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Abstract

We consider the task of finding M -best diverse solutions

in a graphical model. In a previous work by Batra et al. an

algorithmic approach for finding such solutions was pro-

posed, and its usefulness was shown in numerous applica-

tions. Contrary to previous work we propose a novel formu-

lation of the problem in form of a single energy minimiza-

tion problem in a specially constructed graphical model.

We show that the method of Batra et al. can be considered

as a greedy approximate algorithm for our model, whereas

we introduce an efficient specialized optimization technique

for it, based on alpha-expansion. We evaluate our method

on two application scenarios, interactive and semantic im-

age segmentation, with binary and multiple labels. In both

cases we achieve considerably better error rates than state-

of-the art diversity methods. Furthermore, we empirically

discover that in the binary label case we were able to reach

global optimality for all test instances.

1. Introduction

A large variety of computer vision tasks can be for-

mulated in the form of an energy minimization problem,

known also as maximium a posteriori (MAP) inference in

an undirected graphical models (related to Markov or con-

ditional random fields). Its modeling power and importance

are well-recognized, which recently resulted into special-

ized benchmarks for its solvers [31, 17]. This underlines

the importance of finding the most probable variable con-

figuration. Following [4] we argue, however, that finding

M > 1 diverse configurations with low energies is also

of importance in a number of scenarios, such as: (a) Ex-

pressing uncertainty of the found solution [27]; (b) Faster

training of model parameters [14]; (c) Ranking of inference

results [35]; (d) Empirical risk minimization [26].

It is important to note that in many application scenarios,
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such as [35], the diverse solutions are computed for an en-

ergy that has been trained in a discriminative fashion such

that the solution with lowest energy should correspond to

the most accurate result. We will also use such pre-trained

energies. However, we observe that at test time a result

which is different to the lowest energy solution, but still

has a low energy, can achieve higher accuracy. This has

also been observed in previous works. The task of train-

ing one or more energies for producing optimal M diverse

solutions, as e.g. in [13, 15], is not the subject of this work.

In this work we propose a novel formulation for the prob-

lem of finding M-best-diverse solutions as a MAP-inference

problem in a specially constructed graphical model. Any

variable configuration in this model corresponds to M solu-

tions of the original problem and the best configuration then

corresponds to the M best diverse solutions. We introduce

an efficient, specialized solver for our model, although other

standard MAP-inference techniques are potentially applica-

ble as well. In fact, we empirically observe that with this

solver is able to reach global optimality for all test instances

of a binary labelling problem.

Related work. The importance of the considered problem

is demonstrated by the number of works addressing it from

different perspectives.

A procedure of computing M -best solutions to discrete

optimization problems was proposed in [21], which dates

back to 1972. Later, more efficient specialized procedures

were introduced for MAP-inference on a tree [30, Ch. 8],

junction-trees [22] and general graphical models [36, 11, 3].

These methods are well-suited for certain scenarios, how-

ever in typical structured computer vision problems (like

e.g. pixel-level image segmentation) M -best solutions dif-

fer from each other only by a small number of variables

(pixels) and from an application point of view are all equiv-

alent and hence practically useless.

Sampling methods allow to approximate marginal prob-

abilities and therefore can be used for estimating solutions

uncertainty. Though the methods like [24, 33] are designed

to address different modes of the underlying distribution,

they do not enforce diversity explicitly, hence can hardly be

used for faster discriminative training of model parameters
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(a)

E = 200 E = 200

Batra et al. no diversity
E = 200

E = 200 E = 200

Ours no diversity
E = 200

(b)

E = 200 E = 200

Batra et al. little diversity
E = 1910

E = 200 E = 890

Ours little diversity
E = 1180

(c)

E = 200 E = 200

Batra et al. large diversity
E = 2500

E = 200 E = 1180

Ours large diversity
E = 1480

(d)

