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Abstract

The estimation of the epipolar geometry of two cameras

from image matches is a fundamental problem of computer

vision with many applications. While the closely related

problem of estimating relative pose of two different uncal-

ibrated cameras with radial distortion is of particular im-

portance, none of the previously published methods is suit-

able for practical applications. These solutions are either

numerically unstable, sensitive to noise, based on a large

number of point correspondences, or simply too slow for

real-time applications. In this paper, we present a new effi-

cient solution to this problem that uses 10 image correspon-

dences. By manipulating ten input polynomial equations,

we derive a degree 10 polynomial equation in one variable.

The solutions to this equation are efficiently found using the

Sturm sequences method. In the experiments, we show that

the proposed solution is stable, noise resistant, and fast,

and as such efficiently usable in a practical Structure-from-

Motion pipeline.

1. Introduction

In computer vision, estimation of the uncalibrated rela-

tive pose of two cameras from image correspondences—

also known as epipolar geometry of fundamental matrix

estimation—is a fundamental problem with many applica-

tions. It is one of the core components of all Structure-from-

Motion (SfM) and 3D reconstruction pipelines [23]. In

these applications, stochastic RANSAC-style algorithms [8,

6] are often employed to find the “correct” epipolar geome-

tries of camera pairs, i.e., geometries deemed highly prob-

able, and at the same time to label the correspondences as

inliers or outliers (mismatches) of the model.This approach,

however, relies on the correctness of the underlying model

of the problem.

By far the most common camera model used for estimat-

ing the epipolar geometry between two cameras is the stan-

Figure 1: 3D Reconstruction of a rotunda captured by a

GoPro Hero4 camera with varying field-of-view settings.

The proposed F10 solver was used as a part of the SfM

pipeline.

dard pinhole camera model [10]. The 5-point relative pose

solver [20, 21] for completely calibrated cameras, the 6-

point focal length solver [22] for cameras with unknown fo-

cal length, or the well known 7-point or 8-point solvers for

uncalibrated cameras [10] are frequently used algorithms

based on the pinhole camera.

Since all of the algorithms above assume perspective

projections, they do not provide accurate estimates for im-

age correspondences corrupted by radial distortion. This

poses a serious drawback, since virtually all projections

in real cameras involve some amount of radial distortion.

Moreover, the importance of radial distortion modeling in-

creases with the ever growing popularity of wide field of

view cameras such as GoPro Hero, cheap smartphone cam-

eras, or superzoom cameras. Fitzgibbon [9] showed that

ignoring the radial distortion—even for standard consumer

cameras—may lead to significant errors in camera calibra-

tion or 3D reconstruction.

One way to deal with radial distortion is to simply ignore

it in the image matching phase and to model it only in the
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final optimization step, i.e., in the bundle adjustment [23]

phase. However, this approach is not very robust, since it

requires a set of correct image matches that need to cover a

significant area in both images and at the same time it needs

to include the significantly distorted points lying further

from the image center. To obtain correspondence sets that

fit the pinhole model and contain enough radially distorted

matches at the same time, the epipolar constraints have to be

loosened, e.g., by setting higher RANSAC thresholds. This

has the unfortunate, yet expected, effect of increasing the

number of mismatches, i.e., true outliers wrongly labeled as

inliers.

It may be very difficult to find such sets of correct

matches by assuming the pinhole camera model only. And

in many situations—and especially for cameras with larger

radial distortions—this may be outright impossible. It is

thus necessary to model the distortion when searching for

initial geometry model and inlier correspondences in the

RANSAC loop [8, 6]. This helps not only to discover “bet-

ter quality” consensus sets, but it also provides better mod-

els for which the subsequent bundle adjustment is more

likely to converge to the correct distortion parameters and

correct geometries. Radial distortion modeling has proved

to be a mathematically challenging task and algorithms for

estimation of epipolar geometry, homography, or absolute

camera pose together with radial distortion have been pro-

posed only recently [9, 2, 12, 4, 5, 13, 15].

Fitzgibbon [9] proposed an algorithm for fundamental

matrix estimation for cameras with identical radial distor-

tions, under the one-parameter division model for model-

ing radial distortion. Since the singularity constraint on the

fundamental matrix is not used in this algorithm, nine point

correspondences, instead of the minimal number of eight,

are needed to solve this problem. On the other hand, ne-

glecting the singularity constraint means that the problem

can be easily formulated as a quadratic eigenvalue problem,

which, after being solved using standard eigenvalue solvers,

yields up to 10 real solutions.

