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Abstract

In recent years, region proposals have replaced sliding

windows in support of object recognition, offering more dis-

criminating shape and appearance information through im-

proved localization. One powerful approach for generat-

ing region proposals is based on minimizing parametric en-

ergy functions with parametric maxflow. In this paper, we

introduce Parametric Min-Loss (PML), a novel structured

learning framework for parametric energy functions. While

PML is generally applicable to different domains, we use

it in the context of region proposals to learn to combine a

set of mid-level grouping cues to yield a small set of object

region proposals with high recall. Our learning framework

accounts for multiple diverse outputs, and is complemented

by diversification seeds based on image location and color.

This approach casts perceptual grouping and cue combina-

tion in a novel structured learning framework which yields

baseline improvements on VOC 2012 and COCO 2014.

1. Introduction

For many years, the recognition community focused on

the problem of object detection, in which a strong object

prior was “tested” at all possible locations using the brute-

force approach of sliding windows. Bottom-up segmenta-

tion, e.g. [26, 9, 31], was clearly unnecessary in the pres-

ence of a strong object prior, and while the complexity of

this framework grew linearly with the number of detectors,

parallel processing allowed a significant number of classes

to be detected before a linear search became intractable. At

that point, the concept of an “objectness” detector was in-

troduced [2], resurrecting interest in bottom-up saliency and

attention. By testing which of the window locations con-

tained salient object information, the linear search of detec-

tors could be restricted to a small subset of windows. While

an objectness detector could arguably be considered a weak

form of perceptual grouping (with the grouping provided by

the sliding window), bottom-up segmentation still remained

in the shadows.
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Figure 1. Our approach takes an input image, partitions it into

superpixels, and groups superpixels into region proposals using a

novel structured learning framework for parametric energy func-

tions, called Parametric Min-Loss (PML). The parametric energy

function combines mid-level cues with weights that are trained to

generate multiple region proposals. Finally, we diversify the en-

ergy function to generate a diverse set of region proposals.

Only when the number of categories grew to thousands

or more did the community advance the need for more dis-

criminative features such as shape and appearance which,

in turn, require bottom-up region segmentation. The ex-

traction of such “region proposals”, e.g. [29, 5], meant that

brute-force sliding window searches, numbering in the tens

or hundreds of thousands, could be replaced by the extrac-

tion of hundreds or thousands of region proposals. Each

proposal offers (boundary) shape, appearance, and scale in-

formation which, for a correct proposal, can be exploited to

recognize an object (or part of an object) or select a small

number of object detectors that can be applied to the region.

As long as the region proposals exhibit good recall, there’s

a chance that the object(s) will be recognized.

The return to bottom-up region segmentation is an invi-

tation to integrate the many mid-level cues that ultimately

play a role in such perceptual grouping, including proxim-

ity, symmetry closure, similarity, and continuity, to name a

few. But even with computational models of such cues, how

should they be combined and what is their relative impor-

tance? As shown in Figure 1, we explore these issues within
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the framework of graphical models, which encode contex-

tual relationships such as grouping cues between adjacent

image regions. Computationally, graphical models can be

solved exactly in a tractable manner, e.g. by minimizing

a pairwise submodular energy function of binary variables

with a maxflow algorithm. They can be discriminatively

trained to predict structured outputs, offering a consistent

learning and inference framework for bottom-up segmenta-

tion [24, 27].

Until recently, discriminative graphical models for seg-

mentation have been restricted to single-output predictions,

and lacked a framework for learning to predict diverse mul-

tiple outputs, e.g. as introduced in Multiple Choice Learning

(MCL) [13]. Multiple-output models are especially impor-

tant for region proposals due to the principle of least com-

mitment needed for bottom-up grouping. One such tool that

has emerged in vision is parametric maxflow [17], which

is used to minimize an energy function Eλ(y) for multiple

values of parameter λ, generating multiple solutions at a

time. Parametric maxflow was applied to proposing object

regions in CPMC [5] and in subsequent variants [15, 23].

Despite frequent use in region proposal generation, how-

ever, parametric energy functions are, as a rule, not trained

to predict multiple outputs, but rather trained to predict a

single output. To the best of our knowledge, this paper is

the first to bridge the gap between learning and inference

for parametric maxflow. Our formulation is inspired by

MCL, which models multiple-output learning with a loss

function that evaluates multiple outputs against a correct

output. Our model, however, differs from MCL in 1) hav-

ing a single parametric energy function, and in 2) automat-

ically adapting the number of output solutions to the input

image. Despite these significant differences, we find that

MCL’s block-coordinate descent strategy applies to para-

metric maxflow and yields a solution that decomposes into

simple alternating steps.