Figure 1: Comparing our approach to Batra et al. [4] for a toy image. (a) the unary terms of the energy (red/blue means

more likely fore-/background). The Inlet shows the original image. (b-d) Results for three different levels of diversity. For

each diversity level we ask for three output images, where E is the associated energy. (b) Both methods produce three times

the same MAP solution. (c) When forcing diversity both methods give different results. Note that the sum of the pairwise

Hamming distances between the results is the same for both methods. However, our result is visually better, since it contains

solutions that are more coherent. This is also reflected in the energy. The sum of the energy of the three solutions is lower

with our method (2270 compared to 2310). Our method directly optimizes for this energy. (d) When forcing strong diversity,

the set of solutions becomes more diverse for both methods. Again, our result is superior, visually and in terms of total

energy, while both results have the same overall Hamming distance.

or ranking of inference results. Local techniques like e.g.

Gibbs sampling [12] may take prohibitively long to trans-

fer between modes of the underlying distribution. Perturb-

and-map [23] does not have these drawbacks, but is limited

to the cases where an exact MAP-solution can be obtained

relatively fast due to the need of its multiple computation.

Indeed, this method can be seen as the closest probabilis-

tic counterpart to the deterministic ones considered in this

work.

Structured Determinant Point Processes [20] is a tool

to model probabilistic distributions over structured models.

Unfortunately an efficient sampling procedure is feasible

for tree-structured graphical models only. The recently pro-

posed algorithm [7] to find M best modes of a distribution

is limited to the same narrow class of problems.

Training of M independent graphical models to produce

diverse solutions was proposed in [13, 15]. In contrast, we

assume a single fixed model supporting reasonable MAP-

solutions.

The most relevant for us is the work [4], addressing the

problem of the M best diverse solutions to energy mini-

mization. It proposes an algorithm, which starts with find-

ing a MAP-solution. On each iteration it penalizes already

found labelings and obtains the next optimal one. The pe-

nalization enforces diversity of the found solutions. The

greedy character of the method is its main disadvantage,

which leads (as we show in Section 5) to suboptimal re-

sults. The recent follow-up work [25] proposes a subclass

of new diversity penalties, for which the greedy nature of

the algorithm can be substantiated.

Contribution. We formulate the problem of finding M best

diverse solutions to energy minimization as a problem that

has the same format as the energy minimization itself. In

other words, a single labeling in our specially constructed

graphical model corresponds to M labelings in the initial

model. Based on this formulation we show that

(i) the algorithm proposed in [4] (and used in [14, 27, 35,

26]) can be viewed as an approximate greedy energy mini-

mization to our model;

(ii) if the initial MAP-inference problem was (approxi-

mately) solvable with α-expansion or α-β-swap our model,

delivering M best diverse solutions, maintains this property.

Furthermore, we empirically found that in case the original

energy was binary and submodular, we were always able to

minimize the energy of our model exactly.

We demonstrate superiority of our approach in terms of

the quality of found solutions on several computer vision

datasets published in [4] and [25].

Paper structure. In Section 2 we briefly describe the di-

versity method of Batra et al. [4]. Section 3 is devoted to an

explicit formulation of our novel diversity model. Here we

also provide an overview of existing diversity measures and

show that the method [4] can be seen as a greedy inference

for it. In Section 4 we present a reformulation of our model,

which allows for efficient inference with graph-cuts and LP-

relaxation based techniques. Finally, Sections 5 and 6 are

devoted to the experimental evaluation and conclusions.

2. DivMBest Method of Batra et al. [4]

Preliminaries. Let 2A denote the powerset of a set A.

The pair G = (V,F) is called a factor graph and has V
as a finite set of variable nodes and F ⊆ 2V as a set of

factors. Each variable node v ∈ V is associated with a

variable yv taking its values in a finite set of labels Lv . The

set LA =
∏

v∈A Lv denotes a Cartesian product of sets
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of labels corresponding to the subset A ⊆ V of variables.