The first minimal solution to the problem of epipolar

geometry estimation under the assumption of the one pa-

rameter division model for an uncalibrated camera was pro-

posed by Kukelova et al. [17]. This method uses the mini-

mal number of eight point correspondences and the Gröbner

basis method [7] to solve the resulting system of polyno-

mial equations. An improved version of this Gröbner basis

solver was proposed again by Kukelova in [14]. This time,

the solver was generated using an automatic generator of

Gröbner basis solvers [14], performing Gauss-Jordan (G-J)

elimination of a 32×48 matrix and eigendecomposition of

a 16×16 matrix to yield up to 16 solutions.

Recently, several minimal solvers for estimating relative

pose between a radially distorted camera and a camera with

no or with known radial distortion were proposed by Kuang

et al. [13]. All of the proposed solvers are based on the

Gröbner basis method and need 8 points in the uncalibrated

camera scenario, 7 points in the calibrated camera with un-

known focal length scenario, and 6 points in the calibrated

cameras with known focal length scenario.

In [11], Jiang et al. solved the minimal problem of es-

sential matrix estimation for two cameras with constant but

unknown focal length and radial distortion. This problem

leads to a quite complicated system of polynomial equa-

tions and a large solver that needs to perform LU decompo-

sition of a 886×1011 matrix and to compute eigenvalues of

a 68×68 matrix. Unfortunately, this makes the solver too

computationally expensive for any practical application.

All of the previously listed algorithms estimate one ra-

dial distortion parameter only. This parameter is either

shared by both cameras, i.e., both cameras exhibit the same

amount of radial distortion, or the parameter describes ra-

dial distortion of one of the two cameras while the the sec-

ond camera has no or known radial distortion. This makes

these algorithms unusable in situations where the relative

pose of two completely uncalibrated cameras with differ-

ent amounts of radial distortions is to be estimated. This

is a practical problem with many applications, e.g., 3D re-

construction from images downloaded from Internet. For

the sake of brevity, we will refer to this problem as Fλ1λ2

through the rest of this paper.

The problem of fundamental matrix estimation under

the assumption of different radial distortions, Fλ1λ2, was

studied for the first time by Barreto et al. [2], where a

non-minimal algorithm (F15) based on 15 point correspon-

dences was given. The first work to study the minimal 9-

point formulation of Fλ1λ2 problem was presented in [18].

The authors found the problem to be numerically very chal-

lenging and provided the solution to this problem in exact

rational arithmetic only.

The first numerically stable solution to the minimal for-

mulation of the Fλ1λ2 problem was proposed in [16, 5]

(F9), where the authors used special techniques, based on

basis selection and SVD and LU decompositions, to im-

prove the numerical stability of the Gröbner basis solvers

involved. Unfortunately, these techniques in combination

with the complicated input equations lead to a quite large

and slow solver. The solver needs to performs LU decom-

position of a 393×389 matrix, SVD decomposition of a

69×69 matrix and to compute eigenvalues of a 24×24 ma-

trix.

In [14], Kukelova et al. proposed an alternative Gröbner

basis solution (F9A) to minimal Fλ1λ2 formulation. This

algorithm uses the automatic generator of Gröbner basis

solvers and leads to a slightly smaller solver that performs

G-J elimination of a 179×203 matrix and eigendecomposi-

tion of a 24×24 matrix. Still, the final solver is too slow

for any real-time application. Moreover, since this solution
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doesn’t take any additional steps to improve the numerical

stability of the final Gröbner basis solver, it is slightly less

numerically stable than F9.

Kukelova et al. [5] also suggested a non-minimal solu-

tion from 12 point correspondences (F12). This solution is

based on the generalized eigenvalue problem, yields up to

four real solutions, and is quite fast. However, this algo-

rithm is very noise sensitive and the authors concluded that

inside a RANSAC loop, it has worse performance than the

minimal 9-point algorithm F9A.

While the Fλ1λ2 problem is of particular importance,

none of the previously published methods is suitable for

practical applications. The solvers are either numerically

unstable (F9A [14]), sensitive to noise (F12 [5], F15 [2]),

based on a large number of point correspondences (F12 [5],

F15 [2]), or simply too slow for real-time applications

(F9 [16, 5], F9A [14]).

