.e.

the Manhattan world assumption) and assumptions about

commonly occurring object configurations. We collectively

refer to these as top-down reconstruction techniques, as the

structure of each scene sub-unit is defined using rules about

the overall configuration of multiple sub-units.

One particular advantage of our unified framework is it

reduces issues related to the baseline of standard stereo sys-

tems. Matching and triangulation based systems tend to
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only be accurate at distances similar to the separation of

the cameras. Beyond this range, small errors in the triangu-

lation will manifest as large errors in depth. In contrast,

the unified system is able to smoothly transition to top-

down reconstruction as bottom-up becomes less reliable and

mirrors the behaviour of human depth, where researchers

have discovered that different cues have different operating

ranges [6]. This results in 3 general “perceptual spaces”:

the near space (where triangulation is the dominant recon-

struction cue), the ambient space (which uses a combination

of bottom-up and top-down reconstruction), and the vista

space which relies almost exclusively on top-down infor-

mation. Our approach smoothly interpolates between these

3 states.

2. Related Work

2.1. Bottom­up reconstruction

Bottom-up approaches to reconstruction are based on

matching and triangulation between different viewpoints of

the same scene. Local approaches to bottom up recon-

struction are based on independent matching between sets

of distinctive feature points. The most prevalent of these

approaches is matching based on feature points such as

the SIFT-descriptor [28]. Recently, many more advanced

matching criteria have been proposed including: edge pre-

serving filters [29], generative models [10] and the census

transform [21].

These local matching approaches can be limited to oper-

ate along epipolar lines for calibrated reconstruction, or can

operate over the whole scene in order to estimate the cali-

bration [26]. Recently, the semi-global matching approach

originally proposed by Hirschmuller [19] has become a par-

ticularly popular extension to epipolar search, due to im-

proved accuracy and robustness to calibration inaccuracies.

Recent contributions in this area include iterative [18] and

weighted [33] semiglobal matching.

Regardless of the matching technique, purely local re-

construction cannot operate on general scenes. Due to the

aperture problem, extracted descriptors cannot be reliably

matched in regions which do not have strong texture per-

pendicular to the epipolar line. Because of this, most re-

cent work in bottom-up reconstruction focuses on global

approaches, which combine local matching costs with var-

ious spatial smoothness constraints. Various approaches to

encoding these spatial smoothness have been proposed in-

cluding: Total Variation (L2 and L1 [39, 24]), Monte-carlo

inspired PatchMatch approaches [3, 17] and the Total Gen-

eralized Variation [31, 25] which helps overcome the stair-

casing artifacts caused by total variation regularisation.

Another approach to encouraging local smoothness is to

build the reconstruction out of primitives, rather than esti-

mating a depth for each pixel. This is the standard approach

for top-down scene understanding, but has also been ex-

ploited in bottom up reconstruction. At the simplest level,

oriented planes are used as reconstruction primitives [37].

More detailed reconstructions may be achieved by using

curved surfaces, at the cost of increased matching difficulty

[40]. In earlier work, the most complex level of reconstruc-

tion primitives were geometric subunits or “geons” [36],

but more recently these have been replaced by whole-object

primitives [5, 4].

2.2. Top­down reconstruction

Most often, top-down reconstruction employs these

primitive sub-units, and formulates constraints on the rela-

tionship between sub-units. At the local level, frequent rela-

tionships between small numbers of neighbouring oriented

planes [8] and concave/convex edges [9] can provide a great

deal of information about the scene. This idea has recently

been extended to exploit a learned representation via convo-

lutional neural networks [34]. This idea can be extended to

interpreting different types of relationship between groups

of primitives, such as “on-top-of”, “supporting”, “occlud-

ing” etc. [12].

Global top-down constraints have tended to focus on ex-

ploiting properties of man-made environments, e.g. room

interiors may be coarsely modelled as the inside of cuboids

with 3-5 visible faces [16, 15]. Perhaps the most common

global top-down constraint is the Manhattan-world assump-

tion (that scenes are composed of planes from only 3 or-

thogonal directions) [27].

