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Abstract

Radial distortion for ordinary (non-fisheye) camera

lenses has traditionally been modeled as an infinite series

function of radial location of an image pixel from the image

center. While there has been enough empirical evidence to

show that such a model is accurate and sufficient for ra-

dial distortion calibration, there has not been much analysis

on the geometric/physical understanding of radial distor-

tion from a camera calibration perspective. In this paper,

we show using a thick-lens imaging model, that the vari-

ation of entrance pupil location as a function of incident

image ray angle is directly responsible for radial distortion

in captured images. Thus, unlike as proposed in the current

state-of-the-art in camera calibration, radial distortion and

entrance pupil movement are equivalent and need not be

modeled together.

By modeling only entrance pupil motion instead of radial

distortion, we achieve two main benefits; first, we obtain

comparable if not better pixel re-projection error than tra-

ditional methods; second, and more importantly, we directly

back-project a radially distorted image pixel along the true

image ray which formed it. Using a thick-lens setting, we

show that such a back-projection is more accurate than the

two-step method of undistorting an image pixel and then

back-projecting it. We have applied this calibration method

to the problem of generative depth-from-focus using focal

stack to get accurate depth estimates.

1. Introduction

Camera calibration entails estimation of intrinsic and ex-

trinsic parameters of a camera given a set of known world

points and their measured image coordinates on the image

plane [3, 13, 14, 7, 16]. The intrinsic parameters model the

geometric properties of the image sensor and the extrinsic

properties model the pose of the camera in a known coordi-

nate system.

Camera calibration depends on the imaging model that

governs the camera optics. In this paper, we focus on or-

dinary (non-fisheye) camera lenses whose image forma-

tion can be described as ideal perspective projection fol-

lowed by small deviations/distortions. These distortions

cause straight lines in the scene to be imaged as curved

lines. In calibration, image distortion has been modeled

as a combination of radial distortion [3] to model radially

outward movement of ideal image points and decentering

distortion to model keystone like distortions owing to small

lens-sensor misalignment [14, 4]. Both of these distortion

models are in the form of an infinite series function of ideal

image coordinates [14, 16, 7]. Since, they are not physi-

cally motivated, these models are only approximate in na-

ture. Previously, Kumar and Ahuja [10] have proposed a

physical model for decentering distortion via a rotation ma-

trix to encode the lens-sensor tilt. In this paper, we show

that the physical motion of the entrance pupil as a function

of the incident ray angle is the cause of radial distortion in

images. Based on this analysis, we propose a new camera

calibration method which features a pupil-centric imaging

model [10] (more accurate than traditional pin-hole model),

rotation-based image sensor misalignment [10, 5] (to model

decentering effects) and moving entrance pupil model (to

model radial distortion) to achieve lower pixel re-projection

errors. Moreover, our calibration allows for accurate back-

projection of image rays directly from distorted image pix-

els. Our analysis shows that the combined modeling of en-

trance pupil motion and radial distortion [14] as done in the

current state-of-the-art in camera calibration [5] is redun-

dant. Thus, our main contributions in this paper are:

1. In a pupil-centric imaging framework, we show that

the physical motion of entrance pupil along the optic

axis causes radial bending of image rays thus resulting

in radial distortion of image pixels (Sec. 2).

2. We propose a new pupil-centric calibration algorithm

based on these ideas and obtain less pixel re-projection

error compared to prior calibration methods (Sec. 3)

and show accurate pixel ray back-projection (Sec. 5).

3. We present a categorization of various prior calibration

algorithms based on their underlying assumptions and
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show how the proposed model is new and differs from

all of them (Sec. 4).

4. We present a generative depth-from-focus algorithm

which depends on accurate ray back-projection and

uses the proposed calibration method to compute scene

depth (Sec. 5).

In Sec. 6, we compare our calibration results with those

obtained by prior methods and show that we get least re-

projection error without increasing the parameterization of

the calibration problem. Finally, in Sec. 7, we discuss the

limitation of our calibration algorithm with respect to im-

age distortion and propose alternate approximations to over-

come them.

2. The New Insight on Radial Distortion Mod-

eling

In this section, we first present definitions of some lens

parameters useful to explain our radial distortion model.

