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Abstract

Advanced Driver Assistance Systems (ADAS) have made

driving safer over the last decade. They prepare vehicles

for unsafe road conditions and alert drivers if they per-

form a dangerous maneuver. However, many accidents are

unavoidable because by the time drivers are alerted, it is

already too late. Anticipating maneuvers beforehand can

alert drivers before they perform the maneuver and also

give ADAS more time to avoid or prepare for the danger.

In this work we anticipate driving maneuvers a few sec-

onds before they occur. For this purpose we equip a car

with cameras and a computing device to capture the driving

context from both inside and outside of the car. We propose

an Autoregressive Input-Output HMM to model the contex-

tual information alongwith the maneuvers. We evaluate our

approach on a diverse data set with 1180 miles of natural

freeway and city driving and show that we can anticipate

maneuvers 3.5 seconds before they occur with over 80%

F1-score in real-time.

1. Introduction

Over the last decade cars have been equipped with var-

ious assistive technologies in order to provide a safe driv-

ing experience. Technologies such as lane keeping, blind

spot check, pre-crash systems etc., are successful in alerting

drivers whenever they commit a dangerous maneuver [19].

Still in the US alone more than 33,000 people die in road

accidents every year, the majority of which are due to in-

appropriate maneuvers [3]. We need mechanisms that can

alert drivers before they perform a dangerous maneuver in

order to avert many such accidents [28]. In this work we

address this problem of anticipating maneuvers that a driver

is likely to perform in the next few seconds (Figure 1).

Anticipating future human actions has recently been a

topic of interest to both the vision and robotics communi-

ties [12, 13, 42]. Figure 1 shows our system anticipating a
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Figure 1: Anticipating maneuvers. Our algorithm anticipates

driving maneuvers performed a few seconds in the future. It uses

information from multiple sources including videos, vehicle dy-

namics, GPS, and street maps to anticipate the probability of dif-

ferent future maneuvers.

left turn maneuver a few seconds before the car reaches the

intersection. Our system also outputs probabilities over the

maneuvers the driver can perform. With this prior knowl-

edge of maneuvers, the driver assistance systems can alert

drivers about possible dangers before they perform the ma-

neuver, thereby giving them more time to react. Some previ-

ous works [10, 17, 24] also predict a driver’s future maneu-

ver. However, as we show in the following sections, these

methods use limited context and do not accurately model

the anticipation problem.

In order to anticipate maneuvers, we reason with the con-

textual information from the surrounding events, which we

refer to as the driving context. We obtain this driving con-

text from multiple sources. We use videos of the driver in-

side the car and the road in front, the vehicle’s dynamics,

global position coordinates (GPS), and street maps; from

this we extract a time series of multi-modal data from both

inside and outside the vehicle. The challenge lies in mod-

eling the temporal aspects of driving and in detecting the

contextual cues that help in anticipating maneuvers.

Modeling maneuver anticipation also requires joint rea-

soning of the driving context and the driver’s intention. The
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challenge here is the driver’s intentions are not directly ob-

servable, and their interactions with the driving context are

complex. For example, the driver is influenced by external

events such as traffic conditions. The nature of these in-

teractions is generative and they require a specially tailored

modeling approach.

In this work we propose a model and a learning algo-

rithm to capture the temporal aspects of the problem, along

with the generative nature of the interactions. Our model

is an Autoregressive Input-Output Hidden Markov Model

(AIO-HMM) that jointly captures the context from both in-

side and outside the vehicle. AIO-HMM models how events

from outside the vehicle affect the driver’s intention, which

then generates events inside the vehicle. We learn the AIO-

HMM model parameters from natural driving data and dur-

ing inference output the probability of each maneuver.

We evaluate our approach on a driving data set with 1180

miles of natural freeway and city driving collected across

two states – from 10 drivers and with different kinds of driv-

ing maneuvers. We demonstrate that our approach antic-

ipates maneuvers 3.5 seconds before they occur with 80%

precision and recall. We believe that our work creates scope

for new ADAS features to make roads safer. In summary

our key contributions are as follows:

• We propose an approach for anticipating driving ma-

neuvers several seconds in advance.

• We model the driving context from inside and outside

the car with an autoregressive input-output HMM.

• We release the first data set of natural driving with

videos from both inside and outside the car, GPS, and

speed information.

Our data set and code are available at: http://www.

brain4cars.com.