Functions θf : Lf → R, associated with factors f ∈ F ,

are called potentials and define local costs on values of

variables and their combinations. The set {θf : f ∈ F} of

all potentials is described by θ. For any factor f ∈ F the

corresponding set of variables {yv : v ∈ f} will be denoted

by yf . The energy minimization problem then consists

of finding a labeling y∗ = {yv : v ∈ V} ∈ LV which

minimizes the total sum of corresponding potentials:

y∗ = arg min
y∈LV

E(y) = arg min
y∈LV

∑

f∈F

θf (yf ) . (1)

Problem (1) is also known as MAP-inference. Labeling y∗

satisfying (1) will be later called a solution of the energy-

minimization or MAP-inference problem, shortly MAP-

labeling or MAP-solution. Finally, a model is defined by

the triple (G, LV ,θ), i.e. the underlying graph, the sets of

labels and the potentials.

Diversity Method [4]. We will refer to this method as

DivMBest. In order to find the M diverse, low energy,

labellings y1, . . . ,yM , the method proceeds by solving a

sequence of problems of the form

ym = argmin
y

[

E(y)− λ

m−1
∑

i=1

∆(y,yi)

]

(2)

for m = 1, 2 . . . ,M , where λ > 0 determines a trade-off

between diversity and energy, y1 is the MAP-solution and

the function ∆ : LV × LV → R defines the diversity of

two labelings. In other words, ∆(y,y′) takes a large value

if y and y′ are diverse, in a certain sense, and a small

value otherwise. This problem can be seen as an energy

minimization problem, where additionally to the initial

potentials θ the potentials −λ∆(·,yi), associated with an

additional factor V , are used. In the simplest and most

commonly used form, ∆(y,y′) is represented by a sum of

node-wise diversities ∆v : Lv × Lv → R,

∆(y,y′) =
∑

v∈V

∆v(yv, y
′
v) , (3)

and the potentials are split to a sum of unary potentials, i.e.

those associated with additional factors {v ∈ V}. This im-

plies that in case efficient graph-cut based inference meth-

ods (including α-expansion [6], α-β-swap [6] or their gen-

eralizations [2]) are applicable to the initial problem (1) then

they remain applicable to the augmented problem (2), which

assures efficiency of the method.

Although the DivMBest method (2) shows impressive

results in a number of computer vision applications, we ar-

gue that it suffers from its greedy nature. Each new labeling

is obtained based on previously found solutions only, and is

not influenced by upcoming labelings. As we show in this

work, optimization for all M labelings jointly allows to im-

prove the resulting solutions. A toy example illustrating our

claim is presented in Fig. 1. Another scenario is sketched in

(a) Sequentially inferred solutions (b) Jointly inferred solutions

Figure 2: Energy landscape with two different couples of

solutions depicted by red points. (a) Corresponds to the Di-

vMBest algorithm (2), which finds solutions sequentially.

(b) Joint inference of diverse solutions may lead to lower

total energy.

Fig. 2. Note that with our approach we do not enforce that

the MAP solution is part of the set of solutions. This is in

contrast to the DivMBest [4] method. If this is a require-

ment then we can run a MAP solver and add the solution to

our set.

3. Diversity Model - Explicit Representation

In the following, we use brackets to distinguish between

upper index and power, i.e. (A)n means the n-th power

of A, whereas n is an upper index in the expression An.

The notation fM ({y}) will be used as a shortcut for

fM (y1, . . . ,yM ), for any function fM : (LV)
M → R.

