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Abstract

Recently, exemplar based approaches [13, 22] have

been successfully applied for face detection in the wild.

Contrary to traditional approaches that model face vari-

ations from a large and diverse set of training examples,

exemplar-based approaches use a collection of discrimina-

tively trained exemplars for detection. In this paradigm,

each exemplar casts a vote using retrieval framework and

generalized Hough voting, to locate the faces in the target

image. The advantage of this approach is that by having

a large database that covers all possible variations, faces

in challenging conditions can be detected without having to

learn explicit models for different variations.

Current schemes, however, make an assumption of in-

dependence between the visual words, ignoring their rela-

tions in the process. They also ignore the spatial consis-

tency of the visual words. Consequently, every exemplar

word contributes equally during voting regardless of its lo-

cation. In this paper, we propose a novel approach that

incorporates higher order information in the voting pro-

cess. We discover visual phrases that contain semantically

related visual words and exploit them for detection along

with the visual words. For spatial consistency, we estimate

the spatial distribution of visual words and phrases from

the entire database and then weigh their occurrence in ex-

emplars. This ensures that a visual word or a phrase in

an exemplar makes a major contribution only if it occurs

at its semantic location, thereby suppressing the noise sig-

nificantly. We perform extensive experiments on standard

FDDB, AFW and G-album datasets and show significant

improvement over previous exemplar approaches.

1. Introduction

Face detection is one of the classical computer vision

problems that finds extensive applications in a variety of

commercial systems. Despite years of research, it still re-

mains a challenging and unsolved problem. Though the cur-

rent algorithms have matured for near-frontal faces, they are

yet to achieve a satisfactory performance for unconstrained

face images, popularly known as in the wild faces.
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Figure 1. Ensemble of Exemplars for Face detection: A large

database of diverse exemplars is collected, and indexed using a

BoW representation. During testing, each exemplar casts a vote

on the test image at multiple scales. The votes from different ex-

emplars are then aggregated to detect the faces.

Most of the popular algorithms for detecting objects and

faces are either based on cascaded AdaBoost classifiers [28]

or deformable part models (DPM) [5]. The Viola and Jones

cascade [28] of discriminatively trained AdaBoost classi-

fiers is extremely efficient and is very effective for frontal

faces. DPM based approaches [5, 18, 30, 37], on the other

hand, handle intra-class variations by learning the individ-

ual parts of an object along with their deformations. Both

approaches aim to learn face variations from a large set

of training examples seeking good generalization perfor-

mance. However, it is extremely difficult to capture all pos-

sible object variations in a compact model, whether holistic

or part based.

Contrary to the above approaches, recently proposed ex-

emplar based detectors [13, 22] do not explicitly model the

face variations. Instead, it follows Bag-of-Words (BOW)

retrieval technique and Hough voting [6, 12] to detect the

faces efficiently. In this paradigm, a large database of ex-

emplars that cover significant face variations are collected.

Local features (such as SIFT) are extracted, quantized and

indexed using traditional BOW technique. For detection,

each exemplar casts a vote on the given target image at mul-

tiple scales after which the votes are aggregated (Figure 1).

Since each exemplar is specific to particular variation, it is

possible to detect faces in challenging conditions using a

sufficiently large database with diverse exemplars. This ap-
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proach which avoids exhaustive sliding-window search is

efficient, scalable, easily parallelizable and offers flexibility

to add more exemplars without additional training required.

Current exemplar approaches treat each exemplar as a

collection of independent visual words that capture facial

features from different regions. It is however apparent that

many visual features co-occur in faces. For e.g., stable vi-

sual features that describe eyes and nose occur together with

greater probability. Thus, the current exemplar schemes fail

to capture such semantic relations among visual features,

unlike model-based approaches, which are designed to cap-

ture higher order spatial relations. We propose to incorpo-

rate such higher order information using “visual phrases”

in the exemplar framework. Visual phrase is a group of

highly correlated and stable visual words that co-occur in

faces frequently. We discover such visual phrases from an

exemplar database. As it is computationally expensive to

model all possible dependencies for a large vocabulary, we

employ a popular association rule mining technique [2] and

obtain large candidate visual phrases that occur frequently.

We then retain only those phrases that are suited for detec-

tion through a discriminative training process.