2. Related Work

Assistive features for vehicles. Latest cars available in

market comes equipped with cameras and sensors to mon-

itor the surrounding environment. Through multi-sensory

fusion they provide assisitive features like lane keeping, for-

ward collision avoidance, adaptive cruise control etc. These

systems warn drivers when they perform a potentially dan-

gerous maneuver [31, 37]. Driver monitoring for distraction

and drowsiness has also been extensively researched [9, 27].

Techniques like eye-gaze tracking are now commercially

available (Seeing Machines Ltd.) and has been effective

in detecting distraction. Our work complements existing

ADAS and driver monitoring techniques by anticipating

maneuvers several seconds before they occur.

Closely related to us are previous works on predicting the

driver’s intent. Vehicle trajectory has been used to predict

the intent for lane change or turn maneuver [5, 10, 17, 20].

Most of these works ignore the rich context available from

cameras, GPS, and street maps. Trivedi et al. [36] and Mor-

ris et al. [24] predict lane change intent using the rich con-

text from cameras both inside and outside the vehicle. Both

works train a discriminative classifier which assumes that

informative contextual cues always appear at a fixed time

before the maneuver. We show that this assumption is not

true, and in fact the temporal aspect of the problem should

be carefully modeled. Our AIO-HMM takes a generative

approach and handles the temporal aspect of this problem.

Anticipation and Modeling Humans. Modeling of human

motion has given rise to many applications, anticipation be-

ing one of them. Wang et al. [42], Koppula et al. [13, 15],

and Sener et al. [29] demonstrate better human-robot collab-

oration by anticipating a human’s future movements. Kitani

et al. [12] model human navigation in order to anticipate the

path they will follow. Similar to these works, we anticipate

human actions, which are driving maneuvers in our case.

However, the algorithms proposed in the previous works do

not apply in our setting. In our case, anticipating maneuvers

requires modeling the interaction between the driving con-

text and the driver’s intention. Such interactions are absent

in the previous works. We propose AIO-HMM to model

these aspects of the problem.

Computer vision for analyzing the human face. The vi-

sion approaches related to our work are face detection and

tracking [38, 45], statistical models of face [6] and pose es-

timation methods for face [44]. Active Appearance Model

(AAM) [6] and its variants [22, 43] statistically model the

shape and texture of the face. AAMs have also been used to

estimate the 3D-pose of a face from a single image [44] and

in design of assistive features for driver monitoring [27, 32].

In our approach we adapt off-the-shelf available face de-

tection and tracking algorithms for robustness required for

anticipation (Section 5).

Learning temporal models. Temporal models are com-

monly used to model human activities [14, 23, 40, 41].

These models have been used in both discriminative and

generative fashions. The discriminative temporal mod-

els are mostly inspired by the Conditional Random Field

(CRF) [18] which captures the temporal structure of the

problem. Wang et al. [41] and Morency et al. [23] pro-

pose dynamic extensions of the CRF for image segmenta-

tion and gesture recognition respectively. The generative

approaches for temporal modeling include various filtering

methods, such as Kalman and particle filters [33], Hidden

Markov Models, and many types of Dynamic Bayesian Net-

works [25]. Some previous works [5, 16, 26] used HMMs

to model different aspects of the driver’s behaviour. Most

of these generative approaches model how latent (hidden)

states influence the observations. However, in our problem

both the latent states and the observations influence each

other. In particular, our AIO-HMM model is inspired by

the Input-Output HMM [4]. In the following sections we

will explain the advantages of AIO-HMM over HMMs for

anticipating maneuvers and also compare its performance

with variants of HMM in the experiments (Section 6).
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Figure 2: System Overview. Our system anticipating a left lane change maneuver. (a) We process multi-modal data including GPS, speed,

street maps, and events inside and outside of the vehicle using video cameras. (b) Vision pipeline extracts visual cues such as driver’s

head movements. (c) The inside and outside driving context is processed to extract expressive features. (d,e) Using our trained models we

anticipate the probability of each maneuver.

3. Problem Overview

Our goal is to anticipate driving maneuvers a few sec-

onds before they occur. This includes anticipating a lane

change before the wheels touch the lane markings or antic-

ipating if the driver keeps straight or makes a turn when ap-

proaching an intersection. This is a challenging problem for

multiple reasons. First, it requires the modeling of context

from different sources. Information from a single source,

such as a camera capturing events outside the car, is not suf-

ficiently rich. Additional visual information from within the

car can also be used. For example, the driver’s head move-

ments are useful for anticipation – drivers typically check

for the side traffic while changing lanes and scan the cross

traffic at intersections.

