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Abstract

We propose a method that extends a given depth image

into regions in 3D that are not visible from the point of view

of the camera. The algorithm detects repeated 3D struc-

tures in the visible scene and suggests a set of 3D extension

hypotheses, which are then combined together through a

global 3D MRF discrete optimization. The recovered global

3D surface is consistent with both the input depth map and

the hypotheses.

A key component of this work is a novel 3D template

matcher that is used to detect repeated 3D structure in the

scene and to suggest the hypotheses. A unique property of

this matcher is that it can handle depth uncertainty. This

is crucial because the matcher is required to “peek around

the corner”, as it operates at the boundaries of the visible

3D scene where depth information is missing. The proposed

matcher is fast and is guaranteed to find an approximation

to the globally optimal solution.

We demonstrate on real-world data that our algorithm is

capable of completing a full 3D scene from a single depth

image and can synthesize a full depth map from a novel

viewpoint of the scene. In addition, we report results on

an extensive synthetic set of 3D shapes, which allows us to

evaluate the method both qualitatively and quantitatively.

1. Introduction

The popularity of depth cameras, such as the Microsoft

Kinect, makes depth maps accessible to all. These depth

maps are used for a variety of applications such as gesture

recognition and 3D modeling. A depth map assigns a depth

value to each pixel, generating a 2.5D representation of the

visible scene. The resulting depth map typically lacks mea-

surements of scene parts that are occluded from the camera

point of view. Many applications, such as path planning,

audio waves progress analysis and new view generation, to

name few, require an access to the three dimensional data

of the full scene, including the surfaces that are not visible

by the depth camera.

In this work we make an attempt at inferring the entire

invisible structure of a scene, which is an important under-

investigated problem in 3D vision. Figure 1 shows an exam-

(a) RGB (not used) (b) depth map (c) New view (d) Our completion

Figure 1. The ’Spray’ new viewpoint synthesis example. See

Fig. 9 for additional examples and the text for details.

ple of what we call a depth extension or depth outpainting

task. An input depth image (b) is rotated by 180◦ revealing

missing parts of the geometry, not seen by the camera. Our

method offers a complete solution (d) to such a scene.

Our Depth Extension algorithm follows a simple

scheme. We generate multiple volumetric hypotheses to ex-

tend the current depth map, and these hypotheses are later

all merged together. There are several unique challenges

we faced while tackling this problem, which gave rise to

the contributions of this work.

Novel 3D template matching with partial data To gen-

erate depth extension hypotheses, we rely on the existence

of repeating local 3D structures in the scene, similar to the

assumption made in 2D image inpainting. A depth cam-

era provides us with limited information about the volumet-

ric data, as each visible surface point occludes an unknown

amount of solid matter. Generating 3D completion hypothe-

ses therefor involves matching data with partially unknown

values, which is an inherently ill-posed problem. To over-

come this challenge, we present a novel and fast template

matching algorithm, that can match volumetric regions with

partial information, under 3D Euclidean transformations.

The matching scheme is based on a rigorous analysis of the

uncertainties that emerge due to the missing values and it

leverages both known spatial data, as well as bounds we de-

rive on the possible errors in areas with uncertainty. This

scheme may also be applicable to other problems where

matching under partial information is necessary.

Recovery of scene geometry using 3D hypotheses This

new matching scheme enables us to detect repetitions in the

scene. These repetitions are used to map sub volumes to

target locations and generate a set of 3D hypotheses, which

represent plausible extensions of the visible geometry. We

present an optimization algorithm that recovers a full scene

geometry that is as consistent as possible with both the input
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depth map and the set of generated hypotheses.

Finally, we report results on a number of scenarios

that demonstrate the effectiveness of the proposed method.

These include both analyzing simulated views of known ge-

ometries and comparing the completion results to ground

truth, as well as the processing of actual depth maps cap-

tured by a Kinect depth camera.

2. Background

Depth inpainting for filling holes in depth maps has been

an active research topic in recent years. Torres-Mendez and

Dudek [18] proposed a method for the reconstruction of

3D models from intensity images and partial depth, prop-

agating depth information based on intensity values. Later,

Wang et al. [19] proposed a stereoscopic inpainting algo-

rithm that synthesizes depth and color using a stereo cam-

era pair. Recently, Shen and Cheung [17] proposed a depth

layers approach for handling scenes consisting of a static

background and dynamic foreground objects, strongly ex-

ploiting the correlation between color and depth.