2.3. Joint approaches

There has been a small amount of work which attempts

to combine bottom-up and top-down reconstruction tech-

niques. These approaches tend to follow the “Reconstruc-

tion meets Recognition” paradigm, where an initial detec-

tion stage is included, to locate a set of pre-determined

classes, which then inform reconstruction. For specialised

categories of environment, this can prove extremely effec-

tive, for example Hane et al. [13] reconstruct urban scenes

by differentiating buildings, sky, ground, vegetation and

clutter. Each class then has associated weightings favour-

ing different types of reconstruction. Very recently, Guney

and Geiger [11] have forgone this weighting procedure, in-

stead using detection of cars in driving footage to transfer

3D car models into the reconstruction.

The drawback of these approaches is they are only ef-

fective in a particular class of environment, limited by the

classes which the recognition pipeline is trained for. In con-

trast, we propose a formulation which integrates far more

top-down cues, while also avoiding the need for class spe-

cific learning. In addition, unlike these 2 stage proce-

dures, the joint formulation inherently balances top-down

and bottom-up information based on the configuration of
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the cameras and content of the scene.

3. Unified bottom-up and top-down recon-

struction

We will next introduce the representation used to en-

able effective fusion of bottom-up and top-down reconstruc-

tion cues (Section 4). We will then introduce a number of

bottom-up reconstruction cues within this framework (Sec-

tions 4.1 and 4.2. Various types of top-down scene knowl-

edge will then be introduced and integrated into the system

in Section 5. Section 6 describes the efficient optimisation

scheme developed for this task, and Section 7 evaluates it

on the recent Middlebury 2014 [32] benchmark.

4. Bottom up reconstruction

We formulate our reconstruction in terms of primitives,

which is a common technique in both the bottom-up and

top-down literature. A set of superpixels S is extracted from

the reference image Ir. Note that we do not attempt to ex-

tract and match against superpixels from the target image

It, this is because superpixel segmentation is not robust to

viewpoint changes, particularly for wide baseline stereo.

Instead each superpixel (si ∈ S) is parametrised as an

oriented plane primitive, and these primitives are used to

perform matching directly between the two images. The

parametrisation of each plane is a vector (αi ∈ R
3) which

corresponds to the normal vector of the plane, divided by

the perpendicular distance to the plane. Using this represen-

tation, any point (p ∈ R
3) which lies on the plane satisfies

the condition α
⊤p = 1. Furthermore, given the direction

vector of any ray r, the distance along that ray at which it

intersects the plane is given by d = 1/(r⊤α).
With two static cameras, an oriented planar surface in-

duces a homography between the two images. Without loss

of generality, we consider the wide-baseline reconstruction

task where the cameras are in a non-parallel configuration.

We define the rotation and translation between the cameras

using the matrix R and vector t respectively. It follows that

plane i induces a homography

Hi = R+ tα⊤
i , (1)

between the images from the cameras.

We define xr as the homogeneous representation of a

pixel position in the reference image Ir which is part of su-

perpixel si. It is then possible to obtain the corresponding

pixel location xt in the target image using the correspond-

ing oriented plane

xt = KtHiK
−1

r xr, (2)

where Kr and Kt are the intrinsic calibration matrices of

the reference and target cameras respectively. For compact-

ness we define the function H
(

xr
j |αi

)

to do this transfor-

mation, conditioned on the plane parameters.

Given this, it is now easy to formulate a number of stan-

dard appearance matching functions in terms of the oriented

plane primitives. Note that, in a slight abuse of notation, the

following equations index the 2D images directly using 3

element homogeneous pixel locations (x). The conversion

to non-homogeneous co-ordinates is omitted for simplicity.

4.1. Appearance matching

The simplest bottom-up cost function for stereo match-

ing is to employ the Brightness Constancy assumption. We

define this as

Ebc (si) =
∑

x
r
i
∈si

ψ (Ir(xr
i )− It(H (xr

i |αi))) . (3)

where ψ is a robust cost function.

