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Abstract

Previous sampling-based image matting methods typi-

cally rely on certain heuristics in collecting representative

samples from known regions, and thus their performance

deteriorates if the underlying assumptions are not satisfied.

To alleviate this, in this paper we take an entirely new ap-

proach and formulate sampling as a sparse subset selection

problem where we propose to pick a small set of candidate

samples that best explains the unknown pixels. Moreover,

we describe a new distance measure for comparing two

samples which is based on KL-divergence between the dis-

tributions of features extracted in the vicinity of the samples.

Using a standard benchmark dataset for image matting, we

demonstrate that our approach provides more accurate re-

sults compared with the state-of-the-art methods.

1. Introduction

Accurately estimating foreground and background lay-

ers of an image plays an important role for many image and

video editing applications. In the computer vision literature,

this problem is known as image matting or alpha matting,

and mathematically, refers to the problem of decomposing

a given image I into two layers, the foreground F and the

background B, which is defined in accordance with the fol-

lowing linear image composition equation:

I = ↵F + (1− ↵)B (1)

where ↵ represents the unknown alpha matte which defines

the true opacity of each pixel and whose values lies in [0, 1]
with ↵ = 1 denoting a foreground pixel and ↵ = 0 indicat-

ing a background pixel. This is a highly ill-posed problem

since for each pixel we have only three inputs but seven un-

knowns (↵ and the RGB values of F and B). The general

approach to resolve this issue is to consider a kind of prior

knowledge about the foreground and background in form of

user scribbles or a trimap to simplify the problem and use

the spatial and photometric relations between these known

pixels and the unknown ones.

Image matting methods can be mainly categorized into

two groups: propagation-based methods [23, 10, 16, 15, 3,

22, 11] and sampling-based methods [6, 27, 9, 12, 20, 21,

25, 13]. The first group defines an affinity matrix represent-

ing the similarity between pixels and propagate the alpha

values of known pixels to the unknown ones. These ap-

proaches mostly differ from each other in their propagation

strategies or affinity definitions. The latter group, on the

other hand, collects color samples from known foreground

and background regions to represent the corresponding

color distributions and determine the alpha value of an un-

known pixel according to its closeness to these distributions.

Early examples of sampling-based matting methods [6, 27]

fit parametric models to color distributions of foreground

and background regions. Difficulties arise, however, when

an image contains highly textured areas. Thus, virtually all

recent sampling-based approaches [9, 12, 20, 21, 25, 13]

consider a non-parametric setting and employ a particular

selection criteria to collect a subset of known F and B sam-

ples.Then, for each unknown pixel, they search for the best

(F,B) pair within the representative samples, and once the

best pair is found, the final alpha matte is computed as

↵̂ =
(I −B).(F −B)

kF −Bk2
. (2)

The recent sampling-based approaches mentioned above

also apply local smoothing as a post-processing step to fur-

ther improve the quality of the estimated alpha matte. Apart

from the two main types of approaches, there are also some

hybrid methods which consider a combination of propaga-

tion and sampling based formulations [4], or some super-

vised machine learning based methods which learn proper

matting functions from a training set of examples [29]. For

a more comprehensive up-to-date survey of image matting

methods, we refer the reader to [30, 26].

The matting approach we present in this paper belongs

to the group of sampling-based methods that rely on a non-

parametric formulation. As will be discussed in more detail

in the next section, these methods typically exploit different

strategies to gather the representative foreground and back-
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Original image Robust [28] Shared [9] Global [12] Comprehensive [21] Proposed

Figure 1. Non-parametric sampling-based matting approaches. Top row: An input image and the representative samples gathered by the

Robust [28], Shared [9], Global [12], Comprehensive [21], and the proposed Sparse Sampling based matting methods. The unknown pixel,

the foreground and background samples are shown in yellow, red and blue colors, respectively. Bottom row: Comparison of the estimated

alpha mattes by the suggested approach and the state-of-the-art Comprehesive Sampling matting method [21].

ground samples. Our observation is that all these strategies

lack a strong theoretical basis, i.e. they require certain as-

sumptions to hold to capture the true foreground and back-

ground colors, and moreover, they fail to adequately uti-

lize the relationship between known and unknown regions.