Then, we present the traditional radial distortion model

which assumes pin-hole imaging. This is followed by the

proposed entrance pupil motion based modeling of radial

distortion for thin and thick lenses.

Lens parameters: See Fig. 1. A typical lens consists

of a system of lenses with a physical aperture stop some-

where between these lenses. This stop physically limits the

amount of light and controls the depth of field captured in

focus by the lens. The entrance pupil (En) is defined as the

virtual image of the aperture stop as seen from the front of

the lens. Similarly, the exit pupil (Ex) is the image of the

apertures stop as seen from behind the lens. For a given im-

age pixel, the corresponding image ray forming that pixel,

typically referred to as the chief ray, must physically pass

through the aperture stop. Thus, it also appears to pass

through the center of the entrance and exit pupil. In cam-

era calibration, most of the prior works assume these points

to be fixed, except [5], which models their motion. In this

work, we will assume that entrance pupil moves.

aperture

stop

entrance

pupil
exit

pupil

chief

ray

EnEx

image

sensor

image

object

Figure 1. Typical lens design: entrance, exit pupil, aperture stop.

Conventional radial distortion modeling: Let an ideal

perspective projection of a world point on the image plane

be Pp = (xp, yp). Due to distortion, this point actually ap-

pears at location Pd = (xd, yd). Assuming no decentering

of lens-sensor, these two points can be related by only radial

distortion parameters (k1, k2) as:

[
xd

yd

]

= (1 + k1 · r2p + k2 · r4p)
[

xu

yu

]

(1)

where rp =
√

x2
u + y2u. This is conventional radial distor-

tion modeling as in [3, 14, 7, 16].

Thin-lens: stop location and radial distortion: Con-

sider a thin-lens setting as shown in Fig. 2(a, b, c) where the

chief ray forms the image, while the stop location varies.

We observe that depending upon the stop location, the chief

Orthoscopic/

No distortion

Chief ray/

Principal ray

Aperture stop

Barrel

Principal ray

Chief ray

Pin-cushion

Chief ray

Principal ray

(a)

(b)

(c)

O

O

O

Figure 2. (a) No-distortion: aperture stop coincides with the princi-

pal point O. (b,c) Barrel and pin-cushion distortion due to change

in stop location.

ray bends as it does not pass through the center of the lens. It

is known that any ray passing through the lens center remain

undeviated [6], thus forming ideal perspective image. Thus,

we can conclude that changing the stop location causes the

resulting image to distort on the image plane.

Thick-lens: stop location and radial distortion Now,

we model the lens as being thick-lens and extend the above

analysis to relate radial distortion and stop location. A

thick-lens model follows a pupil-centric imaging geome-

try as shown in Fig. 3. which is parameterized by a set

En
Ex

H1 H2

θin

θout

an ax

principal
planes

entrance
pupil

exit
pupil

θin≠θout

zo
zi

yo

yi

Figure 3. Pupil-centric imaging model for thick lenses.

of known lens parameters, namely entrance pupil En, exit

pupil Ex and the front and back principal planes H1, H2.

The chief ray passes through En and exits through Ex, mak-

ing an angle of θin at En and θout at Ex . It was shown
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in [1], that θin and θout are related as

tan(θin) =
F

F − ax
tan(θout) (2)

where F is the optical focal length of the system. If yo an yi
are object and image heights respectively and zo and zi are

object and image distances from En and Ex respectively,

then we have tan(θin) = yo

zo
and tan(θout) = yi

zi
. The

transverse magnification MT [6] of the system can then be

computed from Eq. 2 as:

MT =
yi
yo

=
F − ax

F
∗ zi
zo

(3)

If zo and zi are fixed, then MT is fixed as ax and F are fixed.

Thus, we can conclude that for fixed lens parameters there

is a constant magnification factor relating all object points

on a fixed plane at z0 and the captured image points. But,

we know from observed images captured from a thick lens,

that magnification is not constant across the image plane,

rather it either increases or decreases as the image points

move far from the center of the image. Or in other words,

the magnification MT is radially varying causing observed

radial distortion of image points. Thus, we can give the

following hypothesis.