In this paper, we present a new solution to the Fλ1λ2

problem. Our motivation is to propose an algorithm that

uses a small number of point correspondences while be-

ing sufficiently stable, noise-resistant, and fast for practical

real-time applications.

Next, in section §2 we formally introduce the Fλ1λ2

problem and in section §3, we present our new solution.

Finally, in section §4, we thoroughly compare the proposed

solvers to the state-of-the-art solutions in terms of numer-

ical stability (§4.1), sensitivity to noise (§4.1), and speed

(§4.3).

2. Problem Formulation

Let us consider the epipolar constraint for a pair of image

correspondences

x
⊤

ui
(λ1) Fx

′

ui
(λ2) = 0. (1)

In equation (1), F = [fij ]
3
i,j=1 ∈ R

3×3 is the fundamen-

tal matrix and xui
(λ1),x

′
ui
(λ2) ∈ R

3 are the homoge-

neous coordinates of corresponding ideally projected image

points, i.e., points not corrupted by radial distortion [10]. In

the next, we will use the one-parameter division model for

radial distortion modeling [9]. This is an undistortion model

that can handle even quite pronounced radial distortions:

xui
(λ) =

[

xdi
, ydi

, 1 + λ(x2
di

+ y2di
)
]⊤

, (2)

where xdi
= [xdi

, ydi
, 1]

⊤
are the homogeneous coordi-

nates of the measured (and radially distorted) image points

and λ ∈ R is the distortion parameter. Note that this model

assumes the centre of distortion to be in the center of the co-

ordinate system. Now, we can formally introduce the Fλ1λ2

problem as the problem of recovering the unknown fun-

damental matrix F and radial distortion parameters λ1, λ2,

given a set of image correspondences xdi
↔ x

′

di
.

As discussed in section §1, the previous attempts to solve

Fλ1λ2 from the minimal number of 9 point correspon-

dences led to a complicated system of polynomial equations

and large and relatively slow Gröbner basis solvers [16, 5,

14]. In this work, we have decided to use one more point

correspondence that enabled us to develop an algorithm for

the Fλ1λ2 problem that is both stable and fast. We will call

this new solver F10 through the rest of the paper. By us-

ing one more than the minimal number of points necessary

to solve the Fλ1λ2 problem, we follow the idea proposed

by Kukelova et al. [15]. There, the authors showed that for

practical applications, it is sometimes more effective to use

more than the minimal number of correspondences to get a

simpler system of polynomial equations that can be solved

faster, while maintaining numerical stability.

3. F10: efficient solution to the Fλ1λ2 problem

In this section, we introduce our new solution to the Fλ1λ2

problem: the F10 solver. As we will present the algorithm,

we will arrive to four different variants of this solution, in

order of increasing computational efficiency: F10u3, F10e,

F10s, and finally F10. This family of of 10-point solvers

demonstrates several polynomial solution strategies. It also

shows how—given an equivalent problem formulation—

different polynomial manipulations lead to different results.

Let us start with the epipolar constraint as ex-

pressed by equation (1). The 10 point correspondences

xdi
↔ x

′

di
give us 10 equations (1) in 16 monomials

X = [f11, f12, f21, f22, λ1f31, f31, λ1f32, f32, λ2f13, f13,

λ2f23, f23, f33, λ1f33, λ2f33, λ1λ2f33]
⊤. Now, let us stack

these 10 equations into a matrix form

MX = 0, (3)

where M is a 10×16 coefficient matrix. After performing

G-J elimination of the coefficient matrix M, we obtain 10

homogeneous equations of the form

pi ≡ mi + qi(f23, f33, λ1, λ2) = 0, i = 1, . . . , 10, (4)

where mi stands for monomials f11, f12, f21, f22,

λ1f31, f31, λ1f32, f32, λ2f13 and f13, respectively, and

qi(f23, f33, λ1, λ2) are degree 2 polynomials in four

variables f23, f33, λ1 and λ2. Now, let us exploit several

dependencies revealed by the G-J elimination. We can

easily se that m5 = λ1m6,m7 = λ1m8, and m9 = λ2m10.