Common to these methods is that the set of hypotheses

considered is limited to 2D or 2.5D proposals. Also, they fill

holes within the (incomplete) input depth image itself, using

complete RGB information. In contrast, we use only depth

information and generate a much richer set of hypotheses,

directly in 3D, that extend to new viewpoints of the scene.

Our work borrows from the field of image inpainting.

Most notably, we are inspired by the work of He and Sun

[4]. They observed that the statistics of matching patches

in an image can be sufficiently described by a fairly small

number k of possible shifts. In the inpainting process, each

pixel is chosen from one of k respectively shifted versions

of the image, while minimizing a global energy function.

Guo and Hoiem [3] propose a method for predicting sup-

port surfaces in indoor scenes from an RGBD image. They

use a training set to label visible surfaces and then infer

occluding surface labels using contextual cues and layout

priors. Kim et al. [9] acquire the 3D structure of indoor

environments. Their system uses scans of individual ob-

jects to construct primitive-based 3D models, which are

then quickly recognized in a new scan. Pauly et al. [14] re-

cover complete and consistent 3D models from incomplete

surface scans using a database of 3D shapes that provide ge-

ometric priors for regions of missing data. These methods

achieve impressive results in understanding the 3D struc-

tures of scenes, largely due to the use of tailored databases

and efficient ways of finding shape occurrences in the scene.

The completion scheme of Silberman et al. [12] is dedi-

cated to uncovering the geometry of rooms, by completing

primitives such as bounding walls and planar furniture.

Zheng et al. [21] recover solid 3D primitives from a

point cloud. Their algorithm uses geometric reasoning to

fit simple surfaces to a point cloud, and these are then inter-

preted as simple 3D shape primitives. Physical reasoning is

then used to group the primitives into stable objects.

Another work related to ours is the context-based surface

completion of Sharf et al. [16]. Defective regions, which

are automatically detected as surface areas of low density

in a point-cloud, are filled by copying patches with simi-

lar signatures from valid surface regions, achieving realis-

tic results. Poisson Reconstruction [7, 8] and its extensions

provide a widely used tool for converting a point-cloud to a

smooth and highly detailed reconstructed surface. A recent

work by Shan et al. [15] further constrains Poisson recon-

struction through the detection of occluding contours in a

multi-view stereo setup. These methods were all designed

to provide accurate reconstructions of the captured part of

a scene, which might be noisy and contain gaps and holes,

but were not meant for the task of reconstructing the entire

unseen part of a scene, in which the holes to be filled are

much larger, with far less relevant data to use.

3. Method

In order to infer a 3D scene from a single depth map,

our goal is to detect repeated sub-volumes and use their ex-

tended surroundings to extend the depth map into unseen

parts of the scene. This raises two questions. The first is

how to efficiently detect repeated sub-volumes in the scene,

and the second is how to merge the different extensions

(termed hypotheses) into a single and coherent result.

As for the first question, we extend the visible surface

areas of the scene into its unseen surface areas, using a

novel 3D template matcher. This is done by detecting mul-

tiple template sub-volumes, on the visible surface, and then

searching for similar target volumes under the group of rigid

Euclidean 3D transformations (including combinations of

translations, rotations and reflections). Once such a trans-

formation is found, the surface points in a larger vicinity of

the 3D-template are mapped according to the transforma-

tion to form a potential hypothesis into the unseen areas. A

key problem we face is that the 3D matcher must operate on

the boundaries of the visible depth map where, by nature,

there are large amounts of missing data. To address this is-

sue, the template matcher uses novel scoring scheme over

a scene representation, which is explicitly designed to take

into account the uncertainty in the data.

As for the second question, merging the hypothesis pro-

posals into a coherent result can be very challenging, es-

pecially in the cases where the unseen surface area is large

compared to (or even larger than) the visible surface. In

such cases we obtain a large number of hypotheses, which

are typically inconsistent with each other and might not

even completely ‘cover’ the unseen surface area. We there-

fore search for a surface that interpolates between the vis-

ible surface areas, in a way that agrees with as many hy-

potheses as possible and which produces a smooth as possi-
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ble surface. This idea is formulated as a binary optimization

problem on a 3D raster.