En

H1 H2

Ex

Pw

θin

(a) Small incidence angle

small

distortion

En

H1 H2

Ex

Pw

θin

(b) Large incidence angle

large

distortion

large entrance

pupil movement

small entrance

pupil movement

Figure 4. Angle of incident light ray moves the entrance pupil lead-

ing to different amounts of radial distortion: (a)small incident an-

gle (b)large incident angle.

Our hypothesis: moving entrance pupil causes radial

distortion in pupil-centric setting The only way to have

varying magnification/radial distortion over the image plane

is to assume that all of the ray geometries shown in

Fig. 2(a,b,c) occur simultaneously. This would imply that

there are multiple aperture stop locations in the imaging sys-

tem at the same time. Since, this is physically impossible,

we hypothesize that in the case of a thick lens, the entrance

pupil varies its location monotonically depending on the an-

gle θin of incidence of the incoming ray. Such phenomenon

has previously been observed for fish-eye lenses by Gen-

nery [5]. This allows us to explain for small angles of inci-

dence (Fig. 4(a)), we have ideal perspective projection (sim-

ilar to Fig 2(a)), agreeing with the observation that there is

almost no radial distortion at regions near the image center.

But as the incident ray angle θin increases (Fig. 4(b)), the

entrance pupil location changes and the imaging system be-

haves similar to Fig. 2(b) or (c). This confirms to the obser-

vation that radial distortion is higher towards the periphery

of the image. Thus, we can conclude that the movement of

the entrance pupil as a function of incident ray angle θin is

a predominant geometric reason for the occurrence of radial

distortion on the image plane. Next, based on our hypothe-

sis, we present our new camera calibration model.

3. Proposed Camera Calibration Modeling

Our camera calibration model assumes pupil-centric

imaging with moving entrance pupil and non-frontal sen-

sor model [10] as shown in Fig. 5, where a known world

point location Pw is imaged to pixel Pi based on current

calibration parameters and P̂i is the actual measured image

coordinate. We define the following coordinates systems:

• world coordinate system (Cw): The known world

points are defined in this coordinate system e.g. a

checkerboard.

• entrance pupil coordinate system (CEn
): The origin

of this coordinate system lies at the entrance pupil En

of the imaging system. Since, in our case En is as-

sumed to be moving with respect to the incident image

ray (Sec. 2), we define the origin of CEn
to correspond

to the location where the incidence rays with θin ≈ 0
intersect the optic axis. This location can typically be

obtained from the lens data sheet as a signed distance

from the front principal plane.

• sensor coordinate system (Cs): The xy plane of this

coordinate system lies on the image sensor with origin

at the intersection of optic axis and the sensor. This in-

tersection point is the center of radial distortion (CoD).

• image coordinate system (Ci): The measured pixel

values are described in this coordinate system.

The distances are measured in pixels in Ci and in metric

(e.g. mm) in Cw, CEn
, Cs. See Fig. 5. Let the world point

be Pw = (X,Y, Z) and the measured image point be P̂i =

(Î , Ĵ). Let the signed distance of En from H1 be an and of

Ex from H2 be ax. Ignoring noise, we have the following

transformations relating Pw and P̂i.

Transformation from Cw to CEn
: Let S = {sij : 1 ≤

(i, j) ≤ 3} be the rotation matrix and T = (tx, ty, tz) be

the translation between these two coordinate systems. Then,

Pw can be expressed as Pl = (xl, yl, zl) in CEn
as:





xl

yl
zl



 =





s11 s12 s13
s21 s22 s23
s31 s32 s33









X
Y
Z



+





tx
ty
tz



 (4)
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Figure 5. Geometry of proposed calibration model.