Using these equalities, we can combine the respective

rows pi to get a system of three homogeneous equations in

four unknowns only:

−λ1q6(f23, f33, λ1, λ2) + q5(f23, f33, λ1, λ2) = 0, (5)

−λ1q8(f23, f33, λ1, λ2) + q7(f23, f33, λ1, λ2) = 0, (6)

−λ2q10(f23, f33, λ1, λ2) + q9(f23, f33, λ1, λ2) = 0. (7)
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Since the fundamental matrix can be determined up to scale

only, we can fix one of its entries (and assume it is nonzero

at the same time). Here, we will fix f33 = 1. This is the

same constraint that is assumed in the minimal solvers F9

and F9A. This assumption brings the number of unknowns

in equations (5)–(7) down to three and, as a system of three

equations in three unknown, these equations can be solved

using the Gröbner basis method. The resulting Gröbner ba-

sis solver needs to compute G-J elimination of a 17×27 ma-

trix and to compute eigenvalues of a 10×10 matrix, yielding

the expected number of 10 solutions. Once the unknowns

f23, λ1, and λ2 are recovered, the rest of the unknowns

can be determined by simple back-substitution into equa-

tions (4). We will call this variant of the solution the F10u3
solver.

Even though the F10u3 solver is already quite simple,

we can take things even further by eliminating f23 and f33
from equations (5)–(7) and by solving a smaller system.

First, let us rewrite equations (5)–(7) into the following ma-

trix equation









s
[3]
11(λ1,λ2) s

[2]
12(λ1,λ2)

s
[3]
21(λ1,λ2) s

[2]
22(λ1,λ2)

s
[3]
31(λ1,λ2) s

[2]
32(λ1,λ2)













f23

f33



= M2(λ1,λ2)





f23

f33



= 0, (8)

where the upper index [·] denotes the degree of the re-

spective polynomial sij(λ1, λ2) in λ1 and λ2. Assuming

f33 = 1, we know from elementary algebra that the ma-

trix equation (8) has a non-trivial solution if and only if all

2×2 subdeterminants of the coefficient matrix M2(λ1, λ2)
are equal to zero. These constraints lead to three degree 5

polynomial equations in two unknowns λ1 and λ2:

s
[3]
11(λ1,λ2)s

[2]
22(λ1,λ2)−s

[3]
21(λ1,λ2)s

[2]
12(λ1,λ2) = 0, (9)

s
[3]
11(λ1,λ2)s

[2]
32(λ1,λ2)−s

[3]
31(λ1,λ2)s

[2]
12(λ1,λ2) = 0, (10)

s
[3]
21(λ1,λ2)s

[2]
32(λ1,λ2)−s

[3]
31(λ1,λ2)s

[2]
22(λ1,λ2) = 0, (11)

Since we now have three equations in two unknowns, we

can solve any two out of these three polynomial equa-

tions (9)–(11), e.g., by using the Sylvester resultant

method [7]. However, ignoring the one remaining con-

straint leads to 13 solutions, which is three more than the

correct number of 10 solutions. To get rid of these three par-

asitic solutions, we need to consider all three equations (9)–

(11).

The system of equations (9)–(11) is still quite a simple

system that can be solved “by hand”, e.g., using the Gröbner

basis method. Here, we will consider a Gröbner basis solver

created using automatic solver generator of Kukelova et

al. [14]. This solver performs G-J elimination of a small

10×20 matrix and computes eigenvalues and eigenvectors

of a 10×10 matrix. After recovering solutions for λ1 and

λ2 using the Gröbner basis solver, we can back-substitute

them into equation (8) to recover f23. Finally, analogously

to the F10u3 solution, we back-substitute λ1, λ2, and f23
into equations (4) to linearly determine the rest of the un-

knowns. In the next, we will call this solution variant the

F10e solver. Notice that the size of the underlying Gröbner

basis solver is equivalent to the size of the Gröbner basis

solver for the well known 5-point relative pose problem for

perspective calibrated cameras [21].

The most computationally expensive part of the F10e
solver is the eigendecomposition of the 10×10 multiplica-

tion matrix. As proposed by Bujnak et al. [3], this eigen-

decomposition can be replaced by computation of the char-

acteristic polynomial of this matrix and by finding the roots

of this single variable polynomial, e.g., in λ1, of degree 10

using the efficient Sturm sequences method [24]. Moreover,

since from the physical properties of the camera lenses we

know the feasible interval for λ1, we can naturally speed

up the Sturm sequences method convergence and limit the

number of solutions by restricting the search to this feasible

interval only. Once we have the solutions for λ1, we can

rewrite equations (9)–(11) as the following system

M3(λ1)[λ
3
2, λ

2
2, λ2, 1]

⊤ = 0, (12)

where M3(λ1) is a 3×4 coefficient matrix. Since M3(λ1)
depends on the already computed λ1 only, we can compute

λ2 as the linear solution to this system. We will call this

solution variant the F10s solver.