3.1. Volume Representation

Let S : R
3 7→ {0, 1} denote the generally unknown

binary indicator function of a scene (which equals to 1

in the interior). The scene surface is represented by a

binary indicator function ∂S , the 1
2 -sub-level set of S .

The truncated-signed-distance-transform (TSDF) represen-

tation of S , with truncation parameter k, is given by:

A = (−1)S ·min{k,DT (∂S)} (1)

where DT (·) is the standard (non-signed) Euclidean Dis-

tance Transform. The three representations S , ∂S and A
are equivalent and one can switch between them easily, but

unfortunately, they are not known to us.

On the other hand, we have access to the binary indica-

tor function V of the visible-volume that equals 1 in non-

occluded areas (i.e. free-space areas and the visible part of

the surface ∂S). Knowing V is equivalent to knowing the

visibility-boundary, represented by a binary indicator func-

tion ∂V , the 1
2 -sub-level set of V , which is the ’boundary’

between the visible volume and the occluded area.

Our goal is to reconstruct the unknown scene S (or sur-

face ∂S). As mentioned before, we do this by finding corre-

spondences between sections of the volume, some of which

we have partial information about. The most standard way

of scoring a mapping of a sub-volume X under a transfor-

mation T is by the symmetric difference between the source

and target areas of the mapping. Formally:

Score =

∫

X

|S(x)− S(T (x))|dx (2)

Distance-transform representations (signed and/or trun-

cated) have been shown in the past to be suitable for regis-

tering and fusing depth images. They were introduced in [2]

and were later successfully used, e.g., in the Kinect-Fusion

system [13]. Particular advantages are their probabilistic

interpretations [5] and the ease of extracting an explicit sur-

face, through the their zero-crossing.

In this work, we build on the Fast-Match method [10]

for efficient matching of image templates, generalizing it

to handle 3D volumetric templates. The method’s run-

time complexity (see [10]) depends on the total-variation

(or smoothness) of the template representation and it is well

known that TSDF representations lead to smoother tem-

plates, compared to indicator representations.

These facts motivate us to replace the binary shape rep-

resentation S from Equation (2) using the TSDF represen-

tation A from Equation (1) and hence we obtain:

Score =

∫

X

|A(x)−A(T (x))|dx (3)

(a) scene S (b) visibility V (c) the TSDF A

(d) upper bound U (e) lower bound L (f) Uncertainty U -L

Figure 2. Upper and Lower bounds: (a) An unknown 200× 200
2D scene S, where the camera is located above the top side at

(100,−100) looking down. The interior (gray) and surface (red).

(b) The known visibility V (gray), the visible surface V ·S (green),

the visibility boundary ∂V (the boundary between gray and black)

and the unknown occluded surface (red). (c) The unknown TSDF

A. (d) The known upper bound U . (e) The known lower bound L.

(f) The uncertainty of the TSDF A, given by U − L. It is evident

in (c)-(e) that L ≤ A ≤ U , and equality holds (bounds are tight),

where the uncertainty is zero (pale blue) in (f). Notice that there is

some uncertainty even in visible areas.

3.2. Template Matching in 3D

Unfortunately, the values of A are generally not known

for the entire volume. They can be determined exactly in

areas that are far enough from occluded areas, but they are

not known in occluded areas, where the existence of a shape

surface is totally unknown, or even in visible areas that are

close to occluded ones. This implies that we cannot com-

pute Score from equation (3). Nevertheless, we show that

the TSDF values can be bounded, from above and below,

based on the partial depth information. Let us define U and

L to be the tightest possible upper and lower bounds on the

unknown TSDF function A. Figure 2 illustrates the mean-

ing of S , V , U and L in flatland and the following claim

specifies how the bounds can be computed from the input.

Claim 1. The TSDF upper and lower bounds are given by:

U = DT (S · V) and L = (−1)(1−V) ·DT (∂V) (4)

Proof. The bounds follow from looking at the limits of the

extent of the unknown shape S . On one hand, S surely

contains the visible surface V · S (and equality is possible)

and in this extreme case the TSDF A is simply the distance

from V · S and the upper bound follows. For the lower

bound, similarly, the unknown shape S is surely contained

in V̄ ∪ (V · S) (which is the union of the occluded area with

the visible surface) and here too - equality is possible. The

boundary of the set V̄ ∪ (V · S) is just ∂V and therefore, in

this case, the TSDF A is the signed distance from ∂V .