In contrast, our approach offers a more principled way to

sampling by casting it as a sparse subset selection prob-

lem [7, 8], in which the resulting samples refers to a small

subset of known foreground and background pixels that best

explains the unknown pixels. In particular, sampling is for-

mulated as a row-sparsity regularized trace minimization

problem which solely depends on pairwise dissimilarities

between known and unknown pixels, and for that, we pro-

pose a new KL-divergence based contextual measure as an

efficient alternative to chromatic and spatial distances.

Previous work. Sampling-based image matting models

mainly differ from each other in (i) how it collects the repre-

sentative foreground and background samples, and (ii) how

it selects the best (F,B) pair for an unknown pixel.

An early example is the Mishima’s Blue-screen matting

method [17] in which the image of a foreground object is

captured in front of a monochrome background. This setup

allows efficient estimation of foreground and background

distributions via clustering, and then alpha values of un-

known pixels are estimated by considering their proximity

to the extracted clusters. Another early work, the Knockout

system [2], estimates true color values of the foreground

and background layers of an unknown pixel by a weighted

sum of nearby known pixels with the weights proportional

to their spatial distances to the unknown pixel.

Robust matting [28], for an unknown pixel, collects sam-

ples from the known nearby foreground and background

pixels. Among those samples, it then selects the pair that

best fits the linear compositing equation defined in Eq. (1).

As the selection is carried by taking into account the color

distortion, it provides more robust results than the Knock-

out system. However, since sampling depends only on the

spatial closeness to the unknown pixels, as shown in Fig. 1,

the true samples might be missing in the candidate set, de-

creasing the matting quality. In [18], it has been shown that

using geodesic distances improves the results of this model

to a certain extent.

Shared matting [9] gathers representative samples from

the trimap boundary, assuming that, for an unknown pixel,

its true foreground and background color can be found at

the closest known region boundaries. These pixels are de-

fined as the boundary pixels that lie along the rays which

are originated from the unknown pixel and that partition

the image plane into disjoint parts of equal planar angles.

Then, the best pair among those are used to estimate its al-

pha value w.r.t. an objective function that depends on spa-

tial and photometric affinity. It falls short, however, when

the rays do not reach the true samples. Weighted color and

texture (WCT) sampling [20] and its comprehensive ver-

sion (CWCT) extend Shared matting by combining the local

sampling strategy in [9] with a global one that depends on a

clustering-based probabilistic model. Moreover, it employs

a texture compatibility measure in addition to the color dis-

tortion measure to prevent selecting overlapping samples.

Global sampling [12] also collects samples from the

trimap boundaries but to avoid the problem of missing true

samples, instead of emanating rays from unknown pixels,

as in Shared matting, it considers all known boundary sam-

ples as a global candidate set. To handle the large number

of samples, it employs a simple objective function and an

efficient random search algorithm in finding the best sam-

ple pair. However, as shown in Fig. 1, the true colors might

still be missed in the resulting sample set if they do not lie
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along the trimap boundaries.

Comprehensive sampling matting [21] follows a global

strategy and divides the known and unknown regions into

a number of segments so that the segment over which the

samples are gathered is decided according to the distance

of a given unknown pixel to the extracted foreground and

background segments. Sample colors are constructed as the

means of the color clusters that are obtained via a two-level

hierarchical clustering modeled by a parametric Gaussian

mixture model. This approach gives better results than the

previous non-parametric sampling based approaches. How-

ever, there is still a possibility of missing true samples since

the sampling strategy depends on spatial closeness. As

demonstrated in Fig. 1, the true color samples might be very

far away from the unknown pixel.

Sparse coded matting [13] formulates image matting as

a sparse coding problem. It computes alpha values from a

bunch of sample pairs within a sparse coding framework in-

stead of finding only the best but single pair of foreground

and background (F,B) pair. These samples forming the

dictionary atoms are collected from the mean color of the

superpixels that lie along the boundaries of the trimaps.