Incorporating entrance pupil movement: Let the ray

from Pw be incident on the optical axis at En(θ) at an an-

gle of θ. Let the distance between En and En(θ) be σ(θ),
where we use the model for σ(θ) from [5] as:

σ(θ) =

(
θ

sin(θ)
− 1

)
(
ǫ1 + ǫ2θ

2 + . . .
)

(5)

Here (ǫ1, ǫ2) are the pupil movement parameters. As the

distance moved by the pupil σ(θ) and θ are dependent on

each other they cannot be determined independently. But, a

simple trigonometric equation can be derived in terms of Pl

and θ [5] as:

zl sin(θ)−
√

x2
l + y2l cos(θ)− (θ − sin(θ))(ǫ1 + ǫ2θ

2) = 0

and can be solved iteratively for θ using Newton-Raphson

method using initial value of θ as arctan

(√
x2

l
+y2

l

zl

)

and

current estimates of calibration parameters S, T, ǫ1, ǫ2. An

example plot of the variation of entrance pupil center as in-

cident ray angle θ changes is shown in Fig. 6 for the lens

used in our experiments. As can be seen, the default En

provided by the manufacturer has been calibrated for inci-

dent rays with θ ≈ 50 degrees.
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Figure 6. Moving entrance pupil vs angle of incidence ray. The

plot is based on (ǫ1 = −5.304, ǫ2 = 6.474) computed from cal-

ibration results from our proposed method as shown in the last

column of Table. 1.

Computing incident ray intersection with H1: Given

the computed ray direction θ, the incident ray from Pw in-

tersects the front principal plane H1 at some location q1.

Using coordinate geometry, the coordinates of q1 are:

q1 =
−(an + σ(θ))

zl − σ(θ)

[
xl

yl

]

(6)

As ray incidence on H1 and H2 are same, we have q1 = q2.

Computing the exitence ray from Ex to q2: As the exit

ray must appear to come from Ex, its intersection with the

non-frontal sensor plane can be computed. We assume that

the image sensor is rotated with respect to H2 by a two pa-

rameter rotation matrix R(α, β) [10]. We also assume that

the origin of the non-frontal sensor is located at a distance

of λ from H2. We have Ex = (0, 0, ax). Now, both Ex and

q2 can be obtained in terms of Cs as:

ECs
x = R [0 0 ax + λ]

t
(7)

qCs

2 = R [q2(x) q2(y) λ]
t

(8)

where, [ ]t denotes transpose. Let the intersection of this ray

with the image sensor be Ps = (xs, ys).

Obtaining image coordinates: If the pixel sizes are sx
and sy and the origin of Cs is at (I0, J0) on the image, then

Ps can be transformed to pixel coordinates Pi = (I, J) as

[
I
J

]

=

[ xs

sx
− I0

ys

sy
− J0

]

(9)

We refer to (I0, J0) as the center of distortion (CoD). Thus

Pi is obtained in terms of 14 calibration parameters U as:

U = { S, T,
︸︷︷︸

extrinsic(6)

R(α, β), sx, λ, I0, J0, ǫ1, ǫ2
︸ ︷︷ ︸

intrinsic(8)

} (10)

We note that sy is assumed to be known as it decides the

scale of the calibration estimates [13, 14, 16].

Linear and nonlinear optimization: The calibration is

done in two stages (1) initial linear estimation and (2) fi-

nal nonlinear refinement using the estimated parameters

from linear estimation. For stage (1), we assume that

the entrance pupil is fixed and used the analytical tech-

nique in [10]. The final nonlinear estimation is done using

Levenberg-Marquardt optimization [7] by minimizing the

pixel re-projection error over N world-image point corre-

spondences:

U∗ = argmin
U

N∑

n=1

‖P̂n
i − Pn

i (U) ‖22 (11)

where U∗ is the final optimal results. The results in the

columns of Table. 1 for various calibration techniques cor-

respond to U∗ from respective methods.
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4. Comparison with Other Calibration Algo-

rithms

In this section, we describe a subset of existing state-

of-the-art in camera calibration with which we would be

comparing our proposed model’s calibration accuracy in the

results section (Sec. 6). These methods vary with respect

to each other in terms of the imaging model, the distortion

model and the orientation of the image sensor. We next

explain these criteria and various models which fall under

these criteria.

Imaging model : The imaging model describes the im-

age formation from the world point to the image point.

There are two types of imaging model being employed in

camera calibration. The basic thin-lens model assumes that

the incident and exiting rays responsible for image forma-

tion by the optical system are principal rays which pass

through the optic center of the system of lenses and are par-

allel to each other [3, 13, 14, 7, 16]. The second model

called as pupil-centric model assumes that the image rays

responsible for image formation are the chief rays which

enter the imaging system at the entrance pupil and appear

to exit from the exit pupil [6, 1]. In this model, the location

of the entrance pupil can either be assumed to be fixed [10]

or it can be assumed to be moving [5].