Given these bounds, we attempt replacing the full Score

(3) with a complementary one. Each point x now has an
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(a) Shape (gray), (b) High support (c) High consistency (d) High support and

map source (red) (but low consistency) (but low support) high consistency

Figure 3. Score considerations: the consistency-support trade-

off. (a) The gray shape is seen from above. Its two top edges

(solid black) are visible, while the bottom edges (dotted black) are

occluded. A surface red area is mapped to 3 different locations in

(b), (c), and (d). The green areas are the rest of the visible surface,

which is mapped with the source red area as part of a hypothesis.

(b) optimizing for support only - results in an inconsistent exten-

sion; (c) optimizing for consistency only - results in an unreliable

extension; (d) optimizing for both gives a desirable extension.

interval of values [L(x),U(x)], rather than a single value

A(x). For a point x and a transformation T , if we denote

y = T (x), then the cost of matching x to y in the original

score can be written as:

cost(x) = |A(x)−A(y)| (5)

By definition, A(x) and A(y) can take any value in

the respective intervals [L(x),U(x)] and [L(y),U(y)] and

therefore, if we define:

∆1(x) = L(x)−U(y) and ∆2(x) = L(y)−U(x) (6)

it is easy to verify that:

costL(x) ≤ cost(x) ≤ costU (x) (7)

where:
costL(x) = max(0,∆1(x),∆2(x)) (8)

costU (x) = max(|∆1(x)|, |∆2(x)|) (9)

and notice that costL and costU are tightest possible bounds

on cost, following from the tightness of L and U .

Looking at Equation (7), these measures have a clear in-

terpretation. A large costL(x) implies a large cost(x) and

therefore the point x is surely mapped inconsistently by T

(this happens when a fully visible point is mapped incor-

rectly to a fully visible point). On the other hand, a large

costU (x) means that the value of cost(x) is largely un-

known (this happens, e.g., when a visible point is mapped

to a totally occluded point) and in this case x does not pro-

vide any information regarding the mapping quality. When

summing over x ∈ X , costL quantifies the mapping incon-

sistency, while costU quantifies the mapping support.

Clearly, one would prefer mappings with low inconsis-

tency and high support, but there is an inherent tradeoff be-

tween the two. On one hand, insisting on minimal incon-

sistency will favor mappings that map mostly into unknown

areas and these have very low support (few points that ac-

tually prove the map consistency) and can not be reliable

enough for producing hypotheses. On the other hand, insist-

ing on maximal support could come at the cost of imperfect

consistency and might limit the potential matches to fully

visible areas, but these would not be likely to extend into

the unknown regions, which we wish to complete. Figure 3

illustrates the tension between consistency and support.

We therefore define the score for T as a linear combina-

tion of two scores:

Score(T ) = α · ScoreL + (1− α) · ScoreU (10)

where:
ScoreL =

∫

X

(

1− e
−

cost
2
L

(x)

2σ2
L

)

dx (11)

ScoreU =

∫

X

(

1− e
−

cost
2
U

(x)

2σ2
U

)

dx (12)

Note that σL and σU control the degradation rates of each

of the scores and α controls the tradeoff between them.

3.3. Generating Completion Hypotheses

We are now ready to describe the entire process that leads

to the generation of completion hypotheses, which are the

input to our optimization. The starting point is a seed loca-

tion on the visible surface, around which we take an axis-

aligned sub-volume X and search for a transformation T ∗

that minimizes Score(T ).
Using the Fast-Match algorithm [10], the minimization

consists of efficiently sampling the combined space (6 de-

grees of freedom) of all 3D rotations, translations and re-

flections, evaluating each transformation and returning the

best one found. A couple of comments are in order here.

First, the sampling density of the transformation space is

inversely proportional to the total variation (smoothness) of

X (see [10]) and these volumes are rather smooth due to

the TSDF representation. Second, as is done in [10] we fol-

low a branch-and-bound scheme, where the transformation

space is first sampled sparsely and then, regions with high

scores are discarded and a denser sampling is performed in

the remaining regions.