We also introduce a domain-specific similarity func-

tion that considers the spatial consistency of visual features

along with their discriminative ability. This is in contrast

to non-discriminative inverse document frequency (IDF)

based function used in current schemes which ignores the

spatial information. Our approach is based on the observa-

tion that a stable visual word or a phrase appears at consis-

tent locations and in consistent exemplars. We leverage the

availability of a large database to estimate the spatial distri-

bution of words and phrases and weigh their individual oc-

currences in each exemplar based on this distribution. This

ensures that visual words and phrases in exemplars cast a

strong vote only if they occur at their globally consistent lo-

cations. This suppresses the contribution of noisy features

introduced due to imperfect feature extraction and quanti-

zation processes.

The contributions of this paper are as follows:

• We propose an approach to discover and incorporate

visual phrases that capture higher order information

into the voting framework.

• We introduce spatial consistency of visual words and

phrases that weighs their occurrence in exemplars ac-

cording to their location. This also helps in identifying

and removing noisy features in the exemplars which

reduces the memory requirements.

• We achieve near state-of-the-art results on the chal-

lenging FDDB [9], AFW [37] and G-album [7]

datasets, and achieve significant improvements over

baseline exemplar [22] and Boosted exemplar [13] ap-

proaches, respectively.

2. Related Work

The models proposed for face detection fall into three

broad categories: Global discriminative models, Part based

models, and Exemplar based models. The first category

is the simplest and most efficient of which the Viola-Jones

(VJ) face detector [28] is the most popular one. Zhang and

Zhang [34] presents a detailed survey of the variants of VJ

along with several features. Due of its speed and openly

available implementations, it has been extensively used in

commercial applications and consumer devices. However,

the performance of the vanilla VJ detector degrades signifi-

cantly for challenging in the wild faces. SURF cascade de-

tector [15], and SquaresChnFeatures [18, 32] are currently

the best performing VJ variants. These methods use much

more richer and informative SURF and integral channel

features to achieve superior performance.

Deformable part model (DPM) based techniques [18,

30, 37] which are very effective object detectors, have

enjoyed similar success for face detection in the recent

years. Mathias et al. [18] have shown recently that a prop-

erly trained vanilla DPM using a large database can achieve

state-of-the-art results on various face benchmarks. Both

cascaded detectors and part-based models distill compact

models of faces from large training database that captures

most common variations in pose, expression, lighting, etc.

Exemplar based techniques, on the other hand, do not

learn such global models but instead allow each exemplar

to contribute for the task at hand. Exemplar-SVM [17] pro-

posed for object detection learns a linear model for each

positive exemplar with large pool of negative examples and

evaluates each model during testing. Similarly, per-class ex-

emplar detectors provide object cues in Image Parsing [26].

Exemplar based approaches [13, 16, 22] were applied re-

cently for face detection. Ma et al. [16] incorporates ideas

from DPM into the exemplar approach, in which parts from

different exemplars are combined to obtain an aggregated

similarity between an input image and the compound ex-

emplar. The approach offers flexibility to face variations,

occlusions and requires minimal training data. The ap-

proaches in [13, 22] combine retrieval and Hough voting

schemes [6, 12] for detection where each exemplar votes

for presence of faces in test image. While a large database

is used in [22], a much compact database is selected in

[13] through a discriminative boosting framework. Exem-

plar based approaches have the advantage of being easier

to adapt compared to other models, even though the detec-

tion performance has been slightly below the state-of-the

art. We show that it is possible to improve this using the

spatial information of visual words and their dependencies.

In our work, we have started with the original algorithm

in [22] and avoided [13] as it involves manual selection of

thresholds for domain partitioned classifiers for each exem-

plar. We make several improvements over [22]. We incor-
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porate visual word relations through visual phrases along

with spatial weighting of features into the voting frame-

work. Our similarity function is much more discriminative

compared to IDF-based scoring used in [13, 22]. As we

show in experiments, this approach results in a significant

performance improvement over [13, 22].

Some of the works in the area of content-based retrieval

have used similar insights. In [3, 10, 24], visual word de-

pendencies in a database with multiple objects and scenes

are discovered. While such dependencies are suppressed

for retrieval tasks [3, 10, 24], we exploit them as positive

cues for detection. In [29], the contextual weighting of the

features is proposed but for sparse local features. The work

of Yuan et al. [33] is closely related to ours. They demon-

strate an approach to discover meaningful visual phrase lex-

icons with spatially consistent visual words given a large

database. Visual phrases are also applied in image retrieval

[35, 36], object recognition [35] and detection [20] tasks.