Similarly we can define matching costs based on the Gra-

dient Constancy assumption

Egc (si) =
∑

x
r
i
∈si

ψ
(

I
r
∆(x

r
i )− I

t
∆(H (xr

i |αi))
)

, (4)

(where I
∆

is a gradient image) and the Modified Census

Transform [38]

Ece (si) =
∑

x
r
i
∈si

ψ
(

I
r
C(x

r
i )⊕ I

t
C(H (xr

i |αi))
)

, (5)

where IC are the census transform images. The symbol ⊕
represents and “exclusive or” operation, used to calculate

the Hamming distance between two vectors.

4.2. Triangulation

In addition to these global cost functions, it is possible

to integrate local matching and triangulation criteria within

the same framework. Although sparse, these local matching

costs tend to have very high confidence, which can make

them valuable for avoiding local minima during optimisa-

tion. The descriptors used for feature point matching are

computed with a pre-trained (using correspondences from

the Middlebury07 dataset [1]) deep network including 6

convolutional layers, each of which is followed by max-

pooling, subsampling and rectification layers [35]. This

produces a descriptor (ω ∈ R
128). The set of correspon-

dences C between the two images is then defined by the

cosine similarity of the descriptors

C =

{

(

xr
i ,x

t
j

)

∣

∣

∣

∣

∣

ωr
i · ωt

j

‖ ωr
i ‖‖ ωt

j ‖
> λ

}

, (6)

where

ωr
i = CNN (Ir (xr

i )) and ωt
j = CNN

(

It
(

xt
j

))

. (7)
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Figure 2: An example of an “Origami world” interpretation of a scene [8, 9]. The colour indicates the orientation of the

surface (i.e. the surface normal vector) at every point. The 3 color channels indicate the 3 components of the normal vector.

Blue is the x component, green is the y component and red is the z component. Concave edges between surfaces are also

displayed (no convex edges were detected in this example).

These correspondences are then triangulated to produce

estimated depths. In order to provide robustness to errors

in the camera calibration, we calculate the maximum likeli-

hood depth value for the given correspondence [14]

d̂ = min
d

∑

x∈{xr,xt}

|Pdr− x|, where {xr,xt} ∈ C, (8)

where P is the projection matrix for the camera x belongs

to. The residual of this minimisation ν̂ is also maintained as

a confidence score for the quality of the triangulation.

We can now introduce a cost function to exploit this in-

formation. As mentioned previously, triangulation results

become less reliable as depth increases. To account for this,

we can penalise inconsistencies in the inverse depth. Just

like the constancy based costs (equations 3-5) this provides

a confidence based on what is theoretically observable from

the image data [23], ensuring a smooth transition between

our different information sources.

Inconsistencies in inverse depth (also known as the frac-

tional depth error) can be penalised by (d̂−d)/d where d̂ is

the fixed depth measurement and d is the refined depth. For

a pixel i, with a fixed depth estimate, this can be re-arranged

in terms of the corresponding plane parameters αi

d̂i − di
di

=
1

di
d̂i − 1 = r⊤i αid̂i − 1. (9)

We can now create a cost function over all the triangu-

lated matches

Etr (si) =
∑

di∈si

ν̂iψ
(

r⊤i αid̂i − 1
)

. (10)

5. Top down reconstruction

By formalising the previous bottom-up techniques in

terms of oriented planar primitives (α), we have retained

the ability to enforce top-down constraints on the recon-

struction. This can help reconstruction, greatly disam-

biguating between solutions by exploiting knowledge of the

properties of real environments.

The first such cue we exploit is reasoning about the sur-

face normals and their relationship to classes of edge in the

scene. To enable this, we follow the data-driven approach

of Fouhey et al. [9]. Common configurations of surface nor-

mal and edge class (Concave, convex and occlusion edges)

are recognised, and probabilistically extrapolated to create

an “Origami world” interpretation of the scene as shown in

figure 2. We can use these estimated surface normal maps to

generate an additional matching cost between surface nor-

mal images Is

Esn (si) =
∑

x
r
i
∈si

ψ
(

RI
r
s(x

r
i )− I

t
s(H (xr

i |αi))
)

. (11)

Note that the surface normal is rotated by R before match-

ing, to obtain the expected surface normal in the frame of

the other target camera.