We now use each high quality mapping T ∗ in order to

’copy’ the visible surface around the source location into

the occluded areas. At this stage we discard the original

sub-volume X , that was used for finding the local similar-

ity and instead we choose a (visible) surface area XT∗ that

will be mapped to form a hypothesis. To do so, we apply the

transformation T ∗ on the entire volume and take the largest

possible region, around the source location, that adheres to

the transformation T ∗. This region typically includes most

of the surface region from within the original sub-volume

(but not necessarily all), as well as surface areas from out-

side the original volume X . More specifically, we perform

a hysteresis process to determine the exact region, where the

intuition is to take areas that are not known to be inconsis-

tent (low costL(x)), and which are not far (geometrically)
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(a) a depth image (b) seed locations and a template X

(c) detected transformation T∗ (d) 3D hypothesis HT∗

Figure 4. Stages of hypothesis generation (a) An example depth

map. (b) The visible surface (red), with the automatically detected

seed locations and an example template X around one of them. (c)

A detected transformation T ∗, mapping the sub-volume X (blue)

to T ∗(X) (green). (d) The resulting 3D hypothesis HT∗ (green).

from areas that are known to be consistent (low costU (x)).
Formally, we define:

XT∗ = [DT (costU (x) < tU ) < ǫ]·[costL(x) < tL]·(V ·S)
(13)

where [·] is 1 if the condition inside the square brackets is

true and 0 otherwise. The constants tU , tL are score thresh-

olds and ǫ is a (Euclidean) distance threshold. Note that

the multiplications are between indicator matrices (the third

one being the visible surface) and therefore stand for inter-

sections between the relevant sets. Finally, the resulting 3D

hypothesis, denoted by HT∗ is defined by

HT∗ = T ∗(XT∗) (14)

Figure 4 summarizes the entire hypothesis generation

process. Given a single depth map (a), we use seed loca-

tions on the visible surface and define a small sub-volume

around each of them (b). We run our 3D template matcher

to detect a potential candidate (c) and use the transforma-

tion between the template and target to map a larger region

of the scene, which serves as our 3D hypothesis (d) the final

input to the optimization.

3.4. Optimization in 3D

Our goal now is to merge all hypotheses together with

the original surface evidence in a consistent manner. In a

similar fashion to what is done in 2D image completion

(see e.g. [4]), this can be posed as a discrete optimization

problem on a 3D raster where each voxel is assigned a label

and labels denote different hypotheses. This optimization

is challenging because the domain (volume) and the label

space (number of hypothesis) are very large. Moreover, un-

like the case of image completion, neighboring voxels with

labels originating from different hypotheses may cause in-

consistencies in the solution, in the form of incomplete sur-

faces or surfaces with undesirable topology.

(a) input and hypotheses (b) input and solution

Figure 5. From multiple hypotheses to a coherent solution. In

this example, the input is a frontal scan of a child (bright red sur-

face) captured by a Kinect sensor. (a) The input scan and 51 gen-

erated hypotheses. (b) The input scan and our completion, which

is encouraged to coincide with hypotheses (green areas), but can

deviate from them (blue areas) in order to create a smooth com-

pletion. Looking from above (shown sliced) - the contours of the

hypotheses can be seen to contain noise and outliers. The solution

(blue and green contour) manages to create a consistent boundary.

Instead, we formulate a binary optimization problem on

the 3D raster, where each voxel x is classified to be either

in the interior (L(x) = −1) or the exterior (L(x) = 1) of

the scene. The solution is driven to be coherent with the

hypotheses by a carefully designed energy term. This ap-

proach enables modeling scenes with more complex surface

topologies and has the advantage that the resulting solution

allows for a clear interpretation of the scene surface. Refer

to Figure 5 for an example result of applying our optimiza-

tion method on the input (which is the visible surface and

3D hypotheses) producing a valid completion. As can be

seen, we obtain from the previous stage a large number of

hypotheses, which are typically inconsistent with each other

and do not completely ‘cover’ the unseen surface area.