Thus, it might also suffer from the missing true samples

problem. To prevent overlapping color distributions of fore-

ground and background, it adaptively controls the dictio-

nary size according to a confidence value that depends on

probabilistic segmentation.

Our contributions. As described above, all existing

sampling-based image matting methods rely upon different

assumptions regarding the selection policy of background

and foreground samples. The justification of these assump-

tions are mostly valid. But still, they are heuristic methods

and they all lack a theoretical ground to explain the rela-

tionship between known and unknown pixels. As a step

towards improving those methods, in this paper we present

a new approach for image matting. As shown Fig. 1, the

proposed method achieves a more effective sampling and

provides considerably better alpha mattes. To conclude the

introduction, the main contributions of this paper can be

summarized as follows:

(1) To overcome the limitations of the previous works,

we develop a well-founded sampling strategy, which rely on

a recently proposed sparse subset selection technique [7],

to select a small set of foreground and background samples

that best explain the unknown pixels.

(2) We design a new measure of distance between two

samples based on KL-divergence between the distributions

of the features extracted in the vicinity of the samples. This

measure is used in both selecting the representative samples

and finding the best (F,B) pair for an unknown pixel. As

shown in Fig. 1, when combined with our sampling strategy,

(3) We provide compelling qualitative and quantitative

results on a benchmark dataset of images [19] that demon-

strate substantial improvements in the estimated alpha mat-

tes upon current state-of-the-art methods.

2. Proposed Approach

In this study, we build upon a recent work by Elham-

ifar et al. [7], and address the sampling process in im-

age matting as a sparse subset selection problem. In par-

ticular, we find a few representative pixels for the known

foreground and background regions solely based on pair-

wise distances between the known and unknown pixels.

As in other sampling-based approaches, in our formulation,

the distance measure used in comparing two samples is of

great importance since it directly affects the quality of se-

lected samples. As we mentioned earlier, another contri-

bution of this study is a new distance which is based on

KL-divergence between feature distributions. In the follow-

ing, we begin with the definition of our distance measure,

and then discuss the details of the proposed algorithm. The

steps of the algorithm involves collecting foreground and

background color samples from known pixels via sparse

subset selection, then we define an objective function to find

the best (F,B) pair for an unknown pixel according to lin-

ear composition equation.

2.1. Measure of Distance Between Two Samples

Sampling-based approaches generally consider very

simple measures which depend on chromatic and/or spatial

similarities [28, 9, 12, 21]. The only exceptions are [20, 25],

which also employ some texture similarity measures. Un-

like those measures, here, we consider a statistical data rep-

resentation and propose to use an information-theoretic ap-

proach. In particular, our measure depends on a paramet-

ric version of the Kullback-Leibler (KL) Divergence [14],

a well-known non-symmetric measure of the difference be-

tween two probability distributions in information theory,

which we describe below. We note that KL-Divergence was

used in a different way for video matting previously in [5].

Given an input image, we extract a 9-dimensional feature

vector φ for each pixel as follows:

φ(x, y) =
h

x y r g b |Ix| |Iy| |Ixx| |Iyy|
i>

(3)

with (x, y) denoting the pixel location, I = [r g b] repre-

senting the pixel values of the RGB color space, and Ix, Iy ,

Ixx, Iyy respectively corresponding to the first and second-

order derivatives of the image intensities, estimated via the

filters [−1 0 1] and [−1 2 −1] in horizontal and vertical

directions.

Next we group the image pixels into perceptually mean-

ingful atomic regions using the SLIC superpixel algo-

rithm [1]. The motivation behind this step is two folds.

First, we use mean color of each foreground or background

superpixel to reduce the sample space over which the repre-

sentative samples are determined. Second, extracting these
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Color distance Input image Proposed distance

Figure 2. Distance embedding visualizations using t-SNE method [24] clearly demonstrate that the proposed KL-divergence based distance

provides a better discrimination between known foreground and background pixels than using the standard color distance.

superpixels helps us to describe a pixel by means of the

characteristics of its neighboring pixels, which provides a

source of contextual information.