We can also introduce top-down pairwise constraints on

the relationships between pairs of oriented planes. For ex-

ample, if two neighbouring superpixels si and sj are not

detected as an occlusion boundary, we can favour recon-

structions with a concave or convex (rather than disjoint)

connection between the surfaces. If we define Ni,j as the

set of pixels in si which border sj then the fractional depth

error across the boundary corresponds to
dj−di√
didj

. Which

can be re-arranged in terms of α as

Eco (si, sj)=
∑

x
i
∈Ni,j

∑

x
j
∈Nj,i

ψ

(

√

didj
(

r⊤jαj−r⊤i αi

)

)

. (12)

This idea is illustrated graphically in figure 3a. Note that if

the superpixels si and sj do not share a boundary (or if it is
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(a) Eco connects planes in 3D (i.e. encourages

boundaries to align), if they are neighbours in the

image plane, and are not recognised as an occlu-

sion configuration.

(b) Ecp makes connected planes coplanar (i.e. as-

sumes that they are subsections of a larger plane),

if they are not recognised as being in a concave or

convex configuration.

(c) Ecl causes disjoint planes which lie along the

same 2D line in the image, to also lie along the

same 3D line in the reconstruction.

Figure 3: A visual illustration of the reasoning behind the first 3 pairwise cues.

detected as an occlusion boundary), then the neighbourhood

sets N, are empty.1

Similarly if the boundary of two superpixels is not de-

tected as a strongly convex or concave edge, we can in-

tegrate a cue which will favour reconstructions integrating

them into a larger planar surface. This encompasses the in-

tuition that scenes often contain large planar surfaces, in ad-

dition to clutter objects, and can be see as a relaxed Manhat-

tan world assumption (shown in figure 3b). We can enforce

this coplanarity constraint by transferring the plane param-

eters αi to superpixel sj (and visa versa) and penalising the

fractional depth change which arises over the superpixels

Ecp (si, sj)=γcp
∑

x
i
∈si

ψ

(

√

didj
(

r⊤i αj − r⊤i αi

)

)

+

γcp
∑

x
j
∈sj

ψ

(

√

didj
(

r⊤j αj − r⊤j αi

)

)

,
(13)

where γcp is an indicator function for non-convex/non-

concave edges.

A relaxation of the Manhattan world assumption can be

encoded as a collinearity constraint. Intuitively a straight

2D line in the image is likely to arise from a straight 3D line

in the environment. Although technically there are an infi-

nite number of 3D curves which would produce a straight

2D projection, most of these curves would be very sensi-

tive to changes in viewpoint. As such, a 2D line is a priori

much more likely to correspond to a straight 3D line, un-

less there is strong contrary evidence from other sources of

information (see figure 3c).

We can incorporate this idea in a similar way to the

coplanarity principle. We define Ni,ē as the set of pixels

on the border of superpixel si and the 2D line ē. The error

1We define the sum over an empty set to be zero

is then computed as

Ecl (si, sj) =
∑

x
i
∈Ni,ē

ψ

(

√

didj
(

r⊤i αj − r⊤i αi

)

)

+

∑

x
j
∈Nj,ē

ψ

(

√

didj
(

r⊤j αj − r⊤j αi

)

)

.
(14)

Again note that when the superpixel does not border the

edge ē, the corresponding neighbourhood is empty and the

cost function is 0.

The final top-down constraint we exploit is to enforce

the convexity/concavity of edges between neighbouring su-

perpixels, for recognised configurations. If φi is the an-

gle between ray ri and the ray intersecting the super-

pixel boundary, then the concavity/convexity is indicated by

sin(φi)(d̂j − di) as shown in figure 4. We can then build a

cost function

Eed (si, sj) =
∑

x
r
i
∈si

ψed

(

sin(φi)
(

r⊤i αj − r⊤i αi

))

+

∑

x
r
j
∈sj

ψed

(

sin(φj)
(

r⊤j αi − r⊤j αj

))

.
(15)

Note that the scoring function (ψed) applied is different to

the other cues. In this case a linear mapping is applied,

based on the estimated concave/convex edge probabilities.