Instead of the greedy sequential procedure (2) we suggest

to infer all M labelings jointly, by minimizing

EM ({y}) =

M
∑

i=1

E(yi)− λ∆M ({y}) (4)

for y1, . . . ,yM . Function ∆M defines the total diversity

of any M labelings. Though the expression (4) looks com-

plicated we will show that it can be nicely represented in

the form (1) and hence constitutes an energy minimiza-

tion problem. To achieve this, let us first create M copies

(Gi,Li
V ,θ

i) = (G,LV ,θ) of the initial model (G,LV ,θ).
We define the factor-graph GM

1 = (VM
1 ,FM

1 ) for the new

task as follows. The set of nodes in the new graph is the

union of the node sets from the considered copies VM
1 =

⋃M

i=1 V
i. Factors are FM

1 = VM
1 ∪

⋃M

i=1 F
i, i.e. again the

union of the initial ones extended by a special factor cor-

responding to the diversity penalty. Each node v ∈ Vi is

associated with the label set Li
v = Lv . The corresponding

potentials θM
1 are defined as {−λ∆M ,θ1, . . . ,θM}, see

Fig. 3a for illustration. The model (GM
1 ,LVM

1

,θM
1 ) cor-

responds to the energy (4). An optimal M -tuple of these

labelings, corresponding to a minimum of (4), is a trade-

off between low energy of individual labelings yi and their

total diversity.

Diversity measures. We now discuss three specific differ-

ent diversity measures which are illustrated in Fig. 3. The

split-diversity measure is written as the sum of pairwise

diversities, i.e. those penalizing pairs of labelings
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Figure 3: Examples of factor graphs for 3 diverse solutions of the original MRF (1) with different diversity measures. The

circles represent the nodes of the original model that are copied 3 times. For clarity only the newly introduced factors of order

higher than 2 are shown as squares. Pairwise factors are depicted by edges connecting the nodes. We omit λ for readability.

(a) The most general diversity measure (4), (b) the split-diversity measure (5), (c) the node-diversity measure (6), (d) the

node-split-diversity measure (7). Note that (b-d) are special cases of (a). Also, note that (d) is a special case of (c) and also

of (b).

∆M ({y}) =

M
∑

i=2

i−1
∑

j=1

∆(yi,yj) . (5)

This means that VM
1 splits into M(M − 1)/2 factors of the

form Vi ∪ Vj , 1 ≤ i < j ≤ M , as shown in Fig. 3b.

We define the node-diversity measure as

∆M ({y}) =
∑

v∈V

∆v(y
1
v , . . . , y

M
v ) (6)

where ∆v : (Lv)
M → R are arbitrary node-wise diversity

functions (see Fig. 3c).

Finally the special case of the split-diversity and node-

diversity measures is the node-split-diversity measure

∆M ({y}) =
∑

v∈V

M
∑

i=2

i−1
∑

j=1

∆v(y
i
v, y

j
v) , (7)

which is a sum of pairwise factors, as illustrated in Fig. 3d.

The special case of this diversity measure is the Hamming

distance, i.e.

∆v(y, y
′) = Jy 6= y′K , (8)

where expression JAK equals 1 if A is true and 0 otherwise.

In the recent work [25] the three alternative diversity

measures of general form Fig. 3a were used in combina-

tion with DivMBest method (2):

• Label Cost diversity enforces the upcoming m-th la-

beling to contain labels that were not present in the already

obtained m−1 labelings. In each iteration of the DivMBest

algorithm (2) the α-expansion with label cost potentials was

used (see [8]) for efficient inference.

• Label Transitions enforces m-th labeling to contain

previously unseen pairs of labels of adjacent variables. Co-

operative cuts [16] were used for inference in each iteration.
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• Hamming Ball greedily enforces the volume of a union

of Hamming balls around current m solutions to be as big

as possible. The HOP-MAP [32] algorithm was applied for

the MAP-inference in each iteration.

In the following we concentrate on the node-diversity

measure. We show that when using the Hamming distance,

which is its special case, we empirically outperform the

methods introduced in [4] and [25].

DivMBest [4] as Greedy Minimization of the Split-

diversity measure. Plugging (5) into (4) gives

EM ({y}) =

M
∑

i=1

E(yi)− λ
M
∑

i=2

i−1
∑

j=1

∆(yi,yj) . (9)

Comparing function minimized in (2) and (9) one can see

that the algorithm DivMBest (2) performs a greedy approx-

imate minimization of (9). On the i-th iteration it optimizes

over variables corresponding to yi, given fixed states of

variables corresponding to y1, . . . ,yi−1. Connections to

variables corresponding to yj , j > i, are ignored and will

be taken into account only later, on the j-th iteration.