3. Proposed Approach

3.1. Exemplar Framework for Face Detection

In the exemplar framework [13, 22], local features such

as dense-SIFT are extracted from a large exemplar database

and a k-means based vocabulary is constructed followed by

feature quantization. Term frequencies (TF) and inverse

document frequencies (IDF) are calculated and inverted

files are created similar to BOW retrieval scheme [25].

During testing, all the exemplars collectively participate

in the Hough-based voting [6, 12] process that uses the spa-

tial locations of features to locate the faces in a given image.

Each exemplar generates a voting map (at multiple scales),

where each location in the map indicates the similarity score

between the exemplar and the image sub-region at that lo-

cation (Figure 1). The similarity measure between an ex-

emplar ei and the rectangular region centered at location p

of the test image x is given as [21, 22]:

Spp, eiq “
ÿ

k

ÿ

fPRxppq,gPei
wpfq“wpgq“k

||TpLpfqq´Lpgq||ăǫ

F pwpgq, Lpgqq
tfeipkq ¨ tfxpkq , (1)

where x is the test image, Rxppq is the sub-image region
of x centered at p. f and g are the local features and Lpfq
and Lpgq are their corresponding locations from x and ei,

respectively. wpfq and wpgq are the quantized visual words

of features f and g respectively. wpfq “ wpgq “ k in-

dicates that only the matched visual words are considered

for voting. The spatial constraint ||TpLpfqq ´ Lpgq|| ă ǫ

further ensures that matched features should be closer un-

der some unknown transformation T. F pwpgq, Lpgqq is the

weightage given to each matched feature pair quantized to

visual word k. To handle burstiness, weights are divided by
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Figure 2. Motivating reasons: Consider 3 positive and negative

examples. Current schemes which ignore spatial location assign

an high IDF weight for words 1, 3 and 4. However, word 4 in third

positive example is occurring at inconsistent location possibly due

to noise which should be given slightly less weightage. Also, word

2 appears in both positive and negative examples and should be

given less weightage. Word 4 in positive example 3 do not occur

at its globally consistent location, hence should contribute less.

tfeipkq and tfxpkq, which denote the TF of the visual word

k in the exemplar and test image, respectively [21].

Suppose that we are interested in detecting faces of size

Nx ˆ Nx in the test image1. The location p where the vote

is cast is calculated as follows.

p “ Lpfq ` Nx

Nei

pCei ´ Lpgqq, (2)

where Cei and Nei are the center and size of the exemplar
ei, respectively. The voting maps are then subtracted with

an exemplar specific threshold and aggregated to obtain the

final voting map [22]:

Spxq “
ÿ

i:sipxqąρi

psipxq ´ ρiq, (3)

where sipxq is the similarity score between x and ei, and
ρi is the discriminatively trained threshold for exemplar ei
obtained during training.

3.2. Contextual Weighting of Features

Current exemplar detectors compute the similarity scores

between the exemplar and a target image sub-region as [22],

F pwpgq “ k, Lpgqq “ idf2pkq, (4)

where idfpkq is the IDF of the visual word k. The voting

scheme with above similarity score has two issues. First,

the use of IDF computed from only the positive exemplars

makes it less discriminative for detection tasks. Second,

the approach assumes that exemplar words are noise-free

and considers all the visual words equally important when

computing the similarity score. However, a noisy feature

that is wrongly assigned to a visual word with high IDF

may significantly affect the voting process.

Figure 2 illustrates these issues with a simple example

with 3 positive and 3 negative exemplars. Current exemplar

approaches consider only positive exemplars and will give a

high IDF to vocabulary elements 1, 3 and 4. This will also

1with an aspect ratio of 1:1 for exemplars and target faces.
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(a)

(b)

Figure 3. Spatial Context of visual words: (a) and (b) shows the location of two visual words in different images. Notice how the visual

word in (a) is highly localized with consistent locations while the word in (b) appears at random locations (left). The global distributions

of each visual word over the entire database (middle) is used to weight their occurrences in individual exemplars. Its overlay on the mean

exemplar face (right), shows strong localization for stable words. Unstable words occurs at diverse locations and are down weighted.

assign a high IDF to the vocabulary element 2, even though

it occurs with similar probability in both positive and neg-

ative images. Another issue is that, a highly discriminative

word occurring at an incorrect location in an exemplar may

cast a wrong vote. In Figure 2, the visual word 4 is discrim-

inative as it occurs in consistent locations in positive exem-

plars 1 and 2. However, a feature in exemplar 3 is wrongly

assigned to visual word 4 due to noise, and if we ignore its

location, may contribute incorrectly during voting.