We can also solve the system of equations (9)–(11) with-

out the use of the Gröbner basis method entirely, by using a

similar approach to that used for equation (8); this method

is sometimes called the hidden variable trick. Let us con-

sider the first subdeterminant of M2 from equation (8), i.e.,

the subdeterminant corresponding to equations (5) and (6).

When considered as a polynomial in λ2—after “hiding” λ1

in the coefficient field—this determinant is a quadratic poly-

nomial. Let us multiply this polynomial by λ2 and add it to

equations (9)–(11). We get a system of four equations that

can be rewritten as














0 r
[3]
12 (λ1) r

[3]
13 (λ1) r

[3]
14 (λ1)

r
[3]
12 (λ1) r

[3]
13 (λ1) r

[3]
14 (λ1) 0

r
[2]
31 (λ1) r

[2]
32 (λ1) r

[2]
33 (λ1) r

[2]
34 (λ1)

r
[2]
41 (λ1) r

[2]
42 (λ1) r

[2]
43 (λ1) r

[2]
44 (λ1)





























λ3
2

λ2
2

λ2

1















=M4(λ1)















λ3
2

λ2
2

λ2

1















=0,

(13)

where r
[k]
ij (λ1) are degree k polynomials in λ1. Again,

from the elementary algebra we know that the matrix equa-

tion (13) has a non-trivial solution if and only if the de-

terminant of its 4×4 polynomial coefficient matrix M4 is

equal to zero. This directly leads to a degree 10 polyno-

mial equation in λ1. Its solutions can be once again found

using the Sturm sequences method. Unfortunately, a naive
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symbolic expansion of det(M4(λ1)) and subsequent coeffi-

cient extraction lead to a prohibitively large polynomials.

However, we have found that if the determinant extraction

is properly implemented, this final solver, F10, outperforms

all previously presented variants.

4. Experiments

To precisely gauge the stability, precision, and speed of the

proposed solvers, we performed extensive tests on synthetic

as well as real world data with various amounts of radial

distortion, noise, and outlier contamination. We compared

the proposed solvers to a comprehensive set of related algo-

rithms. See table 3 for an explanatory list of solvers consid-

ered in the experiments.

In our experiments, we observed that the proposed vari-

ants F10e, F10s, and F10 have virtually equivalent numeri-

cal stability and noise resistance. To make the figures more

readable, we have decided not show these equivalent results

and to represent this family of solvers by the most time-

efficient solver only, the F10 solver.

4.1. Synthetic data

First, we studied the performance of the proposed solvers on

synthetically generated 3D scenes with known ground-truth

parameters. The scenes consisted of 3D points distributed

at random in a 3D cube [−10, 10]3. Each 3D point was pro-

jected by two cameras with random, yet still realistic, focal

lengths. The orientations and positions of the cameras were

selected at random so as to look at the scene from a random

distance, varying from 15 to 35 from the center of the scene.

Next, the image projections in both cameras were corrupted

by different amounts of radial distortion, following the one-

parameter division model [9]. Finally, the radially distorted

image projections were corrupted by Gaussian noise with

standard deviation σ, assuming a 1000×1000 px image.

Numerical stability. In the numerical stability experi-

ment, we studied the behavior of the proposed solvers on

noise-free data and compared the results to the numerical

stability of the relevant Fλ1λ2 competitors F9 [5], F9A [14],

F12 [5], and F15 [2]. In this experiment, we also included

the F10u3 solver.

We generated 10,000 scenes with 3D points distributed

in a cube and cameras with random feasible poses. The ra-

dial distortion parameters λ1 and λ2 were drawn at random

from the interval [−0.8, 0] to investigate the behaviour of

the algorithms for large as well as small amounts of radial

distortion.