The solution we propose searches for a surface that ‘in-

terpolates’ between the visible surface areas. Following the

work of Lempitsky and Boykov [11] we derive a binary

MRF, which is minimized using graph-cuts [1]. Our energy

term, however, is more related to the TV-L1 energy of Zach

et al. [20], even though they optimize for a complete field,

rather than for a binary partition of the space. It is given by:

E =
∑

x

ED(L(x)) + λ
∑

(x,x′)

ES(L(x), L(x
′)) (15)

where the summations are over all voxels x in the volume

and all pairs (x,x′) of neighboring voxels. The data fidelity

term ED, that is defined at each voxel x by

ED(L(x)) = L(x) ·
∑

H

DTK
H (x) (16)

measures the average agreement of the labeling L(x), with

the set of hypotheses H. This average is weighted by the

truncated signed distance transform DTK
H
(x), which mea-

sures the distance of the voxel x from the hypothesis H,

truncated to the interval [−K,K] for robustness. DTK
H

is

positive on the inner side of the hypothesized surface and

negative outside.
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Algorithm 1 Depth Extension

Input: the visible-surface S · V (in raster representation)

Output: the full scene S (in raster representation)

Volume Representation (see Secs. 3.1 and 3.2)

1. Compute visible-volume V and visibility-boundary ∂V

2. Compute the TSDF bounds L and U (as in Claim 1)

Hypothesis Generation (see Sec. 3.3)

1. Select a set X of interest sub-volumes (seed locations)

2. For each sub-volume X ∈ X :

(a) Run the 3D variant of Fast-Match, using the

L and U volume representation, to find match-

ing sub-volumes {Ti(X)}, under transforma-

tions {Ti}, whose matching scores {Score(Ti)}
are below a threshold t.

3. For each T ∈ T (T is the set of discovered mappings):

(a) Compute the source area XT and the 3D hypoth-

esis HT = T (XT )

Scene Reconstruction Optimization (see Sec. 3.4)

1. Construct the energy terms ED and ES as in Eq. (15)

2. Solve for the scene S using Graph-Cuts [1]

The pairwise smoothness term ES , which is a location-

dependent Potts model, is given by:

ES(L(x), L(x
′)) = Wx,x′ · [L(x) 6= L(x′)] (17)

where [·] is the indicator function. This term is a Total-

Variation regularizer, that measures the area of the bound-

ary. As can be seen in Figure 5(b), the surface (boundary)

in our solution is divided into three kinds. Red surface re-

gions are the input visible surface; green regions are ones

that coincide with some completion hypothesis; and blue

ones are the rest. The location-dependent Wx,x′ takes three

different values, depending on which of the three types does

the boundary edge (x,x′) belong to, allowing to weight the

boundary areas of each type differently. Passing through the

input surface is obligatory and therefore W = 0 over S · V .

Regarding non-input voxels - passing through hypothesis

voxels is preferable and therefore we set W = 1 compared

to W = 2 in non-hypothesis locations. Algorithm 1 sum-

marizes the main steps of our method.

4. Results

Implementation Details The input partial visible surface

(S · V ) is represented by a 2563 voxel grid (raster). For

each scene we use a fixed radius r (i.e. half the dimension)

of the axis-parallel cubes that form the source search sub-

volumes. It is chosen manually according to the general

Figure 6. Statistics on SHREC [6] shape completions: We gen-

erated 6 completion instances for each of the 6 SHREC shapes.

x-axis: the percent of shape surface that is occluded, representing

the instance difficulty. y-axis: reconstruction error. Up to an oc-

clusion rate of ∼50% the algorithm performs well (see Figure 7 for

visual comparisons with the original shapes). The performance de-

teriorates at higher occlusion levels (see Figure 8 for such cases).

scale of the scene. The seed voxels are taken as r-separated

uniform cover of the visible surface. Each seed point is

potentially discarded if the surface voxels in its vicinity are

too few or if they approximately lie on a plane (determined

by a coordinate eigen-decomposition) - cases in which the

respective subvolume is not sufficiently discriminative.

In the template matching stage, we run a 3D version of

Fast-Match [10], where we collect the 3 best possible map-

pings per seed location and discard those with Score > t,

for t = 0.035. The parameters in Score (10) are fixed

throughout our experiments: α = 0.5, σU = 3 and σL = 1.

Regarding the computation of the source area XT that ad-

heres to the transformation T (Equation (13)), we take hys-

teresis thresholds tU and tL to be the 40th and 70th per-

centiles, respectively, of the original sub-volume costU and

costL distributions. The hysteresis parameter ǫ was taken

to be twice the radius r of the original sub-volume.