Let sp and sq respectively denote two superpixels. Then,

one can use the KL-divergence to measure the distance be-

tween sp and sq by considering the corresponding feature

distributions P and Q as

DKL (PkQ) =

Z 1

−1

p(x) ln
p(x)

q(x)
dx (4)

In our formulation, we assume that each feature distribution

can be modelled through a multivariate normal distribution

such that P ⇠ Nsp = N (µp,Σp). Here, µp denotes the

9-dimensional mean feature vector, and Σp represents the

9 ⇥ 9 dimensional covariance matrix of features φ of the

superpixel sp. Then, the KL-Divergence between two su-

perpixels sp and sq is described as follows:

DKL(NspkNsq ) =
1

2

✓

tr
(

Σ−1

q Σp

)

+ ln

✓

detΣq

detΣp

◆

+ (µq − µp)
>Σ−1

q (µq − µp)− k

◆

(5)

with k = 9 denoting our feature dimension.

Note that the KL-divergence is not symmetric, hence we

symmetrize it as follows to obtain a distance metric:

dist(sp, sq) = DKL(NspkNsq ) +DKL(NsqkNsp) (6)

In measuring the distance between two superpixels sp
and sq , we found that, instead of using the metric in Eq. (6),

the similarity and distance measures derived below lead to

better discrimination:

S(sp, sq) =
1

dist(sp, sq) + ✏
(7)

d(sp, sq) = 1− S(sp, sq) (8)

where we take ✏ = 0.5 in the experiments.

In Figure 2, we qualitatively verify the effectiveness of

our statistical distance measure over using only the mean

color values of the superpixels. For a given input image,

we compute the pairwise distances between the superpixels

extracted from the known foreground and background, and

unknown regions and then these distances are projected to a

2-dimensional space using t-SNE [24]. As can be seen, the

proposed KL-divergence based distance measure provides

better discrimination than simply using color distance.

2.2. Sampling via Sparse Subset Selection

Our strategy to obtain representative samples of known

foreground and background regions to encode unknown

region is inspired by the recently proposed Dissimilarity-

based Sparse Subset Selection (DS3) algorithm [7], which

formulate subset selection as a row-sparsity regularized

trace minimization problem and presents a convex opti-

mization framework to solve it. Suppose we use K and U

to represent the set of superpixels extracted from the known

foreground (f ) and background (b), and unknown (u) re-

gions, with N = Nf +Nb and M elements, respectively:

K = {sf
1
, ..., sfNf

, sb
1
, ..., sbNb

}

U = {su
1
, ..., suM}

(9)

Assume that the pairwise dissimilarities {dij}
j=1,...,M
i=1,...,N

between superpixels of known region K and unknown re-

gion U are computed using the dissimilarity measure de-

fined in Eq. (8)1, and arranged into a matrix form as

D =

2

6

6

4

d>
1

...

d>

N

3

7

7

5

=

2

6

6

4

d11 d12 · · · d1M
...

...
...

dN1 dN2 · · · dNM

3

7

7

5

2 R
N⇥M

(10)

1We note that the approach is quite general in that it could work with

dissimilarities which are asymmetric or violate the triangle inequality.
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Input image Trimap Extracted superpixels Selected samples

Figure 3. Sampling via sparse subset selection. Candidate foreground and background samples are shown in red and blue, respectively.

where the entries dij signifies how well the superpixel i rep-

resents the superpixel j, the smaller the value, the higher the

degree of representativeness.

According to the method described in [7], in order to find

a sparse set of samples of K that well represents U, one can

introduce a matrix of variables P 2 R
N⇥M as

P =

2

6

6

4

p>
1

...

p>

N

3

7

7

5

=

2

6

6

4

p11 p12 · · · p1M
...