Motivated by these observations, we address the follow-

ing questions: How can we down-weight less discriminative

vocabulary elements? and How can we discover noisy fea-

tures in exemplars and down-weight their contribution dur-

ing voting? Our modification is based on the argument that

a visual word that is stable and discriminative tends to occur

consistently in similar locations and in similar exemplars.

Similarly, a visual word that is noisy or less discriminative

with very high probability occurs at random locations. This

is illustrated in Figure 3, where a stable visual word that

describes the appearance of nose in a particular view (here

frontal) appears consistently at the same location in other

similar exemplars, or in other words, it is highly localized.

We estimate the distribution of each visual word from the

entire database and use it to weight their occurrence in ex-

emplars. Based on this, visual words appearing at their

globally consistent location get more weightage while those

appearing at random locations get less weightage.

Let, wpLpgq, eiq denote the visual word corresponding

to feature g at location Lpgq “ pL①pgq, L②pgqq in the ex-

emplar ei. We estimate the distribution of each vocabulary

element k from the entire exemplar database as,

Pepk|p①,②qq “ 1

Ne

ÿ

ei

IpwpLpgq, eiq ““ kq, (5)

where Ne denote total number of exemplars, p①,②q denote

the location and Ip¨q is an indicator function whose value is

1 if the condition is satisfied, otherwise 0. In the practical

cases, however, there will be some misalignments between

the exemplars. To handle the misalignments, we convolve

the distribution with a 8ˆ8 Gaussian filter H (expp´d{σ2q
and σ2 “ 2.5) to obtain the spatial weightage for each vo-

cabulary element as,

W pp①,②q, kq “ Pepk|p①,②qq ˚ H (6)

We show such weightage obtained for a stable and non-

stable word in Figure 3. It also suggests to suppress the un-

stable words which would otherwise affect the voting pro-

cess. Similarly, we estimate distribution of each vocabulary

element on a large corpus of negative images ni as

Pnpk|p①,②qq “ 1

Nn

ÿ

ni

IpwpLpgq, niq ““ kq, (7)

where Nn denote the total number of negative images. We

then compute the global discriminative score D for each

visual word k as,

Dpkq “ max
p①,②q

Pepk|p①,②qq
Pnpk|p①,②qq (8)

The above score Dp¨q is discriminative and also considers

the spatial location of features, hence is suited for detection.

Finally, our scoring function for every matched feature pair

between exemplar and target sub-region is given as,

F pwpgq “ k, Lpgqq “ W pLpgq, kq ¨ D2pkq, (9)

where W p¨q denote the context-aware weightage given to

exemplar feature and Dp¨q is the discriminative score.

4. Visual Phrases for Detection

Due to the independent assumption in previous exemplar

approaches, each visual word independently votes for the

target image. However, for faces, it is intuitively obvious
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Figure 4. Visual Phrases for Faces: The top two rows (left and right) shows 4 different visual phrases that capture relation among two

visual words. Notice how the stable visual phrases capture semantic relation among different visual features. Visual phrases are highly

localized and appear at similar locations in similar exemplars. Bottom row shows few other visual phrases discovered from the database.

that many visual words are highly correlated and co-occur

together. The current schemes fail to capture such semantic

relations among visual features, unlike in model-based ap-

proaches which capture much complex relations. Though

the terms in the denominator of Eqn 1. handles burstiness,

it does not consider the relation among the visual words.

We propose to incorporate higher order information us-

ing so called visual phrases in the exemplar framework. A

visual phrase is a group of spatially consistent and semanti-

cally related visual words that co-occur in faces. We lever-

age the presence of large database to discover such visual

phrases. Given a large vocabulary, it is however, compu-

tationally expensive to find all such dependencies. To this

end, we resort to a popular data mining technique, associ-

ation rule mining [2] to obtain the candidate visual phrases

that occur frequently in the database. We then prune the

candidate set and retain only those visual phrases that are

well suited for detection.

It is worth to note that, such relations are earlier ex-

ploited in computer vision for retrieval tasks [3, 10, 24].