Analyzing the optimization problem. Let us consider

a specific form of our model (4) with the Hamming dis-

tance (8) as a diversity measure. The diversity constraint

adds many pairwise potentials which are all of repulsive

form (see also Fig. 3d), i.e. they penalize equal labels and

do not penalize different ones. This makes efficient graph-

cut based methods inapplicable and moreover, as shown in

Section 5, the bounds delivered by LP-relaxation [34] based

solvers are practically very bad as well. Indeed, solutions

delivered by such solvers are significantly inferior even to

the results of the greedy DivMBest method (2) (see Ta-

ble 2). This motivates an alternative representation of the

problem (4), which we discuss next.

4. Diversity Model - Clique Encoding

We now present an alternative representation of the

model (4) with the node-diversity measure. This represen-

tation has fewer number of nodes but at the same time a

larger label space. We will see that this representation is

easier to optimize. With the node-diversity measure (6) the

energy (4) can be rewritten as

EM ({y}) =

M
∑

i=1

E(yi)− λ
∑

v∈V

∆v(y
1
v , . . . , y

M
v )

=

M
∑

i=1







∑

f∈F
|f|=1

θf (y
i
f ) +

∑

f∈F
|f|>1

θf (y
i
f )






−λ

∑

v∈V

∆v(y
1
v , . . . , y

M
v ) .

Assume w.l.o.g. that {v} ∈ F for all v ∈ V . Then we

denote unary potentials θf for |f | = 1 as θv and regrouping

terms, the above equation can be written as

=
∑

v∈V

[

M
∑

i=1

θv(y
i
v)− λ∆v(y

1
v , . . . , y

M
v )

]

+
∑

f∈F
|f|>1

M
∑

i=1

θf (y
i
f ) .

Let us introduce the new variables zv = (y1v , . . . , y
M
v ),

v ∈ V and the respective label sets L̂v = (Lv)
M . In-

formally, each label of a new variable zv in a node v
corresponds to an M -tuple of labels from the original

task. In other words, we simply enumerate all possible

label combinations in each node v, that are possible by M
solutions. The new potentials θ̂v : L̂v → R, v ∈ V and

θ̂f : (Lf )
M → R, f ∈ F : |f | > 1 are defined as

θ̂v(zv) =
M
∑

i=1

θv(y
i
v)− λ∆v(y

1
v , . . . , y

M
v ) , (10)

θ̂f (zf ) =

M
∑

i=1

θf (y
i
f ) . (11)

In this notation the energy is given as

EM ({y}) =
∑

v∈V

θ̂v(zv) +
∑

f∈F
|f|>1

θ̂f (zf ) . (12)

Special Case: Pairwise Model For second order models

(i.e. the cardinality of factors is two at most) equation (12)

is written as

EM ({y}) =
∑

v∈V

θ̂v(zv) +
∑

uv∈F

θ̂uv(zu, zv) . (13)

The following Theorem 1 basically states that in case the

original MAP-inference problem is (approximately) solv-

able with α-β-swap [6] (α-expansion [6]) then minimiza-

tion of EM ({y}) in (13) can be performed with α-β swap

(α-expansion) as well.

Definition 1. For any set L the function f : L × L → R

is called a semi-metric if for all x, x′ ∈ L there holds: (i)

f(x, x′) ≥ 0; (ii) f(x, x′) = 0 iff x = x′; (iii) f(x, x′) =
f(x′, x).

Definition 2. Function f : L× L → R is called a metric if

it is a semi-metric and additionally there holds:

f(x, x′) + f(x′, x′′) ≥ f(x, x′′), ∀x, x′, x′′ ∈ L.

Theorem 1. Let Lv = Lu, uv ∈ F and functions θuv be

semi-metrics (metrics). Then functions θ̂uv(zu, zv) defined

as in (11) are semi-metrics (metrics) as well.