Distortion model: Real imaging systems behave far

from ideal perspective projection and are often accompa-

nied by some amount of visible distortion on the image

plane where straight lines in real world are imaged as

curves. The distortion can be modeled as a combination

of radial and decentering distortion [3, 13, 14, 7, 16]. The

model is basically an infinite series function of the ideal im-

age points.

Orientation of the image sensor: Many times the imag-

ing surface may not be normal to the physical optic axis of

the lens system due to manufacturing limitations or some-

times to achieve special effects, e.g. tilt-shift effect. Tra-

ditionally, it has been assumed that there exists an effec-

tive optic axis which is normal to the image sensor plane.

This is referred to as a frontal sensor [14, 7] model. Re-

cently, it has been proposed that calibration can be designed

about the physical optic axis by assuming that the sensor is

non-frontal with respect to the lens (H2) plane. The non-

frontalness can be modeled as a two parameter rotation ma-

trix relating the lens plane and the image sensor plane. This

is called as non-frontal sensor modeling [5, 10].

Based on the above criteria, we can classify many prior

camera calibration techniques into the following three cate-

gories, shown graphically in Fig. 7.

Category 1: See Fig. 7(a) for the calibration model in

this category. A number of existing calibration methods

fall in this category including those proposed in Weng [14],

Heikkila [7], Zhang [16]. In this category, imaging is as-

sumed to be thin-lens, the sensor is frontal and image dis-

tortion is modeled as a combination of explicit radial and

optic axis

radial

non-frontal

sensor

entrance

pupil

exit

pupil

(c) Category 3

pupil-centric

imaging

optic axis

non-frontal

sensor

moving

entrance

pupil

exit

pupil

(d) Proposed Calibration 

Model

pupil-centric

imaging

optic axis

radial

non-frontal

sensor

moving

entrance

pupil

entrance

pupil

(b) Category 2

thin-lens

imaging

e�ective optic axis

radial

+

decentering

frontal

sensor
optic

center

(a) Category 1

thin-lens

imaging

Figure 7. Various calibration models which have been used in liter-

ature. (a) Category1/Classical Method : thin-lens imaging, frontal

sensor, radial and decentering distortion model. (b) Category 2 :

thin-lens imaging, moving entrance pupil, non-frontal sensor, ra-

dial distortion model. (c) Category 3 : pupil-centric imaging, fixed

entrance pupil, non-frontal sensor radial distortion. (d) Proposed

Calibration Model: pupil-centric imaging, moving entrance pupil,

non-frontal sensor.

decentering distortion.

Category 2 (Gennery [5]): See Fig. 7(b) for the com-

plete model. Here the imaging model is thin-lens and the

image forming incident and the exiting rays are incident at

the entrance pupil location instead of the optic center. But,

the entrance pupil is not fixed and is assumed to be moving

depending on the incident ray angle. The image sensor is

assumed to be non-frontal, i.e. calibration is modeled about

the physical optic axis. Any observed image distortion is

modeled as explicitly being radial about the physical optic

axis.

Category 3 (Kumar [10]): See Fig. 7(c) for this model.

The imaging model here is pupil-centric with incident ray

entering the lens system at the entrance pupil and exiting the

system at the exit pupil. The entrance pupil is assumed to

be fixed. The image sensor is assumed to be non-frontal and

it is shown that sensor non-frontalness compensates for de-

centering distortion adjustment typically done in Category

1 techniques. The only distortion that is modeled is radial

distortion using traditional infinite series formulation. Com-

pared to all these methods, our proposed method does not

fall in any of these categories as our imaging model is pupil-

centric, assumes moving entrance pupil and the image sen-

sor is assumed to be non-frontal and we don’t propose to ex-

plicitly model the image distortion based on our analysis on

equivalence of moving entrance pupil and observed radial

distortion. We also incorporate non-frontal sensor model as

it physically corresponds to decentering distortion effects

and is more robust for large sensor tilts.