...
...

pN1 dN2 · · · pNM

3

7

7

5

(11)

whose each entry pij 2 [0, 1] is associated to dij and de-

note the probability of superpixel i being a representative

for superpixel j. Then, the problem can be formulated as

the following trace minimization problem regularized by a

row-sparsity term:

min
P

γ kPk1,1 + tr(D>P)

s. t. 1>P = 1>,P ≥ 0
(12)

where the first term kPk1,1 ,
P

i kpik1 penalizes the

size of the representative set, the second term tr(D>P) =
P

ij dijpij simply measures the total encoding cost, and

the parameter γ provides a trade-off between number of

samples and encoding quality where smaller values of γ
will lead to less number of representative samples. An op-

timal solution P⇤ can be found very efficiently using an

Alternating Direction Method of Multipliers (ADMM) ap-

proach [7], in which the indices from the nonzero rows of

the solution P⇤ give us the selected samples of foreground

and background superpixels, where we use the mean colors

of these superpixels as the candidate set of foreground F
and background B colors.

Figure 3 shows the samples obtained with our sparse

sampling strategy on an illustrative image. As it can be

seen, the proposed approach allows robust selection of a

small set samples from the known regions where the se-

lected samples are the samples amongst the ones that best

represent the unknown regions. Hence, as compared to the

existing sampling based models, we employ less number of

samples to determine the alpha matte values of the unknown

pixels.

2.3. Selecting The Best (F,B) Pair

As compared to local sampling methods for image mat-

ting, which only collect samples near a given unknown

pixel, employing a global scheme, such as ours, has the

advantage of not missing any true samples if they are not

located in the vicinity of the unknown pixel. In some cases,

however, there is also a possibility that a local analysis

may work better, especially when local samples are more

strongly correlated with the unknown pixel. Hence, to get

the best of both worlds, we decide to combine our global

sparse sampling strategy with a local sampling scheme.

Specifically, for a given unknown pixel, we enlarge the

global candidate set to include 10 additional foreground and

background samples which are selected from the spatially

nearest boundary superpixels.

Once candidate foreground and background colors are

sampled for an unknown pixel, we select the best fore-

ground and background pair (F,B) and accordingly deter-

mine its alpha matte value. In order to identify the best

pair, we define a goodness function that depends on four

different measures, which are described in detail below. In

particular, in our formulation, we adopt the previously sug-

gested chromatic distortion Cu and spatial distance Su mea-

sures [12, 20, 21, 13] and additionally propose two new con-

textual similarity measures Tu and Ru to better deal with

color ambiguity.

For an unknown pixel u and a foreground-background

pair (Fi, Bi), the chromatic distortion Cu measures how

well the alpha matte ↵̂ estimated via Eq. (2) from (Fi, Bi)
fit to the linear composite equation given by Eq. (1), and is

formulated as

Cu(Fi, Bi) = exp(−kIu − (↵̂Fi + (1− ↵̂)Bi)k) (13)

where Iu denote the observed color of the unknown pixel u.

The spatial distance measure Su quantifies the spatial

closeness of the unknown pixel u to the sample pair (Fi, Bi)
according to the distance between the coordinates of these

pixels. Therefore, it favors selecting samples that are spa-

tially close to the unknown pixel. It is simply defined as

Su(Fi, Bi) = exp

✓

−
ku− fik

ZF

◆

· exp

✓

−
ku− bik

ZB

◆

(14)
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where fi and bi respectively denote the spatial coordinates

of the centers of the superpixels that are associated with

the foreground and the background samples Fi and Bi.

The scalars ZF = (1/nF )
PnF

k=1
ku− fkk and ZB =

(1/nB)
PnB

k=1
ku− bkk are used as scaling factors, which

correspond to the mean spatial distance from the unknown

pixel u to all foreground samples F with nF elements and

all background samples B with nB elements, respectively.

One of the great challenges in image matting is the color

ambiguity problem which arises when the foreground and

background have similar colors. As most of the matting

studies consider pixel based similarities in comparing sam-

ples, they generally fail to resolve this ambiguity and in-

correctly recognize an unknown foreground pixel as back-

ground or vice versa. To account for this, we introduce the

following two additional local contextual similarity mea-

sures Tu and Ru, which both exploit the similarity function

defined in Eq. (7).