We refer to the supplementary material for the proof.

For instance, in the special case of Potts model

θuv(y, y
′) = Jy 6= y′K the pairwise factors defined by (11)

constitute the Hamming distance between vectors zv
representing the new labels:

θ̂uv(zu, zv) :=

M
∑

i=1

θuv(y
i
u, y

i
v) =

M
∑

i=1

Jyiu 6= yivK . (14)
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Both Potts potentials and Hamming distance are metrics,

which defines a special case of Theorem 1.

K-truncated Clique Encoding The disadvantage of the

clique encoding representation (12) is an exponential

growth of cardinality of the label set L̂v = (Lv)
M , which

implies inefficiency for inference with large Lv and espe-

cially a large M . For these cases we propose an efficient

approximative Algorithm 1 combining clique encoding (12)

and greedy minimization for the energy (4). Though it can

be used with the node-diversity measures (3) we describe it

for the special case of the node-split-diversities (7), as it is

used in our experiments.

Algorithm 1 K-truncated Clique Encoding

Require: (G, LV ,θ) – original model,

λ ∈ R – diversity parameter,

M ∈ N – total number of diverse labelings,

K < M – num. of processed labelings in each step.

1: for i = 0, . . . , ⌊M
K
⌋ do

2: s = iK + 1; t = min{M, (i+ 1)K}

3: {ys, . . . ,yt} = arg min
{xs,...,xt}

[

EK(xs, . . . ,xt)

−λ
∑

v∈V

t
∑

l=s

s−1
∑

m=1
∆v(x

l
v, y

m
v )

]

4: end for

5: return {y1, . . . ,yM}

In each iteration Algorithm 1 performs optimization with

respect to at most K labelings {ys, . . . ,yt}, t−s+1 = K,

(less than K in the last iteration, if M is not dividable by K)

given already computed labelings {y1, . . . ,ys−1}. Diver-

sity of {ys, . . . ,yt} with respect to {y1, . . . ,ys−1} is pro-

vided by taking into account the sum of corresponding di-

versity terms λ
∑

v∈V

t
∑

l=s

s−1
∑

m=1
∆v(x

l
v, y

m
v ) playing the role of

addition to unary potentials in line 3 of Algorithm 1. Min-

imization (possibly approximate) in line 3 is done with the

clique encoding approach (12).

Overall, algorithm performs a greedy optimization simi-

lar to DivMBest (2) with the difference that in each iteration

K labelings are inferred jointly instead of a single one. The

method coincides with DivMBest (2) for K = 1 and with

clique encoding for K = M .

As we show in Section 5, Algorithm 1 significantly out-

performs DivMBest (2) already for K = 2. Larger values

of K lead to further improvements.

5. Experimental evaluation

We show benefits of our approach in two applied sce-

narios: (a) interactive foreground/background segmenta-

tion for images with provided scribbles annotations [4] and

(b) Category level segmentation on PASCAL VOC 2012

data [10].

Notation Appr. MAP Inference Div. measure

DivMBest (2) α-expansion [6] HD

ADSal (4) ADSal [28] HD

CE (13) α-expansion HD

CE-TRWS (13) TRW-S[18] HD

CEK Alg. 1 α-expansion HD

LC∗ (2) α-expansion [8] LC

LT∗ (2) Coop. cuts [16] LT

HB∗ (2) HOP-MAP [32] HB

Table 1: Diversity methods used in our experiments. Col-

umn Appr. corresponds to the selected approach: either it

is a greedy optimization of DivMBest (2) or direct opti-

mization of the energy (4), its clique encoding representa-

tion (13) or the mixed K-truncated clique encoding Algo-

rithm 1. (∗)- methods were not run by us and the results

were taken from [25] directly.