5. Ray Back-Projection and Depth From Focus

Since the proposed calibration model does an accurate

modeling of forward image projection, its easy to back
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project an image pixel accurately (see the blue solid line

in Fig. 5). Comparatively, the traditional radial distortion

model first corrects for image distortion on the image plane

and then back-projects it. Lets assume in Fig. 5, that the

undistorted point corresponds to ideal image coordinates.

The back-projected ray (see the red dotted line in Fig. 5)

is altogether different from the actual image forming blue

solid ray. Any vision algorithm depending on ray back-

projection analysis might get effected due to this discrep-

ancy. Next, we present a depth from focus algorithm which

depends on accurate ray back-projection and where we have

applied the results of our proposed camera calibration.

Our depth from focus algorithm takes a focal stack as

input. A focal stack is a set of registered images which fo-

cus at different scene depths in each image such that each

scene point is in focus (imaged sharply) in at-least one im-

age frame. Given this focal stack, an all-focused image of

the scene can be computed using techniques from [9, 15].

We have the image formation model y = k ⋆ x, where y
is the observed image, k is the depth dependent blur kernel

and x is the ideal sharp image. For our case, y is the focal

stack and x is the all-focused image which we have already

computed and the goal is to compute scene depth encoded

in k. Our generative algorithm can be described as:

• Input: camera calibration parameters U∗ (Eq. 11), all-

focused image If , focal stack FS.

• Repeat for all pixel locations p in If , denoted as If (p)
– Back-project pixel p to an image ray −→p using U∗.

– For discrete depths d along −→p , obtain the hypoth-

esized 3D location of p as P (xd, yd, d), where

(xd, yd) can be obtained from ray geometry of−→p .

– Using U∗, forward project P (xd, yd, d) onto all

the other images in the FS and compute the blur

kernels k
′

for each image in FS.

– Synthetically generate blurred image windows

y
′

= k
′

⋆ If around p in all other FS images.

– Compare the sum of squared pixel wise error be-

tween synthesized and observed images.

– Select the depth d which gives minimum error.

• Output: 3D scene depth

The computed depth using our depth from focus algo-

rithm and the calibration estimates U∗ using the proposed

calibration method are showed on a set of different scenes

is shown in Fig. 8 and Fig. 9. Ray back projection has also

been used for SLAM in [12].

6. Pixel Re-projection Results

Calibration data: The calibration data consists of a

precisely constructed glass checkerboard with 5 × 5 mm

squares. Since the checkerboard is transparent, it is back lit

to generate white and black squares on the captured calibra-

tion images. The checkerboard is fixed at a location and a

camera with a tilted image sensor is used to capture a set of

5 images of the checkerboard from different viewpoints. A

Figure 8. Rocks dataset: (left) shows the setting of various geo-

metric objects in the scene. The objects consist of a flat planar

board, a prism object and more generic shaped objects in the form

of rocks; (middle top) shows the omnifocus image of the scene;

(right top) shows the medial filtered (11 × 11) 2D depth map;

(middle and right bottom) shows two 3D views of this dataset.

For non-paraxial image rays, Petzval field curvature distortion [6]

causes planes to focus on a curved surface. We observe this as the

curved reconstruction of the planar board.

Figure 9. Cylinder dataset: (left) shows a cylindrical container and

a flat board as the geometric objects in the scene; (middle top)

shows the omnifocus image; (top right) shows the median filtered

(11×11) 2D depth map of the cylinder; (middle and right bottom)

shows two 3D view of the cylinder.

tilted sensor camera is useful in validating the non-frontal

modeling in [5, 10]. The corners from the checkerboard im-

ages are detected using MATLAB Bouguet’s toolbox [2].

The accuracy of corner detection is separately calculated

using the method of [11] and is found to be ≈ 0.011 pixels.