6. Optimisation

We combine these unary and pairwise cues over the

plane primitives, into a single cost function

E =
∑

si∈S

Ebc(si)+Egc(si)+Ece(si)+Etr(si)+Esn(si)+

∑

si∈S

∑

sj∈S

Eco(si, sj)+Ecp(si, sj)+Ecl(si, sj)+Eed(si, sj).

(16)
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Technique Avg. Err. RMS Err. A99 Time

BSM 23.5/ 5 52.2/ 5 204/ 5 196/ 5

SGBM1 16.1/ 3 41.5/ 4 180/ 4 0.18/ 1

SGM 8.51/ 1 22.7/ 1 106/ 2 0.99/ 3

SGBM2 16.2/ 4 40.9/ 3 177/ 3 0.29/ 2

Top-down (us) 141/ 5 153/ 5 261/ 5 1.2/ 4

Bottom-up (us) 14.6/ 2 26.1/ 2 123/ 1 3.2/ 4

Full HLSC (us) 13.2/ 2 24.0/ 2 98.1/ 1 3.7/ 4

Technique Avg. Err. RMS Err. A99 Time

LAMC DSM 14.6/ 7 38.4/ 8 172/ 8 520/ 9

Cens5 10.6/ 4 27.0/ 5 120/ 6 1.34/ 4

SGM 7.63/ 1 21.2/ 1 98.5/ 2 6.48/ 6

SNCC 10.4/ 3 26.3/ 4 110/ 4 0.97/ 3

LPS 12.8/ 5 30.0/ 6 124/ 7 9.35/ 7

IDR 8.57/ 2 23.8/ 2 107/ 3 0.34/ 1

ELAS 15.3/ 8 31.1/ 7 116/ 5 0.72/ 2

SGBM1 16.2/ 9 42.0/ 9 183/ 9 1.48/ 5

HLSC (us) 12.9/ 6 24.0/ 3 91.1/ 1 11.7/ 8

Table 1: Comparison of rankings against the top performing techniques on the Middlebury 2014 benchmark. Comparison

is performed against all published techniques for the 2 different resolutions of input data, Quarter size (left) and Half size

(right). The ranks in the left and right tables are out of 5 and 9 respectively.

Figure 4: An illustration of the convexity/concavity cost

(Eed) from equation 15. Left shows an example of 2 planes

(i and j) in a concave configuration; right shows a convex

example. A ray intersecting plane i can be projected onto

an extrapolation of plane j (transparent). The relative sizes

of edges A and B depend on the degree of convexity.

Each energy term has a weighting, which is applied at the

same time as the robust scoring function (ψ). These weight-

ings are collectively referred to as υ.

The conditional likelihood of the plane parameters is

P (α|Ir, It,υ) = exp(−E). (17)

The optimal values for the weightings υ may then be

approximately learned from example data, using Multi-

Conditional Learning [30]. This technique approximates

the graphical representation of the system as a set of

marginal conditional likelihoods.

We then perform MAP inference, maximizing the condi-

tional likelihood to estimate α. Note that all the cost func-

tions are linear in terms of α, with the exception of the im-

age lookups in section 4.1. We therefore linearise these im-

age lookups using a first order Taylor expansion (see sup-

plementary material for more details). This is similar to the

approach used to derive the “optical flow constraint” in the

motion estimation literature. We are then able to perform

efficient inference by solving a Linear Program, while ex-

ploiting the high degree of sparsity.

7. Evaluation

We evaluate the proposed approach on the recent Mid-

dlebury 2014 dataset [32]. The dataset consists of 33 pairs

of high definition (≈6 megapixel) stereo images. For tim-

ings, the system was implemented in Matlab and run on

a single core at 2.4 GHz. For a full breakdown of per-

formance against image scale (and additional results on

the KITTI driving dataset), see the supplementary material.