Diversity measures used in experiments are: the Hamming

distance (8) HD, Label Cost LC, Label Transitions LT and

Hamming Ball HB. The last three measures were introduced

in [25] and are briefly described in Section 3. Follow-

ing [25] we use D1⊗D2 · · ·⊗Dn to denote that the diversity

measures D1, D2, . . . Dn were sequentially applied to ob-

tain the next M
n

solutions within DivMBest algorithm (2),

e.g. HD⊗LC for M = 4 means the first 2 labelings were

found with HD diversity measure and the following two –

with LC. Notation ⊕ means that diversity measures were

linearly combined. We refer to [25] for a detailed descrip-

tion.

MAP-Inference Algorithms In our experiments we used

α-expansion [6], which turns into the max-flow algorithm

in case of two labels. To estimate accuracy of infer-

ence we used TRW-S [18] and ADSal [28], which pro-

vide lower bounds. We used ADSal because contrary to

TRW-S it guarantees convergence to a solution of the LP-

relaxation [34] of the energy minimization problem and

moreover provides accuracy of the found LP solution. We

used implementations of TRW-S and ADSal provided with

OpenGM2 [1] library.

We summarized notation of the compared diversity

methods in Table 1.

5.1. Interactive segmentation

Interactive image segmentation is a possible application

scenario for diversity techniques. Instead of returning a sin-

gle segmentation corresponding to a MAP-solution, diver-

sity methods return a small number of possible low-energy

results. Following [4] we model only the first iteration of

such an interactive procedure, i.e. we consider user scrib-

bles to be given and compare the sets of segmentations re-

turned by the compared diversity methods.

Authors of [4] kindly provided us their 50 graphical
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ADSal DivMBest CE-TRWS CE

M = 2, λ = 0.45 0.009 0.005 0.0 0.0

M = 2, λ = 0.5 0.013 0.008 0.0 0.0

M = 6, λ = 0.15 0.074 0.002 0.0 0.0

M = 6, λ = 0.25 0.301 0.034 0.0 0.0

Table 2: Interactive segmentation: comparison of attained

relative precisions (EM ({y}) −D)/D, where D is a dual

bound obtained by CE-TRWS. The first two methods are ap-

plied to (4), the second two used representation (13). The

LP relaxation was solved by ADSal with the relative accu-

racy of 0.001.

model instances, corresponding to the MAP-inference prob-

lem (1). They are based on a subset of the PASCAL

VOC 2010 [9] segmentation challenge with manually added

scribbles. Pairwise potentials constitute contrast sensitive

Potts terms [5], which implies that the MAP-inference is

submodular and therefore solvable by min-cut/max-flow al-

gorithms [19].

Energy comparison. Table 2 provides comparison of dif-

ferent inference methods for the diversity model (4) and its

clique encoding representation (13), for the interactive seg-

mentation dataset (λ is the same in all cases). It can be seen

that LP-relaxation of the explicit formulation (4) is far from

being LP-tight and moreover returns even worse results than

the greedy DivMBest method. As mentioned in Section 3

we believe that the reason is the repulsive diversity poten-

tials. However the same problem in its clique encoding

representation empirically turns to be LP-tight though the

problem (13) is not (permuted [29]) submodular. Moreover,

α-expansion found its optimal solutions in all considered

cases. We believe that inference results improved due to

moving the repulsive potentials to unary costs.

Quantitative and Qualitative Comparison. Table 3 and

Fig. 5 show comparison of several techniques for this

dataset. As a quality measure we used per pixel accuracy

of the best solution for each sample averaged over all test

images. Parameter λ has been chosen for each method sep-

arately via cross-validation. In Fig. 4 we show accuracy of

the CE method against DivMBest for a range of different

values of λ and number M of diverse solutions. In all these

experiments, our CE method shows significantly better ac-

curacy than its competitors.

Running time of our CE method is, as expected, higher

than those for DivMBest, however it still can be con-

sidered as practically useful: for M = 2 the average

DivMBest time is 0.45 ms whereas CE runtime is 2.9 ms,

for M = 6 times are 2.4 ms and 47.6 ms per image respec-

tively.