In these tasks, images usually contain multiple objects and

scenes and a similarity function with independence assump-

tion tends to over-weight the regions containing highly cor-

related words [3, 24]. Therefore such correlated words are

down-weighted for better retrieval. However, we exploit

such relations among visual words for detection as they pro-

vide strong cues about the existence of a face region.

We now formally discuss the proposed approach to dis-

cover visual phrases. Let V “ tv1, v2, . . . , vnu denote the

vocabulary and ei be the exemplar containing subset of vo-

cabulary elements i.e. ei Ď V . An association rule [2] is an

implication of the form X ùñ Y , where X and Y are the

itemsets (visual phrases) that satisfy X Ă V , Y Ă V and

X X Y “ H. The implication rule basically checks with

what proportion the itemsets X and Y occur together in an

image ei. The result is a list of all possible combination of

words with a support2 greater than user-specified threshold.

2Support is the number of transactions (images) in the database that

contain the itemset (phrase) or simply the frequency count of a phrase.

The candidate visual phrase set obtained from the above

algorithm on a large database is usually huge containing

many redundant phrases. It may also be possible that many

of the visual words occur together by chance. Also, the min-

ing technique does not consider the spatial location of words

due to which many of the candidate visual phrases are not

discriminative for detection task. Due to these reasons, we

need to prune the candidate phrases obtained from the rule

mining and select only those discriminative phrases that are

suitable for detection. We achieve this using the concept of

spatial consistency introduced earlier for visual words. We

consider the visual phrase as stable and discriminative if all

the words associated with it appear in consistent locations

in the exemplars, and occur rarely in negative images.

Let, Ω “ tηi | @i, ηi Ă V u be the list of candidate visual

phrases discovered from association rule mining and |ηi| de-

note the number of words associated with the visual phrase

ηi. We assign a score for each candidate visual phrase ηi as,

Qpηiq “ log
´

1 ` Ψ`

1 ` Ψ´

¯

, (10)

where

Ψ
` “ max

ÿ

@k,kPηi

@px,yq

Pepk|px, yqq ˚ H

Ψ
´ “ max

ÿ

@k,kPηi

@px,yq

Pnpk|px, yqq ˚ H

The terms Ψ` and Ψ´ measure the spatial consistency

of the words that constitute visual phrase in positive and

negative images, respectively. The score Q in Eqn 10 will

be large for those visual phrases that capture the relation

of stable visual words, and less for non-discriminative and

noisy phrases that occur at random locations. We finally re-

tain the visual phrases whose Q score exceeds a threshold

i.e. ω “ tηi | Qpηiq ą ρu (see Section 6.1). We show

few visual phrases discovered from the exemplar database

in Fig 4. Notice how the visual phrases capture the neigh-

bourhood (spatial and scale) relations due to multi-scale
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dense feature extraction (e.g., bottom row 5th and 8th im-

age). Once the phrases are discovered, we index their oc-

currences in exemplars and incorporate them into the vot-

ing framework. The spatial location Lp¨q and discrimina-

tive score Dp¨q of the selected visual phrases (ηi P ω) are

obtained using the mean location of visual words and sum

of their individual discriminative scores, respectively.

Lpηiq “ 1

|ηi|
ÿ

wpgq““k
@k,kPηi

Lpgq (11)

Dpηiq “
ÿ

@k,kPηi

Dpkq (12)

5. Time and Memory Complexity

When compared with baseline exemplars, the proposed

approach requires additional memory for indexing the vi-

sual phrases and the contextual weights of visual words and

phrases. The average number of visual phrases discovered

per exemplar was around 8. In the case of a database of

15k images, this results in an additional memory of 1MB

to index the visual phrases and their locations following the

representation in [21]. The contextual weights are quan-

tized and stored using 1 byte integer which requires addi-

tional 10MB of memory for 80 ˆ 80 exemplar with 700

visual words and phrases on an average. One could reduce

the memory footprint by removing those visual features and

phrases with very low contextual weights as they make lim-

ited contribution in the voting process. As we demonstrate

later, it is possible to remove upto 30% of features with

a slight drop in performance. Compared to previous ap-

proaches, the only additional time required is to find the

dependencies in the target image. Since the target image is

indexed and TFs are computed already for voting process,

dependencies can be found much faster. This usually takes

less than 2 seconds in our unoptimized MATLAB code.