Second, reasoning about maneuvers should take into ac-

count the driving context at both local and global levels.

Local context requires modeling events in vehicle’s vicinity

such as the surrounding vision, GPS, and speed informa-

tion. On the other hand, factors that influence the overall

route contributes to the global context, such as the driver’s

final destination. Third, the informative cues necessary for

anticipation appear at variable times before the maneuver,

as illustrated in Figure 3.In particular, the time interval be-

tween the driver’s head movement and the occurrence of

the maneuver depends on factors such as the speed, traffic

conditions, the GPS location, etc.

We obtain the driving context from different sources as

shown in Figure 2. Our system includes: (1) a driver-facing

camera inside the vehicle, (2) a road-facing camera outside

the vehicle, (3) a speed logger, and (4) a GPS and map log-

ger. The information from these sources constitute the driv-

ing context. We use the face camera to track the driver’s

head movements. The video from the road camera enables

additional reasoning on maneuvers. For example, when the

vehicle is in the left-most lane, the only safe maneuvers are

a right-lane change or keeping straight, unless the vehicle

is approaching an intersection. Maneuvers also correlate

with the vehicle’s speed, e.g., turns usually happen at lower

speeds than lane changes. Additionally, the GPS data aug-

mented with the street map enables us to detect upcoming

road artifacts such as intersections, highway exits, etc. We

now describe our model and the learning algorithm.
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Figure 3: Variable time occurrence of events. Left: The events

inside the vehicle before the maneuvers. We track the driver’s face

along with many facial points. Right: The trajectories generated

by the horizontal motion of facial points (pixels) ‘t’ seconds before

the maneuver. X-axis is the time and Y-axis is the pixels’ horizon-

tal coordinates. Informative cues appear during the shaded time

interval. Such cues occur at variable times before the maneuver,

and the order in which the cues appear is also important.

4. Our Approach

Driving maneuvers are influenced by multiple interac-

tions involving the vehicle, its driver, outside traffic, and oc-

casionally global factors like the driver’s destination. These

interactions influence the driver’s intention, i.e. their state

of mind before the maneuver, which is not directly observ-

able. We represent the driver’s intention with discrete states

that are latent (or hidden). In order to anticipate maneuvers,

we jointly model the driving context and the latent states in

a tractable manner. We represent the driving context as a

set of features, which we describe in Section 5. We now

present the motivation for our model and then describe the

model, along with the learning and inference algorithms.

4.1. Modeling driving maneuvers

Modeling maneuvers require temporal modeling of the

driving context (Figure 3). Discriminative methods, such as

the Support Vector Machine and the Relevance Vector Ma-

chine [34], which do not model the temporal aspect perform

poorly (shown in Section 6.2). Therefore, a temporal model

such as the Hidden Markov Model (HMM) is better suited.
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Figure 4: AIO-HMM. The model has three layers: (i) Input (top):

this layer represents outside vehicle features X; (ii) Hidden (mid-

dle): this layer represents driver’s latent states Y ; and (iii) Out-

put (bottom): this layer represents inside vehicle features Z. This

layer also captures temporal dependencies of inside vehicle fea-

tures. T represents time.

An HMM models how the driver’s latent states generate

both the inside driving context and the outside driving con-

text. However, a more accurate model should capture how

events outside the vehicle (i.e. the outside driving context)

affect the driver’s state of mind, which then generates the

observations inside the vehicle (i.e. the inside driving con-

text). Such interactions can be modeled by an Input-Output

HMM (IOHMM) [4]. However, modeling the problem with

IOHMM will not capture the temporal dependencies of the

inside driving context. These dependencies are critical to

capture the smooth and temporally correlated behaviours

such as the driver’s face movements. We therefore present

Autoregressive Input-Output HMM (AIO-HMM) which ex-

tends IOHMM to model these observation dependencies.

Figure 4 shows the AIO-HMM graphical model.

4.2. Modeling Maneuvers with AIOHMM

Given T seconds long driving context C before the ma-

neuver M , we learn a generative model for the context

P (C|M). The driving context C consists of the outside driv-

ing context and the inside driving context. The outside and

inside contexts are temporal sequences represented by the

outside features XK
1

= {X1, .., XK} and the inside fea-

tures ZK
1

= {Z1, .., ZK} respectively. The corresponding

sequence of the driver’s latent states is Y K
1

= {Y1, .., YK}.