The supplementary material also contains additional exper-

iments on the effect of stereo-baseline and the robustness of

monocular cues to viewpoint change.

Our method has very few parameters. The threshold λ
for CNN matching during triangulation was set to 0.5. The

ground truth for the older Middlebury 2006 [20] dataset was

used to learn the optimal weightings υ. In addition we

found that the best performing cost function (ψ) was the

L2 norm. For the superpixel segmentation, we used the ef-

ficient graph-based approach of Felzenszwalb and Hutten-

locher [7], with a default segmentation threshold of 40.

Two examples of reconstruction for Full resolution (6

megapixel) inputs are shown in figure 5. A number of addi-

tional half resolution examples are also shown in figure 6. In

table 1 we display the overall results of the Middlebury eval-

uation for the Quarter resolution and Half resolution bench-

marks. We compare against the other currently published

techniques which evaluate on each resolution. The perfor-

mance is computed for fully dense estimates, including oc-

cluded regions. We tabulate the the average and RMS error

in terms of disparity levels to give an idea of overall accu-

racy. In addition we tabulate the 99th percentile error (re-

ferred to as A99 in the Middlebury2014 benchmark), which

provides an indication of the quantity and magnitude of out-

liers in the reconstruction. This can be seen as a measure of

robustness (i.e. catastrophically incorrect interpretations of
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Technique Avg. Err. RMS Err. A99 Time

SGM 4.90 / 2 16.2 / 2 86.8 / 2 55.4 / 5

PFS 4.83 / 1 17.2 / 3 97.4 / 4 28.4 / 3

ELAS 6.28 / 4 18.9 / 4 94.5 / 3 4.12 / 1

LPS 7.63 / 5 25.9 / 5 143 / 5 29.3 / 4

SGMB1 21.1 / 6 48.2 / 6 177 / 6 13.9 / 2

HLSC (us) 5.91 / 3 13.1 / 1 66.5 / 1 99.8 / 6

Technique Avg. Err. RMS Err. A99 Time

SGM 4.65 / 1 14.7 / 1 79.0 / 2 13.3 / 5

PFS 6.89 / 2 20.9 / 4 109 / 5 5.55 / 3

ELAS 7.72 / 3 19.3 / 3 83.0 / 3 0.89 / 1

LPS 16.4 / 5 31.6 / 5 98.0 / 4 8.39 / 4

SGMB1 17.8 / 6 43.8 / 6 193 / 6 2.93 / 2

HLSC (us) 8.04 / 4 17.6 / 2 78.0 / 1 45.3 / 6

Table 2: Detailed comparison of 2 sequences (Adirondack left, ArtL right) in the Full resolution benchmark. Ranks out of 6.

Figure 5: Example Full resolution reconstructions from the Middlebury 2014 dataset. One input image (left), the output of

our algorithm (middle) and the ground truth (right).

the scene). Lower is better for all performance measures.

Additionally we contrast the proposed technique using

different types of cue. Using only top-down reasoning with

no matching is significantly faster, however the quality of

the estimate is poor as the finer details of the model are

no longer refined. It is interesting to note that the decrease

in robustness (roughly a factor of 3) is significantly lower

than the loss of accuracy (roughly a factor of 10). When

the technique exploits only bottom-up matching cues the

reconstruction is of higher quality. However, the combi-

nation of bottom-up and top-down performs the best, with

around 10% improvement in all error measures, reinforcing

the complementary nature of the different cues, particularly

improving robustness by resolving ambiguities.

For the full resolution benchmark, we examine in detail

the performance of the relevant techniques for the Adiron-

dack and ArtL sequences in table 2. At these higher

resolutions our technique remains the most robust algo-

rithm. However, accuracy is drastically improved. The in-

crease in resolution makes it possible to use smaller planar-

primitives, without the optimisation problem becoming ill

conditioned. These smaller primitives make it possible to

model fine scene details, with improved fidelity.