The first measure Tu specifies the compatibility of the

unknown pixel with the selected foreground and back-

ground samples, computed by means of their statistical fea-

ture similarities, and it provides a bias towards those pairs

(Fi, Bi) that have local contexts similar to that of the un-

known pixel, and is formulated as

Tu(Fi, Bi) = S(sFi
, su) + S(sBi

, su) (15)

where sFi
, sBi

, and su respectively denote the superpix-

els associated with the corresponding foreground and back-

ground samples and the unknown pixel.

The second measure Ru corresponds to a variant of the

robustness term in [28], which builds upon the assumption

that for any mixed pixel, the true background and fore-

ground colors have similar feature statistics, calculated over

the corresponding superpixels. Thus, it favors the selection

of the foreground and the background samples that have

similar contexts, and is defined as

Ru(Fi, Bi) = S(sFi
, sBi

). (16)

Putting these four measures together, we arrive at the fol-

lowing objective function to determine the best (F,B) pair:

Ou(Fi, Bi) = Cu(Fi, Bi)
c · Su(Fi, Bi)

s·

Tu(Fi, Bi)
t ·Ru(Fi, Bi)

r,
(17)

where c, s, t, r are weighting coefficients, representing the

contribution of the corresponding terms to the objective

function. Empirically, we observed that that the color dis-

tortion Cu and the contextual similarity measure Tu are

more distinguishing than others, and thus we set the coeffi-

cients as c = 2, s = 0.5, t = 1, r = 0.5.

2.4. Pre- and Post-Processing

Motivated by recent sampling based matting studies [21,

13], we apply some pre- and post-processing steps. First,

before selecting the best (F,B) sample pairs, we expand

known regions to unknown regions by adopting the pre-

processing step used in [21, 13]. Specifically, we consider

an unknown pixel u as a foreground pixel if the following

condition is satisfied for a foreground pixel f 2 F :

(D(Iu, If ) < Ethr) ^ (kIu − Ifk  (Cthr −D(Iu, If )),
(18)

where D(Iu, If ) and kIu− Ifk are the spatial and the chro-

matic distances between the pixels u and f , respectively,

and f , and Ethr and Cthr are the corresponding thresholds

which are all empirically set to 9. Similarly, an unknown

pixel u is taken as a background pixel if a similar condition

is met for a background pixel b 2 B.

Second, as a post-processing, we perform smoothing on

the estimated alpha matte by adopting a modified version of

the Laplacian matting model [16] as suggested in [9]. That

is, we determine the final alpha values ↵⇤ by solving the

following global minimization problem:

↵⇤ =argmin
α

↵>L↵+ λ(↵− ↵̂)>Λ(↵− ↵̂)

+ δ(↵− ↵̂)>∆(↵− ↵̂)
(19)

where the data term imposes the final alpha matte to be close

to the estimated alpha matte ↵̂ from Eq. (2), and the mat-

ting Laplacian L enforces local smoothing. The diagonal

matrix Λ in the first data term is defined using the provided

trimap such that it has values 1 for the known pixels and 0
for the unknown ones. The scalar λ is set to 100 so that it

ensures no smoothing is applied to the alpha values of the

known pixels. The second diagonal matrix ∆, on the other

hand, is defined by further considering the estimated con-

fidence scores in a way that it has values 0 for the known

pixels and the corresponding confidence values Ou(F,B)
from Eq. (17) for the unknown pixels. The scalar δ here

is set to 0.1 and determines the relative importance of the

smoothness term which considers the correlation between

neighboring pixels.