X and Z are vectors and Y is a discrete state.

P (C|M) =
∑

Y K
1

P (ZK
1
, XK

1
, Y K

1
|M)

= P (XK
1
|M)

∑

Y K
1

P (ZK
1
, Y K

1
|XK

1
,M)

∝
∑

Y K
1

P (ZK
1
, Y K

1
|XK

1
,M) (1)

We model the correlations between X , Y and Z with an

AIO-HMM as shown in Figure 4. The AIO-HMM mod-

els the distribution in equation (1). It does not assume any

generative process for the outside features P (XK
1
|M). It

instead models them in a discriminative manner. The top

(input) layer of the AIO-HMM consists of outside features

XK
1

. The outside features then affect the driver’s latent

states Y K
1

, represented by the middle (hidden) layer, which

then generates the inside features ZK
1

at the bottom (output)

layer. The events inside the vehicle such as the driver’s head

movements are temporally correlated because they are gen-

erally smooth. The AIO-HMM handles these dependencies

with autoregressive connections in the output layer.

Model Parameters. AIO-HMM has two types of parame-

ters: (i) state transition parameters w; and (ii) observation

emission parameters (µ,Σ). We use set S to denote the pos-

sible latent states of the driver. For each state Y = i ∈ S ,

we parametrize transition probabilities of leaving the state

with log-linear functions, and parametrize the output layer

feature emissions with normal distributions.

Transition: P (Yt = j|Yt−1 = i,Xt;wij) =
ewij ·Xt

∑

l∈S
ewil·Xt

Emission: P (Zt|Yt = i,Xt, Zt−1;µit,Σi) = N (Zt|µit,Σi)

The inside (vehicle) features represented by the output

layer are jointly influenced by all three layers. These inter-

actions are modeled by the mean and variance of the normal

distribution. We model the mean of the distribution using

the outside and inside features from the vehicle as follows:

µit = (1 + ai ·Xt + bi · Zt−1)µi

In the equation above, ai and bi are parameters that we

learn for every state i ∈ S . Therefore, the parameters we

learn for state i ∈ S are θi = {µi, ai, bi, Σi and wij |j ∈
S}, and the overall model parameters are Θ = {θi|i ∈ S}.

4.3. Learning AIOHMM parameters

The training data D = {(XKn

1,n , Z
Kn

1,n )|n = 1, .., N} con-

sists of N instances of a maneuver M . The goal is to maxi-

mize the data log-likelihood.

l(Θ;D) =

N∑

n=1

logP (ZKn

1,n |X
Kn

1,n ;Θ) (2)

Directly optimizing equation (2) is challenging because pa-

rameters Y representing the driver’s states are latent. We

therefore use the iterative EM procedure to learn the model

parameters. In EM, instead of directly maximizing equa-

tion (2), we maximize its simpler lower bound. We estimate

the lower bound in the E-step and then maximize that esti-

mate in the M-step. These two steps are repeated iteratively.

E-step. In the E-step we get the lower bound of equation (2)

by calculating the expected value of the complete data log-

likelihood using the current estimate of the parameter Θ̂.

E-step: Q(Θ; Θ̂) = E[lc(Θ;Dc)|Θ̂,D] (3)

where lc(Θ;Dc) is the log-likelihood of the complete data

Dc defined as:

Dc = {(XKn

1,n , Z
Kn

1,n , Y
Kn

1,n )|n = 1, .., N} (4)

lc(Θ;Dc) =

N∑

n=1

logP (ZKn

1,n , Y
Kn

1,n |XKn

1,n ;Θ) (5)

We should note that the occurrences of hidden variables

Y in lc(Θ;Dc) are marginalized in equation (3), and hence

Y need not be known. We efficiently estimate Q(Θ; Θ̂)
using the forward-backward algorithm [25].

M-step. In the M-step we maximize the expected value of
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the complete data log-likelihood Q(Θ; Θ̂) and update the

model parameter as follows:

M-step: Θ = argmaxΘ Q(Θ; Θ̂) (6)

Solving equation (6) requires us to optimize for the pa-

rameters µ, a, b, Σ and w. We optimize all parameters ex-

pect w exactly by deriving their closed form update expres-

sions. We optimized w using the gradient descent. Refer to

the supplementary material for detailed E and M steps.1

4.4. Inference of Maneuvers

Our learning algorithm trains separate AIO-HMM mod-

els for each maneuver. The goal during inference is to deter-

mine which model best explains the past T seconds of the

driving context not seen during training. We evaluate the

likelihood of the inside and outside feature sequences (ZK
1

and XK
1

) for each maneuver, and anticipate the probability

PM of each maneuver M as follows:

PM = P (M |ZK
1
, XK

1
) ∝ P (ZK

1
, XK

1
|M)P (M) (7)

Algorithm 1 shows the complete inference procedure.