4.1. Reconstruction of 3D shapes

In this experiment, we create controlled surface com-

pletion tasks by removing surface parts from 3D modeled

shapes and then attempting to reconstruct the entire surface.

Unlike the more realistic scenario of completion from par-

tial scans, this scenario lets us compare our results to the

original shape both quantitatively and qualitatively.

The data For this experiment we use the SHREC07 data-

set [6] which consists of a variety of closed triangulated

meshes of CAD models. We chose in particular six shapes,

which are especially challenging, since they include several

models in a variety of different poses, with complex sur-

faces. This is to emphasize that our method works without

knowledge of the shape class, surface primitives or global

symmetry assumptions. We use shapes 288, 291, 283, 14,

8 and 386 which we term ’armadillo 1’, ’armadillo 2’, ’ar-

madillo 3’, ’woman 1’,’woman 2’ and ’bull 1’ respectively.

We then randomly generated multiple completion tasks

(instances) of varying levels of difficulty for each of the six

shapes. In each instance, the partial surface is generated in

one of three ways: ’single view’, where we keep only sur-
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shape: ‘SHREC woman 1’

unseen area: 17.6%

Reconstruction Errors:

Ours: 15% Poisson: 6%

shape: ‘SHREC bull 1’

unseen area: 27.3%

Reconstruction Errors:

Ours: 15% Poisson: 21%

shape: ‘SHREC armadilo 1’

unseen area: 37.8%

Reconstruction Errors:

Ours: 24% Poisson: 47%

shape: ‘SHREC armadilo 3’

unseen area: 43.4%

Reconstruction Errors:

Ours: 30% Poisson: 151%
(a) Ours (b) True (c) Poisson (d) Ours (e) True (f) Poisson

Figure 7. Shape completion examples (with unseen area < 50%): Each row shows a completion instance generated from the SHREC

dataset. These are 4 out of the 36 instances (additional examples are provided in Supplementary Materials) that we generated randomly (see

text), resulting in a partial view of the shape (shown in red). In each example, reconstructions are shown from 2 different viewpoints: (a-c)

and (d-f). Our surface completion is shown in (a) and (d), where completed areas are colored in green if they originate from a completion

hypothesis or blue otherwise. For reference, the true completion is shown in green from the same views in (b) and (d) and the Poisson

Reconstruction in (c) and (f). In addition, we report reconstruction errors on the left. Note: details are best seen when viewed in zoom.

face areas visible from a single randomly chosen viewing

direction (at a fixed distance). This option creates the hard-

est instances where typically over 40% of the shape surface

is unseen; ’two-view-orthogonal’, where we keep only sur-

face areas visible from either one of a random pair of view-

points, which are 90◦ apart. Here, typically 20% − 50% of

the surface is unseen; ’two-view-opposite’, where we use

random opposite viewpoints, with unseen area in the range

10%− 30%. In all cases, the shape surface is rastered in an

orthogonal 2563 volume centered at the shape’s center of

gravity. Overall, we created 6 instances for each shape (2 of

each option) resulting in a total of 36 instances. The distri-

bution of their degree of difficulty (unseen surface area) can

be seen by looking at the x−axis of the chart in Figure 6.

shape: ‘SHREC woman 1’

unseen area: 54.5%

Reconstruction Err: 30%

shape: ‘SHREC armad 2’

unseen area: 69.1%

Reconstruction Err: 78%
(a) Ours (b) True

Figure 8. Shape completion hard examples (unseen area

> 50%): See Figure 7 for explanations and text for interpretation.

Results The completed shapes are evaluated by the re-

construction error, which is the volume of the symmetric

difference between original and reconstructed shapes, as a

% of the original shape volume. In the Supplemental Ma-

terials we consider a related measure - the area prediction

error for which we draw similar conclusions. The chart in

Figure 6 shows some statistics of this experiment, showing

that the algorithm performs well when the occluded surface

area is up to ∼50% of the entire surface and beyond that

the performance degrades rather rapidly. Figure 7 shows

four examples, each from 2 different viewpoints, of our re-

constructions in which the unseen area is below 50%. In

these examples (ordered by increasing difficulty) our com-

pleted surfaces fit nicely to the input (red) surface and sug-

gest overall plausible completions. Notice that most of the

completion is based directly on the generated hypotheses

(green surface areas), while the remaining areas (blue) are

obtained due to the total-variation regularization in our 3D

optimization. In the Supplementary Materials, we provide

visualizations for many other instances of this experiment.