Camera specifications: We use an AVT Marlin F033C

camera with a custom made image sensor which has been

slightly tilted by about 3 degrees. This camera is fitted

with a Cinegon 1.4/8.2 mm lens. The data sheet [8] of

the lens provides the pupil-centric parameters of the cam-

era. In Fig. 10, we show the various parameters provided

by the manufacturer. Out of these numbers, the two num-

bers which we use in our calibration are the distance of

the entrance pupil from the front principal plane denoted

as H1En(an) and the distance of the exit pupil from the

rear/back principal plane denoted as H2Ex(ax). Simple

computations from Fig. 10 lead to an = 6.5 mm and
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Table 1. Calibration results on real data. (TL = Thin-lens, PC = Pupil-centric, ME = Moving Entrance, NF = Non-frontal, F = Frontal)

Method Heikkila [7] GenneryA [5] GenneryB [5] Kumar [10] Ours

distortion model Radial+Decentering Radial Radial Radial −
imaging model TL TL TL+ME PC PC+ME

sensor orientation F NF NF NF NF

#intrinsic parameters (8) (8) (10) (8) (8)

scale
sy
sx

1.000 1.001 1.001 0.999 0.999

λp (mm) 8.240 8.383 8.358 8.650 8.593
principal point([7])/ I0 218.647 223.612 223.859 229.662 228.645
CoD([5, 10])(pixels) J0 330.477 327.462 327.300 332.216 332.409

radial k1 −0.0019 −1.9e− 03 −4.3e− 03 −0.002 −
distortion k2 .000034 4.2e− 05 3.8e− 05 .00004 −

entrance pupil ǫ1 − − 8.122 − −5.304
movement ǫ2 − 15.178 − 6.474
decentering p1 .000015 − − − −
distortion p2 −.000085 − − − −

image sensor α − 0.105 0.114 −0.424 -0.451

rotation (degrees) β − 0.424 0.439 3.278 3.051

re-projection error 0.077 0.079 0.078 0.076 0.076

Table 2. Std. deviation of calibration parameters shown in Table. 1.

Calibration Method λpx =
λp

sx
λpy =

λp

sy
I0 J0 α β

Heikkila [7] 0.955 0.944 0.457 0.387 − −
GenneryA [5] 0.131 0.127 0.559 0.625 0.029 0.027
GenneryB [5] 0.173 0.170 0.411 0.431 0.022 0.023
Kumar [10] 0.674 0.650 1.042 0.336 0.038 0.230

Ours 1.176 1.180 0.288 0.239 0.031 0.083

ax = 31.4 mm. We use these values in our calibration

method in Eq. 6 and Eq. 7.

36.5 mm

8.2 mm

11.7 mm

12.6 mm

8.2 mm

-27.0 mm

(20.9 mm)

13.4 mm

+

-Distance Sign Convention

H1 H2EnEx

L1 = Front Glass Vertex

L2 = Rear Glass Vertex

En = Entrance Pupil

Ex = Exit Pupil

F = Front Focal Point

F’ = Rear Focal Point

H1 = Front Principal Plane

H2 = Rear Principal Plane

Principal planes

H1En = 6.5 mm

H2Ex = 31.4 mm

an ax

Figure 10. Lens data-sheet values for Cinegon 1.4/8 mm Lens.

Analysis of calibration results: Here, we present the re-

sults of proposed calibration method and compare the pixel

re-projection error with the representative algorithms for

each of the calibration categories mentioned in Sec. 4. The

results for these prior techniques and our current method

(last column) are shown in Table. 1. The different imaging

conditions have been abbreviated in the caption of Table. 1.

The second column of this table corresponds to the im-

plementation of Heikkila [7]. Here, the estimate of the CoD

(218.647, 330.477) corresponds to the principal point on

the image plane where the effective optic axis is normal to

the sensor. In the third and fourth column, we shown the

results obtained from a Category 2 calibration method of

Gennery [5]. Here, we implement two variations of their

method. The method in column labeled as GenneryA uses

a thin-lens imaging model with radial distortion and non-

frontal senor and a fixed entrance pupil location. The fixed

entrance pupil allows us to conduct calibration over the

same number of intrinsic calibration parameters, namely 8,

as in our proposed method. The re-projection error here is

higher than all other methods. The estimate of sensor tilt

of ≈ 0.424 degrees is also far from the known lens specifi-

cations. The method in GenneryB is a full implementation

of [5] where we have thin-lens imaging, moving entrance

pupil, non-frontal sensor and radial distortion parameteri-

zation. The entrance pupil model adds two more calibration

parameters making the number of intrinsic parameters 10.