Also, similar to [21], we can achieve a further speedup by

ignoring the words with high TFs, as their contributions are

limited according to Eqn 1. Our MATLAB implementa-

tion3 of the entire detection pipeline without tiling [13] usu-

ally takes 10 ´ 12 secs for 1280 ˆ 1280 image most of

which is spent in feature extraction and quantization. As

reported in [22], it is possible to achieve near real-time ef-

ficiency with custom implementation of these steps. Our

future work will be focused to develop a C/C++ implemen-

tation to achieve near real-time performance.

6. Experiments and Results

We implemented the exemplar detector [22] upon which

our improvements are made. The performance of our base-

line exemplar closely matches with [22] as shown in Fig 11.

3Code is available at http://cvit.iiit.ac.in/projects/exemplar/

Figure 5. Few images from our database built from AFLW (top)

and IMFDB (bottom).

6.1. Implementation details

Exemplars: We collected the exemplar images from

AFLW [11] and IMFDB [23] databases. AFLW contains

around 25k images and IMFDB contains 34512 images.

We randomly sample 10k images from AFLW and 5k im-

ages from IMFDB to create our 15k exemplar database. All

the exemplars are resized to a fixed size of 80ˆ80. Few ex-

emplars from our database are shown in Fig 5.

Dense Features and Vocabulary: We densely extract

patches of size 24 ˆ 24 with a stride of 3 pixels and 128D

root-SIFT representation is computed. We extract the fea-

tures and their locations at 12 scales by resizing the orig-

inal image with a scaling factor of
?
2. We construct the

50k-vocabulary using fast approximate nearest neighbour

(ANN) k-means [19]. We used the publicly available soft-

ware VLFEAT [27] for both these tasks.

Visual Phrases: We use the publicly available apriori

software [1] to obtain the initial candidate phrases with a

minimum support of 100. This resulted in 5837 candidate

visual phrases containing 4880 2-visual word phrases, 736

3-visual word phrases and 221 4-visual word phrases. We

used 50k 80 ˆ 80 negative patches [4] with a threshold of

ρ “ 0.5 for discriminative training which finally resulted

in 1282 2-visual phrases. Few visual phrases are shown in

Fig 4. We noticed that 3 and 4- word phrases were noisy

and inconsistent (Qp¨q ă ρ) and hence are not considered.

Voting and Thresholds: We considered a voting map

of size 64 ˆ 64 similar to [13, 22] and obtained the cor-

responding grid size using smallest image dimension. To

avoid quantization errors, maps are smoothened using a

5 ˆ 5 Gaussian filter expp´d{σ2q and σ2 “ 2.5. The gat-

ing threshold for each exemplar is obtained by selecting the

maximum score on 1000 negatives images [4] when voted

using the same exemplar [22].

Detection: For better performance, test images are up-

scaled to have a size of atleast 1280 [22]. For memory ef-

ficiency, we follow tile-based detection and divide the up-

scaled image into tiles of size 640ˆ640 with an overlapping

stride of 140 pixels [13]. The detection operation on each

tile is performed at 3 different scales p1, 0.5, 0.3q. At each

scale, faces of 15 sizes with a base size of 80ˆ 80 and scal-

ing factor of 21{4 are detected. We vote only using top 3000

similar exemplars retrieved using BOW model to speed up

the processing. A standard greedy non-maxima suppression

(NMS) with an overlap threshold of 0.25 is applied to sup-
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(a) (b) (c)

Figure 6. Annotation mis-

match: Notice the dif-

ference annotation strategies

across (a) AFLW [11] (b)

AFW [37] and (c) FDDB [9].
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Figure 10. Merits of contex-

tual weighting. It is possible

to remove upto 30% of fea-

tures without a significant per-

formance change.

(a) (b) (c)

Figure 13. Failure cases. Due to bounding box misalignments (a)

detected faces in green are considered false positives. (b) and (c)

lack informative features due to extreme pose and low resolution.

press overlapping detections.

Bounding box adjustments: Different face detection

benchmarks have followed different annotation strategies

(see Fig 6). As in previous works [13, 18, 32] we also mod-

ify the detected face regions to better match the location and

scale of the ground truth bounding boxes. For example, for

the FDDB dataset [9], we convert a detected bounding box

of size pw, hq to vertical ellipse with parameters ( 0.9w?
2
, h?

2
).