Lacking a suitable alternative method for completing

large, out-of-viewpoint holes, we compare to Poisson Re-

construction [7, 8] as a baseline. Poisson Reconstruction

is known to produce high quality surfaces in visible parts

of a scene. However, as the unseen regions get larger it
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Figure 9. New viewpoint

depth synthesis. Results

are shown for the ’Robots’,

’Cups’, and ’Child’ data-sets.

(a) RGB image, shown for

reference. (b) The input - a

single-view depth-map. (c)

A new viewpoint depth-map,

computed from the input

depth-map (b). (d) Our com-

pleted depth-map. See Fig. 1

for the ’Spray’ example and

the text for details.

(a) RGB (not used) (b) depth map (c) New view (d) Our completion

interpolates extremely smooth continuations of the occlu-

sion boundaries which typically do not resemble the orig-

inal shape, as can be seen in Figure 7. To provide it with

ideal conditions, we calculate normals on the full shape and

transfer them to the partial shape, to avoid artifacts around

occlusion boundaries and areas with low point density.

Figure 8 shows some limitations of our method, through

2 cases where the unseen area is over 50%. The woman

example was reconstructed as two 3D objects (the left leg

is separated from the body), due to the lack of evidence

in the existing view for the connection between the parts.

In a similar fashion, the Armadillo reconstruction example

(with only 30% visible surface) preferred to generate a ge-

ometry where the surface area is minimal, as long as it can

be explained by existing hypotheses. The addition of prior

knowledge of body shape, or the usage of additional as-

sumptions (such as the need of the recovered geometry to

be stable relative to gravity) could possibly be incorporated

to improve reconstructions in such cases, which are extreme

for methods that do not assume such prior knowledge.

4.2. Synthesizing new viewpoint depth­maps

In this experiment we complete an entire scene, under se-

vere occlusion, given a single depth image. Many methods

deal with filling holes in depth maps that are due to acqui-

sition faults or due to slight viewpoint changes. In contrast,

our method is capable of completing large unseen surface

regions and this is demonstrated here through the applica-

tion of novel viewpoint depth-map synthesis.

The data For this set of experiments, we collected data

using a Kinect sensor. Since our focus is on the task of

completing surface areas that are not visible from the sin-

gle viewpoint, we wish to avoid dealing with the typical

missing values or noisy ones, especially around depth dis-

continuities. We therefore collected our data examples us-

ing the Kinect Fusion [13] system, making slight view-

point changes during the scan. We then projected the out-

put point-cloud to a single viewpoint, resulting in a single

depth-map, which is the only input to our algorithm.

Results We created depth maps of 4 scenes (’Spray’,

’Robots’, ’Cups’ and ’Child’), as described above. Our

new-view depth synthesis results can be seen in Figures 1

and 9. The first two examples in Figure 9 are extremely

challenging as we generate new views that are 180◦ from

the input view point. Despite the drastic view change,

the algorithm fills the holes nicely and reasons about the

depth relationships between the robots, the cubes and the

table surface. Similarly, the algorithm performs well on the

’Cups’ example, whose input depth-map has many artifacts.

The last row of Figure 9 shows the case of generating a view

point of a head that is orthogonal to the original viewing an-

gle, for which the algorithm produces a plausible solution.

5. Conclusions

We proposed an algorithm for depth extension from a

single depth image. The algorithm detects repetitive 3D

structures and uses them to generate a set of hypotheses,

which are merged in a coherent manner using 3D discrete

optimization. The method was shown to be able to complete

a variety of scenes and we believe it could be extended to

solve more complex task-specific challenges, by incorporat-

ing shape priors or physical based assumptions.

Such a capability can enable applications that expect

full geometry, such as robot path planning or simulation of

lighting and audio, that have access to a scene from a lim-

ited range of view points. The ‘peeking’ template matching,

proposed in this work, offers a new formulation of template

matching in the presence of uncertainty.
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