In table 3 we examine the performance for each of the 15

training sequences in the Half resolution benchmark, where

ground truth is provided (additional results are included in

the supplementary material). We list the performance in

each of the 3 categories, along with the ranking out of 25

(including unpublished techniques, and techniques running

on different resolution data). As previously noted, the high

level scene cues make the algorithm extremely robust. This

helps reduce outliers in areas of low texture information.

It is interesting to note that the dataset contains 2 scenes

(ArtL and PianoL) with lighting changes between the views

and one scene (MotorcycleE) with significantly different

exposure levels between the views (The suffix P indicates

“perfect” calibration, and has very little effect on our al-

gorithm due to reduced reliance on triangulation). Our al-

gorithm is extremely resilient to these changes in lighting

and exposure compared to traditional bottom-up reconstruc-
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Figure 6: Example Half resolution reconstructions from the Middlebury 2014 dataset. Each triplet shows one input image

(left), the output of our algorithm (middle) and the ground truth (right).

Adirondack ArtL Jadeplant Motorcycle MotorcycleE Piano PianoL Pipes

Avg. Err. 5.76 / 15 9.91 / 15 39.6 / 14 9.85 / 17 9.54 / 13 8.09 / 17 10.8 / 8 15.0 / 20

RMS Err. 13.3 / 8 21.3 / 15 75.4 / 5 26.2 / 17 25.9 / 13 12.2 / 9 15.3 / 3 36.7 / 19

A99 63.3 / 5 75.2 / 4 283 / 2 140 / 17 139 / 13 43.6 / 6 56.2 / 2 149 / 14

Playroom Playtable PlaytableP Recycle Shelves Teddy Vintage Average

Avg. Err. 11.0 / 17 25.2 / 16 14.0 / 22 6.74 / 22 13.3 / 18 2.97 / 11 19.5 / 22 12.9 / 14

RMS Err. 18.6 / 6 22.4 / 3 19.5 / 16 11.6 / 11 20.0 / 11 8.66 / 10 22.7 / 5 24.0 / 10

A99 99.9 / 7 77.9 / 3 59.5 / 13 43.0 / 5 79.2 / 8 43.5 / 8 61.7 / 1 91.1 / 2

Table 3: Analysis of the performance on the 15 training sequences where ground truth is provided on the Half resolution

benchmark. Listed is the error value for that sequence, followed by the ranking out of 25 for that sequence.
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Figure 7: Behaviour of the approach with different segmen-

tation thresholds. Left - Plots of the 3 accuracy character-

istics. Right - plots of the tradeoff (speed and number of

planes). Note that both subfigures display two Y scales.

tion techniques. Performance on the Motorcycle sequence

with and without the exposure change are roughly the same,

which leads to a 25% improvement in ranking, as other

techniques are adversely affected. For the lighting change

in the Piano sequence, performance drops by around 20%,

however this is dramatically lower than most other tech-

niques, leading to an increase in ranking of over 60%.

We also evaluate the effect of varying the superpixel seg-

mentation threshold in figure 7 using the Quarter Resolu-

tion benchmark. Higher thresholds lead to a smaller num-

bers of larger superpixels, and can significantly improve the

runtime of the algorithm. However, the effect on accuracy

is negligible for thresholds of 40 and over. Below 40, the

superpixels are often poorly constrained due to their small

size, and accuracy suffers.

8. Conclusions
From these results we can conclude that, as in human

vision, automatic reconstruction benefits greatly from top-

down reasoning about the environment. Furthermore, the

proposed fusion framework using slanted plane primitives

has proven a powerful and highly efficient approach to

achieving this. We have demonstrated also the flexibility

of this approach, incorporating a vast array of different in-

formation sources within a single unified scheme.

In the future, the automatic learning of cue weights (Sec-

tion 6) could be extended to recognise particular types of

environment, and either use weightings specialised to that

type of environment, or to even perform online estimation

of the cue weights for temporal stereo. It would also be

beneficial to explore ways to integrate “recognition meets

reconstruction” into the framework. This is an extremely

powerful top down cue, and could be extended further by

including relationships between recognised entities. In ad-

dition it may prove interesting to extend the CNN compo-

nent to estimating larger parts of the representation, rather

than only the triangulation cues.
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