Thus, the re-projection error of GenneryB is less than Gen-

neryA since we have used more number of parameters, yet

it is more than our method. In the fifth column, we imple-

ment the calibration method of Kumar [10] from Category

3, where pupil-centric imaging model is used along with

non-frontal sensor and radial distortion. Since decentering

is encompassed in non-frontal sensor model, it is not cal-

culated. The re-projection error is 0.076 pixels. Finally,
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the sixth column presents the calibration results from our

method where there is no explicit radial or decentering dis-

tortion modeling. It can be seen that among the calibra-

tion methods with same number of intrinsic parameters, our

method achieves re-projection error of 0.076 pixels which

is equal (approximated to three decimal places) to the cur-

rent state of the art [10]. By obtaining re-projection error

comparable to the state-of-the-art methods, we confirm the

validity of our proposed model. The standard deviation of

a set of intrinsic calibration parameters is also shown in Ta-

ble. 2. The deviation in the estimation of CoD is minimal in

our case. An interesting observation is that the standard de-

viation of sensor tilt angle β for Kumar [10] is 0.230 which

is close to the difference of β estimates of 3.278 degree

and 3.051 degree obtained by them and our current method.

Thus, our estimates of sensor tilt (α, β) have better confi-

dence levels.

7. Image Undistortion

In our paper, an ideal undistorted image is the one which

is formed when all the image rays from the scene pass

through the same entrance pupil location and thus have a

fixed magnification as given by Eq. 3. This entails pre-

dicting the intersection of red dotted line, corresponding to

the image ray from Pw which passes through the ideal en-

trance pupil location En in Fig. 11, with the image sensor

plane. But, the depth of Pw is along the actual distorted

image ray (solid blue line in Fig. 11), is not known. Thus,

the location of ideal undistorted point becomes depth de-

pendent (solid green and blue lines in Fig. 11) and can not

be predicted accurately from our calibration model. But,

empirically we have observed that the variation in the posi-

tion of undistorted image point (corresponding to solid blue

line in Fig. 11) as a function of its depth is very small.

Thus, we propose to use a fixed scene depth for all im-

age points in the scene and then obtain undistorted image

points. Fig. 11(middle) compares the straight line fitting er-

ror for image undistortion using our method for various as-

sumed scene depths and the traditional polynomial method

of [7]. The ground truth depth of checkerboard is in the

range of 70 − 100 mm from the entrance pupil for which

our undistortion error is 0.028 pixels (see the minimum in

the red curve) which is smaller than obtained by traditional

methods which is 0.030 pixels (blue line). For other depth

ranges, the fitting error from our method is higher but up-

per bounded by 0.035 pixels. Fig. 11(bottom) shows a pair

of distorted and corresponding undistorted image using our

method and known approximate depth of 70− 100 mm.

8. Summary

In summary, Hecht [6] has shown that for thin lenses,

the location of aperture stop dictates the amount by which

an ideal single image ray distorts. But in a real image,

due to thick lens, we observe that different image rays get
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Figure 11. (top)Depth dependent undistortion (best viewed in

color). (middle)Straight line fitting error using proposed (assum-

ing different depths) vs traditional [7] undistortion. (bottom) Dis-

torted image (left) is undistorted (right) using proposed method

and assuming a depth of 75 mm.

distorted by different amounts. This would imply multi-

ple apertures stop locations dictating the distortion of each

image ray. This, we know is physically impossible as aper-

ture stop is fixed in an imaging system. But, now if we

assume that thick lenses follow pupil-centric image forma-

tion, then the location of entrance pupil, which is the image

of aperture stop, dictates the amount of distortion. And, it

has been shown in fish-eye literature [5], that the entrance

pupil location can vary as a function of incidence image

ray angle and is not fixed. This allows us to optically ex-

plain the occurrence of varying amounts of radial distortion

due to varying entrance pupil location. We then propose a

new calibration model considers pupil-centric imaging with

moving entrance pupil and a non-frontal sensor. The mov-

ing entrance pupil models radial distortion and non-frontal

sensor models decentering distortion.
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