3. Experimental Results

We evaluate the proposed approach on a well-established

benchmark dataset [19], which contains 35 natural images,

each having a foreground object with different degrees of

translucency or transparency. Among those images, 27 of

them constitute the training set where the groundtruth alpha

mattes are available. On the otherhand, the remaining 8 im-

ages are used for the actual evaluation, whose groundtruth

alpha mattes are hidden from the public to prevent param-

eter tuning. In addition, for each test image, there are

three matting difficulty levels that respectively correspond

to small, large and user trimaps. To quantitatively evaluate

our approach, in the experiments, we consider three differ-

ent metrics, namely, the mean square error (MSE), the sum

of absolute differences (SAD) and the gradient error.
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Table 1. Evaluation of matting methods the benchmark dataset [19] with three trimaps according to SAD, MSE and Gradient error metrics.
Sum of Absolute Differences Mean Square Error Gradient Error

Method

overall

rank

avg.

small

rank

avg.

large

rank

avg.

user

rank Method

overall

rank

avg.

small

rank

avg.

large

rank

avg.

user

rank Method

overall

rank

avg.

small

rank

avg.

large

rank

avg.

user

rank

1. LNSP Matting 7.0 4.5 6.1 10.4 1.LNSP Matting 6.5 4.6 5.4 9.5 1. Proposed Method 7.5 6.6 5.9 10.0

2. Proposed Method 7.6 7.5 6.1 9.3 2. Proposed Method 7.9 7.8 6.3 9.6 2. LNSP Matting 7.9 6.3 6.9 10.6

3. Iterative Transductive 8.7 10.1 7.9 8.1 3. CCM 8.0 10.3 7.8 6.1 3. Comprehensive sampling 8.3 8.5 7.6 8.8

4. Comprehensive sampling 8.8 7.4 8.6 10.5 4. Comprehensive sampling 8.7 7.9 8.6 9.5 4. CCM 9.8 12.0 8.9 8.5

5. CWCT sampling 9.4 9.9 9.6 8.8 5. SVR Matting 9.5 12.1 8.0 8.4 5. SVR Matting 9.9 11.8 10.5 7.4

6. SVR Matting 9.7 11.8 9.0 8.4 6. CWCT sampling 9.8 9.9 10.4 9.3 6. Sparse coded matting 10.3 11.6 9.0 10.3

7. Sparse coded matting 9.9 12.0 10.3 7.5 7. Sparse coded matting 11.8 13.4 12.4 9.6 7. Segmentation-based 10.6 13.5 8.8 9.5

8. WCT sampling 10.8 9.0 12.3 11.0 8. WCT sampling 11.9 10.6 12.9 12.1 8. Global Sampling 10.7 10.9 11.1 10.1

9. CCM 11.0 13.0 10.4 9.5 9. Global Sampling 12.4 8.8 15.1 13.3 9. Shared Matting 10.9 11.0 11.4 10.4

10. Shared Matting 12.1 11.4 14.4 10.5 10. Iterative Transductive 12.9 14.0 11.5 13.3 10. Improved color matting 11.2 12.6 11.5 9.4

Effect of γ parameter. Fig. 4 shows that the average

MSE values over all the training images and all trimaps do

not vary much for different values of γ. These results seem

to be consistent with the theoretical analysis in [7] that for

a proper range of values, the DS3 algorithm that we uti-

lize in sampling is guaranteed to find representative samples

from all groups when there is a mutual relationship between

known and unknown sets. In the remaining experiments, γ
is set to 0.025 as it provides the minimum MSE value for

the training set.

Figure 4. Effect of γ parameter on the performance. Plot shows

average MSE values over all training images and all trimaps.

Effect of local samples. In Fig. 5, we show the effect of

including local samples from boundary to the candidate set

found by the proposed sparse sampling scheme. The num-

bers in the plot refer to the MSE errors averaged over all test

images. For each trimap type, adding some closest bound-

ary pixels further improves the performance. The smallest

gain is in the large trimaps since having more number of

known pixels helps our sparse sampling method to better

exploit the associations between the known and unknown

regions, eliminating the need for local samples.