The inference in equation (7) simply requires a forward-

pass [25] of the AIO-HMM, the complexity of which is

O(K(|S|2 + |S||Z|3 + |S||X|)). However, in practice it

is only O(K|S||Z|3) because |Z|3 ≫ |S| and |Z|3 ≫ |X|.
Here |S| is the number of discrete states representing the

driver’s intention, while |Z| and |X| are the dimensions of

the inside and outside feature vectors respectively. In equa-

tion (7) P (M) is the prior probability of maneuver M . We

assume an uninformative uniform prior over the maneuvers.

Algorithm 1 Anticipating maneuvers

input Driving videos, GPS, Maps and Vehicle Dynamics

output Probability of each maneuver

Initialize the face tracker with the driver’s face

while driving do

Track the driver’s face [38]

Extract features ZK
1

and XK
1

(Sec. 5)

Inference PM = P (M |ZK
1
, XK

1
) (Eq. (7))

Send the inferred probability of each maneuver to

ADAS

end while

5. Features

We extract features by processing the inside and outside

driving contexts. We denote the inside features with Z and

the outside features with X .

5.1. Insidevehicle features.

The inside features Z capture the driver’s head move-

ments. Our vision pipeline consists of face detection, track-

ing, and feature extraction modules. We extract head mo-

tion features per-frame, denoted by φ(face). For AIO-

HMM, we compute Z by aggregating φ(face) for every 20

frames, i.e., Z =
∑

20

i=1
φ(facei)/‖

∑
20

i=1
φ(facei)‖.

1http://www.brain4cars.com/ICCVsupp.pdf
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Figure 5: Inside vehicle feature extraction. The angular his-

togram features extracted at three different time steps for a left

turn maneuver. Bottom: Trajectories for the horizontal motion

of tracked facial pixels ‘t’ seconds before the maneuver. At t=5

seconds before the maneuver the driver is looking straight, at t=3

looks (left) in the direction of maneuver, and at t=2 looks (right) in

opposite direction for the crossing traffic. Middle: Average motion

vector of tracked facial pixels in polar coordinates. r is the aver-

age movement of pixels and arrow indicates the direction in which

the face moves when looking from the camera. Top: Normalized

angular histogram features.

Face detection and tracking. We detect the driver’s face

using a trained Viola-Jones face detector [38]. From the de-

tected face, we first extract visually discriminative (facial)

points using the Shi-Tomasi corner detector [30] and then

track those facial points using the Kanade-Lucas-Tomasi

tracker [21, 30, 35]. However, the tracking may accumu-

late errors over time because of changes in illumination

due to the shadows of trees, traffic, etc. We therefore con-

strain the tracked facial points to follow a projective trans-

formation and remove the incorrectly tracked points using

the RANSAC algorithm. While tracking the facial points,

we lose some of the tracked points with every new frame.

To address this problem, we re-initialize the tracker with

new discriminative facial points once the number of tracked

points falls below a threshold [11].

Head motion features. For maneuver anticipation the hori-

zontal movement of the face and its angular rotation (yaw)

are particularly important. From the face tracking we obtain

face tracks, which are 2D trajectories of the tracked facial

points in the image plane. Figure 5 (bottom) shows how the

horizontal coordinates of the tracked facial points vary with

time before a left turn maneuver. We represent the driver’s

face movements and rotations with histogram features. In

particular, we take matching facial points between succes-

sive frames and create histograms of their corresponding

horizontal motions (in pixels) and angular motions in the

image plane (Figure 5). We bin the horizontal and angu-
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Figure 6: Our data set is diverse in drivers and landscape.

lar motions using [≤ −2, −2 to 0, 0 to 2, ≥ 2] and

[0 to π
2
, π

2
to π, π to 3π

2
, 3π

2
to 2π], respectively. We

also calculate the mean movement of the driver’s face cen-

ter. This gives us φ(face) ∈ R
9 facial features per-frame.