Figures 2(a–b) show the results of the new F10 solver

(blue) compared to the relevant algorithms. The log10 of

the relative error of the radial distortion parameter λ1, fig-

ure 2(a), and λ2, figure 2(b), were obtained by selecting

the real root closest to the ground truth values. The re-

sults suggest that the numerical stability of the F10 solver

F9 [5] Minimal 9pt solver for Fλ1λ2 based on the Gröbner basis

method and LU and SVD decompositions

F9A [14] Minimal 9pt solver for Fλ1λ2 generated using the automatic

generator of Gröbner basis solvers

F12 [5] 12pt solver for Fλ1λ2 based on the polynomial eigenvalue

method

F15 [2] Linear 15pt solver for Fλ1λ2

F8λ [14] Minimal 8pt solver for the Fλ problem based on the Gröbner

basis method

F7 [10] Standard 7pt algorithm for perspective cameras with no radial

distortion

F10u3 New 10pt solver for Fλ1λ2 based on eqs. (5)–(7) and the

Gröbner basis method

F10e New 10pt solver for Fλ1λ2 based on eqs. (9)–(11) and the

Gröbner basis method combined with eigendecomposition

F10s New 10pt solver for Fλ1λ2 based on eqs. (9)–(11) and the

Gröbner basis method combined with Danilevskii and Sturm

sequences methods [3]

F10 New 10pt solver for Fλ1λ2 based on the polynomial determi-

nant equation (13)

Figure 3: List of solvers considered in the experiments.

(blue) is comparable to the numerical stability of the linear

F15 solver (orange) and the F12 solver (green). The min-

imal solvers F9 (red) and F9A (magenta) have significantly

worse numerical stability than the rest of the competition.

This is caused by the fact that both F9 and F9A need to

perform LU decompositions/G-J eliminations of quite large

matrices. Moreover, since the F9A solver doesn’t include

any methods for numerical stability improvement as the F9

solver does, it also shows many failures. This is caused by

the ill-conditioned matrix used in the G-J elimination step.

Note that the numerical precision of the F10 solver is di-

rectly proportional to the relative error settings of the Sturm

sequence method. In this experiment, we set this relative

error to 10−13. Also, notice that the F10u3 solver exhibits

slightly worse numerical stability than the F10 solver. This

suggests that simplifying equations (5)–(7) by eliminating

f23 brings not only the advantage of a smaller and faster

solver (G-J elimination of a 10×20 matrix vs. G-J elimi-

nation of a 17×27 matrix) but also improves the numerical

stability of the solver.

Noise experiment. In this experiment, we studied the per-

formance of the F10 solver in the presence of image noise.

Figures 2(c–d) show the estimated radial distortion pa-

rameters for cameras with different radial distortions. In

this case, the ground truth radial distortion parameters were

set to λ1gt = −0.2 and λ2gt = −0.4. We compared

the proposed F10 solver to the same set of Fλ1λ2 solvers

as in the stability experiment, with the exception of the

F10u3 solver, which solves a problem algebraically equiv-

alent to the problem F10 solves, albeit less efficiently. Re-

sults in figures 2(c–d) are depicted using MATLAB func-

tion boxplot which shows 25% to 75% quantile values as
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Figure 2: Synthetic ex-

periments. (a–b) Sta-

bility experiment: his-

tograms of log10 rela-

tive errors of the esti-

mated λ1 and λ2. (c–d)

Noise experiment: com-

parison of λ1 and λ2

estimated by different

Fλ1λ2 solvers for vary-

ing levels of noise. The

ground truth values of

radial distortion were set

to λ1gt = −0.2 and

λ2gt = −0.4.

boxes with a horizontal line for median. The crosses show

data beyond 1.5 times the inter-quartile range.

The performance of the F10 solver (blue) is quite simi-

lar to the performance of the minimal solvers F9 (red) and

F9A (magenta) in the presence of noise. The remaining two

non-minimal solvers F12 (green) and F15 (orange) are very

sensitive to noise and thus not very useful for any practical

application. This noise sensitivity is most probably caused

by the fact that in these solvers, both the entries of the fun-

damental matrix and the radial distortion parameters can be

computed from different elements of null space/eigen- vec-

tors, i.e., there is more than one way to compute the un-

knowns. However, since neither F12 nor F15 consider the

monomial dependencies among the entries of these vectors,

they may produce completely different results, depending

on the entries of null space/eigen- vectors used. Moreover,

F12 and F15 solvers do not minimize any meaningful error.

Planar scene. Scene planarity remains to be an issue for

the Fλ1λ2 solvers. All considered Fλ1λ2 solvers, F9, F9A,

F10, F12 and F15, fail to recover the correct geometry for

planar scenes. However, they are able to recover the ra-

dial distortion parameters with satisfactory precision, see

figure 4. A notable exception is the noiseless case, where

F9 and F9A completely fail, whereas F10, F12 and F15 are

still able to recover the correct radial distortion parameters.