Comparison with the state-of-the-art. Table 1 presents

the quantitative comparison of our approach and nine best

performing matting algorithms on the benchmark hosted at

www.alphamatting.com [19] where we report the average

rankings over the test images according to SAD, MSE and

gradient metrics for all three different types of trimap, and

the overall ranks, computed as the average over all the im-

ages and for all the trimaps. Overall, our approach provides

Figure 5. Effect of including local samples to the representative set

obtained with the proposed sparse sampling scheme. Plot shows

average MSE values over all test images for three types of trimaps.

highly competitive results against the state-of-the-art meth-

ods. It ranked the best with respect to the gradient error and

the second best for the other two metrics. Especially, it out-

performs all the existing sampling-based matting methods.

Fig. 3 provides qualitative comparisons of our approach and

the recent matting studies [4, 25, 21, 13] on the doll, troll

and net images from the benchmark dataset. Additional re-

sults are provided as supplementary material.

Textured background. In the first row of Fig. 3, we

show the ability of our approach to naturally handle textured

backgrounds via the proposed KL-divergence based contex-

tual measure. For the doll placed in front of a highly tex-

tured background, while other matting methods, including

CWCT sampling [25] which employs an additional texture

compatibility measure, tend to interpret some of the colored

blobs in the background as foreground, our model produces

a much more accurate alpha map.

Color ambiguity. When the foreground object and the

background have similar color distributions, most of mat-

ting studies suffer from the so-called color ambiguity and

fail to provide reliable alpha values for the unknown pix-

els. Both second and third rows of Fig. 3 illustrate this

issue where the colors of the book and the bridge in the

background is very similar to those of the hairs of the doll

and troll, respectively. For these examples, CWCT [25] and

Comprehensive sampling [21] give inaccurate estimations

whereas LNSP matting [4] oversmooths the foreground

matte. Sparse coded matting [13] provides better results but

misses some of the foreground details in the hairs. On the

other hand, our method is able to achieve significantly bet-
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(a) (b) (c) (d) (e) (f)

Figure 6. Visual comparison of our approach with other sampling-based image matting methods. (a) Input image, (b) CWCT sampling [25],

(c) Comprehensive sampling [21], (d) LNSP matting [4], (e) Sparse coded matting [13] and (f) Proposed approach.

ter results, providing a more robust discrimination between

the background and the foreground.

Missing samples. Previously proposed sampling-based

matting methods typically employ certain assumptions

while collecting samples from known regions but these as-

sumptions might sometimes lead to missing true foreground

and background colors for some unknown pixels. In the

fourth row of Fig. 3, we demonstrate the effectiveness of our

sparse sampling strategy on the troll image. While the other

sampling based methods [25, 21, 13] incorrectly recognize

the blue ribbon as mixed pixels, our algorithm successfully

interprets it as a part of the foreground object. Likewise, the

LNSP matting [4] produces an alpha map similar to ours as

it uses a non-local smoothness prior in their formulation.

Translucent foreground. Transparent or translucent ob-

jects pose another great challenge for matting as they make

collecting true foreground color samples difficult. The last

two rows of Fig. 3 shows the matting results of two dif-

ferent regions from the net image in detail where such a

foreground object exists. Due to the characteristics of the

test image, all of the competing matting methods fail to dif-

ferentiate background pixels from the foreground although

the distributions of the background and foreground colors

are well separated. In contrast, our approach produces a

remarkably superior alpha matte.

We note that our approach also works with sparse user

inputs. Some sample results with sparse scribbles and our

runtime performance are presented in our supp. material.

4. Conclusion

We developed a new and theoretically well-grounded

sampling strategy for image matting. Rather than making

assumptions about the possible locations of true color sam-

ples, or performing a direct clustering of all known pixels,

our sampling scheme solves a sparse subset selection prob-

lem over known pixels to obtain a small set of representative

samples that best explain the unknown pixels. Moreover, it

employs a novel KL-divergence based contextual measure

in both collecting the candidate sample set and finding the

best (F,B) pair for an unknown pixel. Our experiments

clearly demonstrate that our approach is superior to existing

sampling-based image matting methods and achieves state-

of-the-art results.
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