Energy of Labelings for a Given Diversity Level. We

also compared the total energy for M = 6 labelings for

M=1 M=2 M=6

DivMBest∗[4] 91.57 93.16 95.02

HB[25]∗ 91.57 93.95 94.86

DivMBest∗⊗HB∗[25] - - 95.16

DivMBest∗⊕HB∗[25] - - 95.14

CE 91.57 95.13 96.01

Table 3: Interactive segmentation: averaged pixel accura-

cies.
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Figure 4: Pixelwise accuracy comparison for interactive

segmentation for different values of λ and M .

DivMBest and CE methods. Parameter λ for DivMBest

was fit for each sample to get equal or less diversity than

those provided by CE algorithm. We managed to attain al-

most equal diversities for 44 out of 50 instances and in all

these cases the total energy
∑m

i=1 E(yi) of obtained label-

ings yi was smaller for CE compared to DivMBest. This

shows practical superiority of our approach.

5.2. Category level segmentation

The category level segmentation from PASCAL VOC

2012 challenge [10] contains 1449 validation images with

known ground truth, which we used for evaluation of diver-

sity methods. Corresponding pairwise models with contrast

sensitive Potts terms were used in [25] and kindly provided

us by authors. Contrary to interactive segmentation label

sets contain 21 elements and hence the respective MAP-

inference problem (1) is not submodular anymore. However

it still can be approximatively solved by α-expansion.

Because of a significant number of labels we were un-

able to use CE approach for M > 5 and resorted to CE2 and

CE3. Results of the quantitative evaluation are presented

in Table 4, where each method was used with parameter

λ optimally tuned via cross-validation on validation set in

PASCAL VOC 2012. Exemplary comparison of CE and
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Figure 5: Comparison for samples from interactive segmen-

tation dataset. Number above each solution is a correspond-

ing per pixel accuracy.

DivMBest is shown in Fig. 6. It turns out that even the

suboptimal optimization method CE2 outperforms all com-

petitors, except CE3 and CE, which show even better seg-

mentation accuracy.

Average running times per image for M = 5 for

DivMBest, CE2, CE3 and CE methods are 0.01, 0.14, 2.28
and 733 seconds, respectively. For M = 15 times are 0.03,

0.39 and 5.87 seconds for DivMBest, CE2, and CE3, re-

spectively. We observe approximately linear growth of run-

ning time wrt number of nodes in the original problem for

for DivMBest, CE2, CE3 and CE.

6. Conclusions and Outlook

We proposed a novel non-greedy approach for the prob-

lem of finding M diverse low energy labelings. This is

done by solving an energy minimization in a specially con-

structed graphical model. We show that inference in this

model can be addressed by graph-cut based methods like α-

expansion if the MAP-inference in the original model was

solvable by these methods. Our experiments suggest that

even with a Hamming distance as diversity measure our

method qualitatively and quantitatively outperforms com-

peting diversity techniques using more involved measures.

M=1 M=5 M=15 M16

DivMBest∗[4] 43.43 51.21 52.90 -

HB∗[25] - 51.71 55.32 -

LC∗[25] - 46.28 50.39 -

LT∗[25] - 45.92 46.89 -

DivMBest∗⊕HB∗[25] - - 55.89 -

HB∗⊗LC∗⊗LT∗[25] - - 56.97 -

DivMBest∗⊗HB∗⊗LC∗⊗LT∗[25] - - - 57.39

CE - 54.22 - -

CE2 - 53.08 57.46 57.76

CE3 - 54.14 57.76 58.36

Table 4: PASCAL VOC 2012. Intersection over union qual-

ity measure. The best segmentation out of M is considered.

Notation ’-’ correspond to absence of result due to compu-

tational reasons or inapplicability of the method.
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Figure 6: Comparison for samples from Pascal VOC 2012

dataset. Number above each solution is a corresponding in-

tersection over union quality measure.

In future we plan to improve the computational effi-

ciency of our method.
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