To simplify figure 4, we have decided not show the results

of the F12 and F15 solvers. For planar scenes, as in the case

of non-planar scenes depicted in figure 2, the F12 and F15

solvers completely fail for any reasonable amount on noise.

Even though the behavior of the F10 solver for planar

scenes is problematic from the theoretical point of view, we

believe that it is of little practical consequence. Indeed, if

the planarity of a scene is to be detected, one can use λ1

and λ2 recovered by F10 to undistort the correspondences

and proceed with homography estimation. If, on the other

hand, the scene planarity is known a priori, one could opt

for homography estimation directly.
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Figure 4: Planar scene. Comparison of λ1 estimated by

different Fλ1λ2 solvers for a planar scene and varying levels

of noise. The ground truth value of radial distortion were set

to λ1gt = −0.2 and λ2gt = −0.4.

Feasible solutions. From the physical properties of cam-

era lenses, we can quite accurately infer the feasible inter-

val for the values of λ1 and λ2. This fact is important for

RANSAC-style algorithms, where one can quickly discard

models that do not fall into this interval, without the need to

perform the inlier test. In this experiments, we considered

scenes analogous to those in the stability experiment. We

scaled the camera measurements to the interval [−1, 1]2 and

set the feasible interval to λ1,2 ∈ [−10, 2], which covers a

large range of physically plausible distortions. The average

number of feasible solutions attained over 10K experiments

was 1.99 (F9), 3.29 (F9A) and 1.54 (F10).

4.2. Real data

Radial distortion estimation. In this experiment, we

show that in some cases it is indeed necessary to con-

sider radial distortion already while searching for the ini-

tial geometry model in RANSAC. Figures 2(a–b) show a

stereo pair of a city scene taken by a GoPro Hero4 cam-

era from two different positions and with different field of

view (FOV) settings. The different FOV settings (medium

and wide, respectively) effectively translate into different

amounts of radial distortion. For the purposes of this exper-

iment, we rescaled the images to 1900×1425 px. First, we
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Figure 5: Radial distortion estimation. (a–b) A stereo pair of a city scene taken by a GoPro Hero4 camera with different

FOV settings. The pair undistorted using λ1, λ2 obtained by nonlinear optimization of a model initialized by (c–d) F7, (e–f)

F8λ, and (g–h) F10.

detected SIFT features [19] and found 1005 tentative corre-

spondences covering significant area of the images. Next,

we run 300 RANSAC cycles with the threshold set to 3 px

for three algorithms F7 [10], F8λ [14], and F10 to recover

the fundamental matrix F and, where applicable, the radial

distortion parameters λ1, λ2. From the set of 1005 tentative

correspondences, F7, F8λ, and F10 recovered models with

50.1%, 53% and 79% inliers, respectively. Finally, for all

three models we performed joint nonlinear estimation of F,

λ1, and λ2. For the F7 model, we initialized λ1 = λ2 = 0
and for F8λ as λ1 = λ2 = λ. Figures 2(c–h) show the

initial image pair undistorted using the different amounts

or radial distortion recovered in the nonlinear optimization

step for F7 (c–d), F8λ (e–f), and F10 (g–h). As we can see,

the only solver able to recover the proper radial distortion

parameters was in this case the F10 solver.

RANSAC. To better understand the behaviour of the new

F10 solver in RANSAC, we once again used the city scene

stereo pair from Figures 2(a–b). Figure 6 shows the mean

number of gained inliers by different solvers as a function

of RANSAC cycles over 300 runs for 20% outlier contam-

ination. Again, the RANSAC threshold was set to 3 px.

First, we can notice a remarkably bad performance of the

F12 and F15 solvers. This is partly by the high noise sen-

sitivity of these solvers and partly by the high number of

involved correspondences, which lowers the probability of

selecting a true inlier “minimal” set. Next, can see that even

though the F8λ solver is able to recover one radial distortion

parameter, the fact that this particular image pair was taken

with two quite different distortion settings, the solver per-

forms almost on par with the distortion oblivious F7 solver.