6.2. Datasets

We show our results on popular face detection bench-

marks - FDDB [9] and AFW [37] and G-album [7]. All

these datasets offer challenging scenarios for face detec-

tion. FDDB [9] contains a total of 5171 faces in 2845

images collected mainly from Yahoo news website. The

dataset contains very low resolution images (smaller than

30 ˆ 30) that truly tests the capability of algorithms. We

use the ROC evaluation software that comes with FDDB

database as recommended by the dataset creators and com-

monly followed by researchers. AFW [37] contains 468

faces present in 205 images. The database is characterized

by cluttered background with pose, aging, and occlusion

variations. G-album [7] dataset contains 589 family pho-

tos with 931 faces. We compare our results on AFW and

G-album datasets in terms of precision-recall (PR).

6.3. Results

We compare the performance of the proposed approach

with the previous exemplar schemes [13, 22] in Fig 8. We

consistently outperform previous schemes on both FDDB

and AFW datasets. Following FDDB protocol, we com-

pare our results with all the previously published results in

Fig 9. From the discrete curve in Fig 9(a), it is clear that

our proposed approach, not only improves over exemplar

schemes but also outperforms most of the previous non-

exemplar schemes [8, 14, 15, 31, 37], except [18]. The con-

tributions of contextual weighting and visual phrases to the

performance improvement is given in Fig 11. While context

helps to suppress noisy inconsistent features, visual phrases

complement it with its ability to upweight the co-occurrence

of visual words in faces. Thus a combination of the two ap-

proaches indeed helps as can be observed from Fig 11. We

also show the continuous curve in Fig 9(b) which measures

the bounding box overlap with ground truth. Unlike [18, 30]

which fits oriented bounding boxes, we fit a vertical ellipse

which results in a slightly lower score.

For AFW, we used the evaluation software [18] to

compensate for bounding box misalignments. Fig 12(a)

shows the comparison of our approach with several aca-

demic (TSM [37], DPM, HeadHunter and SquaresChnFtrs

[18] and Structured models [31]) and commercial solutions

(face.com, Face++, Google Picasa). Our approach achieves

very high performance reducing the gap between DPM and

exemplar based approaches. The common reasons for fail-

ure are bounding box misalignment, extreme pose and low

resolution. For images with extreme poses and low reso-

lutions, lack of informative features around discriminative

regions such as eye and nose causes exemplars not to match

unlike holistic matching methods (see Fig. 13). Finally, we

show the performance of our approach on G-album dataset.

For this dataset, we compare with baseline exemplar [22]

and DPM [18] using their trained model. Our approach not

only improves upon exemplar method but matches the per-

formance of DPM on this dataset as shown in Fig 12(b). As

discussed earlier, it is possible to save memory by removing

less consistent features using contextual weights. As shown

in Fig 10 for the AFW dataset, it is possible to remove up to

30% of features without a significant drop in performance.

7. Conclusion

In this paper, we introduce visual phrases to capture the

semantic relations among the visual words and propose a

method to incorporate them into exemplar framework. We

estimate the distribution of visual words and phrases from

the database and then weigh their occurrences in exemplars

based on their spatial consistency. Our domain-specific sim-

ilarity score considers both spatial consistency and discrim-

inative ability of visual words and phrases, and hence is

suited for detection tasks. Finally, we show that incorporat-

ing visual phrases and contextual weights can significantly

improve the performance of exemplar detectors on various

face detection benchmarks.
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Figure 7. Qualitative results of our detector over FDDB (top), AFW (bottom - first three) and G-album (bottom - last two).
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Figure 8. Comparison with previous exemplar schemes. We outperform the baseline Exemplar [22] and Boosted Exemplar [13] on both

FDDB ((a) and (b)) and AFW (c) datasets by a large margin.
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Figure 9. Comparison with other approaches on FDDB dataset. We achieve an average precision of 86.4% with a negligible difference

compared to HeadHunter [18]. Our performance improves over the baseline exemplar approach [22] by almost 8%.
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Figure 11. Role of contextual weights (CW) and visual

phrases (VP) in improving the performance of exem-

plar detectors on FDDB dataset.
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Figure 12. Performance comparisons on AFW and G-album datasets. While

our approach achieves superior performance on AFW compared to many aca-

demic and commercial approaches closely matching HeadHunter [18], the per-

formance matches DPM [18] on G-album dataset.
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