The driver’s eye-gaze is also useful a feature. However,

robustly estimating 3D eye-gaze in outside environment is

still a topic of research, and orthogonal to this work on an-

ticipation. We therefore do not consider eye-gaze features.

5.2. Outsidevehicle features.

The outside feature vector X encodes the information

about the outside environment such as the road conditions,

vehicle dynamics, etc. In order to get this information, we

use the road-facing camera together with the vehicle’s GPS

coordinates, its speed, and the street maps. More specif-

ically, we obtain two binary features from the road-facing

camera indicating whether a lane exists on the left side and

on the right side of the vehicle. We also augment the ve-

hicle’s GPS coordinates with the street maps and extract a

binary feature indicating if the vehicle is within 15 meters of

a road artifact such as intersections, turns, highway exists,

etc. We also encode the average, maximum, and minimum

speeds of the vehicle over the last 5 seconds as features.

This results in a X ∈ R
6 dimensional feature vector.

6. Experiment

We first give an overview of our data set, the baseline

algorithms, and our evaluation setup. We then present the

results and discussion. Our video demonstration is available

at: http://www.brain4cars.com.

6.1. Experimental Setup

Data set. Our data set consists of natural driving videos

with both inside and outside views of the car, its speed, and

the global position system (GPS) coordinates.2 The outside

car video captures the view of the road ahead. We collected

this driving data set under fully natural settings without any

intervention.3 It consists of 1180 miles of freeway and city

driving and encloses 21,000 square miles across two states.

We collected this data set from 10 drivers over a period of

2The inside and outside cameras operate at 25 and 30 frames/sec.
3Protocol: We set up cameras, GPS and speed recording device in

subject’s personal vehicles and left it to record the data. The subjects were

asked to ignore our setup and drive as they would normally.

two months. The complete data set has a total of 2 mil-

lion video frames and includes diverse landscapes. Figure 6

shows a few samples from our data set. We annotated the

driving videos with a total of 700 events containing 274 lane

changes, 131 turns, and 295 randomly sampled instances of

driving straight. Each lane change or turn annotation marks

the start time of the maneuver, i.e., before the car touches

the lane or yaws, respectively. For all annotated events,

we also annotated the lane information, i.e., the number of

lanes on the road and the current lane of the car.

Baseline algorithms we compare with:

• Chance: Uniformly randomly anticipates a maneuver.

• SVM [24]: Support Vector Machine is a discriminative

classifier [7]. Morris et al. [24] takes this approach

for anticipating maneuvers.4 We train the SVM on 5

seconds of driving context by concatenating all frame

features to get a R
3840 dimensional feature vector.

• Random-Forest [8]: This is also a discriminative clas-

sifier that learns many decision trees from the training

data, and at test time it averages the prediction of the

individual decision trees. We train it on the same fea-

tures as SVM with 150 trees of depth ten each.

• HMM: This is the Hidden Markov Model. We train

the HMM on a temporal sequence of feature vectors

that we extract every 0.8 seconds, i.e., every 20 video

frames. We consider three versions of the HMM: (i)

HMM E: with only outside features from the road

camera, the vehicle’s speed, GPS and street maps (Sec-

tion 5.2); (ii) HMM F : with only inside features from

the driver’s face (Section 5.1); and (ii) HMM E + F :

with both inside and outside features.

We compare these baseline algorithms with our IOHMM

and AIO-HMM models. The features for our model are ex-

tracted in the same manner as in HMM E + F method.

Evaluation setup. We evaluate an algorithm based on its

correctness in predicting future maneuvers. We anticipate

maneuvers every 0.8 seconds where the algorithm processes

the recent context and assigns a probability to each of the

four maneuvers: {left lane change, right lane change, left

turn, right turn} and a probability to the event of driving

straight. These five probabilities together sum to one. Af-

ter anticipation, i.e. when the algorithm has computed all

five probabilities, the algorithm predicts a maneuver if its

probability is above a threshold. If none of the maneu-

vers’ probabilities are above this threshold, the algorithm

does not make a maneuver prediction and predicts driving

straight. However, when it predicts one of the four ma-

neuvers, it sticks with this prediction and makes no further

predictions for next 5 seconds or until a maneuver occurs,

whichever happens earlier. After 5 seconds or a maneuver

has occurred, it returns to anticipating future maneuvers.

4Morries et al. [24] considered binary classification problem (lane

change vs driving straight) and used RVM [34].
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