Finally, we can see the new F10 slightly outperformed by

the F9 and F9A solvers, as F10 needs one more point for
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Figure 6: RANSAC. The mean number of gained inliers

by different solvers as a function of RANSAC cycles over

300 runs for 20% outlier contamination. The dotted line

represents the number of true inliers.

model recovery. In practice however, this loss is offset by

F10’s significant speed gain.

3D Reconstruction Finally, to test the suitability of the

F10 solver for practical applications, we deployed it as a

part of a larger SfM pipeline. We experimented with a

dataset of 66 images of a rotunda taken by a GoPro Hero4

camera, again, combining medium and wide FOV settings.

Figure 1 shows an overview of the final reconstruction of

the dataset. Even though no prior information about the

camera focal length or radial distortion was used, the F10

solver helped to recover the correct scene geometry as well

as radial distortion, see Figure 7 for details.

4.3. Speedup

As we have seen in section §4.1, the performance of the

solvers F12 and F15 in the presence of noise makes them

quite impractical. This is why in this experiment we com-

pared the F10 family of solvers to the F9 and F9A solvers
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Figure 7: 3D reconstruction.(a) An input image from a rotunda dataset. (b) The image undistorted using λ1 obtained by

nonlinear optimization of a model initialized by F10. (c) Inlier set of F10 as recovered by RANSAC. (d) 3D point cloud of

the final reconstruction. (e) Textured 3D mesh. (f) Mesh detail.

only. Unfortunately, we have C++ implementations of nei-

ther F9 nor F9A, thus we compared only times of the major

computationally involved steps performed by each solver.

Here, we used the C++ implementations of these steps

based on linear algebra library Eigen [1]. The timings, av-

eraged over 10K trials on a 3.5 GHz i7 based desktop, are

reported in the following table:

SVD G-J LU Eig λ1-poly Total Speedup
(69×69) (9×16) (393×389) (24×24)

F9 2606.1 1.0 2617.3 112.1 – 5336.5 1.0
(9×16)+
(179×203)

(24×24)

F9A – 930.7 – 121.1 – 1042.8 5.1
(10×16)+

(10×20)
(10×10)

F10e – 1.76 – 15.34 – 17.57 303.7
(10×16)+

(10×20)

F10s – 1.76 – – 3.42 5.89 906.0
(10×16)

F10 – 1.13 – – 2.46 4.34 1229.6

All timings are reported in µs and the speedups are mea-

sured with respect to F9. The bracketed dimensions repre-

sent the sizes of the respective input matrices. The column

labeled “λ1-poly” represents the times spent by the extrac-

tion of the univariate polynomials in λ1 (from the multipli-

cation matrix of the Gröbner basis solver in case of F10s
or from the polynomial matrix from equation (13) in case

of F10) followed by the root evaluation using the Sturm se-

quences method. Notice that the times of F10 solvers do

not sum up to the values in column “Total”. In this case, the

values under “Total” represent time taken by all the opera-

tions performed by the solvers, including fillings of matri-

ces, back-substitutions, and other overhead.

5. Conclusion

Epipolar geometry estimation in the presence of radial dis-

tortion is a challenging problem, as attested by the veritable

zoo of solvers proposed in the past. In this work, we pre-

sented a new solution to the most general variation of this

problem: two uncalibrated cameras with different amounts

of radial distortion. Our algorithm uses a small number of

10 point correspondences and it is both numerically sta-

ble and noise-resistant, while still being fast for practical

or even real-time applications. For the sake of complete-

ness, we have exploited several possible solution strategies

in the course of derivation of the algorithm. We have arrived

to four solvers: F10u3, F10e, F10s, and F10. As we have

observed in our experiments, the last three variants, F10e,

F10s, and F10 are virtually equivalent from the noise resis-

tance and numerical stability point of view. Based on our

implementation of these solvers in C++, we have concluded

F10 to be the fastest. Yet, the experimental timings strongly

suggest that all of the proposed solvers are fast enough to

be used even in real-time applications, by far outperforming

the previously proposed algorithms. It is thus up to the user

to decide whether to opt for the “simplest” variant F10e, or

whether the application at hand merits a bit more involved

implementation of the F10 solver.
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solution to relative pose with unknown focal length and ra-

dial distortion. In The 12th Asian Conference on Computer

Vision, 2014. 2

[12] H. Jin. A three-point minimal solution for panoramic stitch-

ing with lens distortion. In CVPR’08, 2008. 2

[13] Y. Kuang, J. E. Solem, F. Kahl, and K. Åström. Minimal
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