In summary, we introduce Parametric Min-Loss (PML),

a novel model and algorithm for structured multiple-output

learning using parametric maxflow. We demonstrate its use

for learning to combine a set of mid-level grouping cues to

yield a set of region proposals with high recall. Besides hav-

ing applications to perceptual grouping, the model bridges

the disparity between learning and inference for parametric

energy functions and can be applied to any domain that uses

parametric maxflow. While learning accounts for diverse

multiple outputs, we include a complementary diversifica-

tion step that allows the proposals to adapt to different con-

ditions. With a large-scale experimental validation, we cast

mid-level cue combination in a structured learning environ-

ment, representing an exciting new direction for perceptual

grouping.

2. Related work

Perceptual grouping has often been formulated as an en-

ergy minimization problem, e.g. [12, 30, 32, 7, 34, 16, 26],

yielding a single region or (possibly) closed contour, or a

partition into regions. In the more recent context of gen-

erating region proposals, a parametric energy minimization

problem is often formulated (e.g. CPMC [5]) in which the

energy is parameterized by λ and minimized for multiple

values of λ using parametric maxflow, yielding multiple so-

lutions. Such an approach is an extension of energy mini-

mization from predicting a single output to predicting multi-

ple outputs in support of the principle of least commitment,

and has been refined by subsequent variants [15, 23]. How-

ever, the combination of cues is typically specified manually

in the energy or not trained jointly in the energy.

Moreover, a gap has emerged between learning and in-

ference for parametric maxflow because prediction has been

extended to multiple outputs while learning has not. This

disparity exists in general for multiple-output models, an

example of which is the M-Best MAP approach for gener-

ating multiple hypotheses [10]. Recently, Multiple Choice

Learning (MCL) [13] addressed this gap in a tractable way

using an M -tuple of independent structured predictors that

predicts M outputs. The model is efficient and minimizes

the loss of only the most accurate prediction in the set of

outputs. Subsequent improvements included an explicit cri-

terion to encourage diversity among the predictors [14],

however the model remains fundamentally different from

parametric maxflow, which solves a single parametric en-

ergy function that accounts for multiple outputs, and whose

number of outputs is adaptive and does not need to be pre-

specified. Our method for parametric maxflow, however, is

similar to MCL in using a block-coordinate descent strategy

in a large-margin formulation to close the train-test gap.

Approaches for region proposals typically consist of a

generation stage for hypothesizing proposals, followed by a

ranking stage that attempts to order them by “objectness”.

A diversity of approaches exist in which many generate

proposals in the form of bounding boxes, e.g. Objectness

[2] and Edge Boxes [35]. In such methods, a sliding win-

dow suffices as no explicit grouping is required, and they

are suitable for box-based detectors even though propos-

als do not explicitly capture the underlying shape of the

objects. Selective Search [29] efficiently generates region-

based proposals based on greedily merging superpixels and

was subsequently improved with trained affinity functions

[33]. The approach is similar to ours in using region-based

similarity cues, however the agglomerative grouping proce-

dure is brute force.

In approaches for region-based proposals, such as GOP

[18], RIGOR [15], MCG [4], the principle of least com-

mitment is typically not built into learning. Only very re-

cently was such a method proposed [19] that minimized the
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loss of the most accurate region proposal, with efficient run-

time at test time and achieving competitive results. In our

work, we minimize the same loss function, however one of

our key aims is to develop a graphical model that is uni-

fied across learning and inference. Another recent work [6]

also uses learning to combine several cues for generating

object proposals in 3D, but it does not use parametric en-

ergies. Earlier methods gave a significant role to learning

in the ranking stage, e.g. [4, 8, 23]. CPMC [5] uses para-

metric maxflow to generate proposals and is most similar to

ours in spirit, however we perform grouping at superpixel-

level rather than pixel-level. This allows access to region-

based mid-level cues during the generation stage. In con-

trast to the above methods, our approach emphasizes the

generation stage over the ranking stage, and emphasizes the

role of learning to group using mid-level cues. The clos-

est methods to our approach are Superpixel Closure [22],

which uses mid-level closure, but does not combine other

cues, and Multicue [21], which combines mid-level cues in

a parametric energy function, but only trains the energy to

generate a single proposal.

3. Perceptual grouping cues

Our method begins by segmenting the input image x into

a single layer of superpixels that forms the basis of fea-

ture extraction, labeling, and grouping. Superpixels reduce

search complexity while providing access to local region

and contour scope. At the same time, we are restricting re-

gions to superpixel boundaries, so it is important to preserve

boundary recall. The resulting strategy is to oversegment

the image into superpixels which remain to be grouped.

Formally, we partition the image x into a set S of super-

pixels, from which we seek a subset R ⊂ S that represents

an object. Equivalently, we represent R as a binary labeling

y ∈ {0, 1}|S|, where yp = 1 exactly when superpixel p is in

R, for p = 1, . . . , |S|, hence R = {p : yp = 1}. The space

of possible regions lies in Y = {0, 1}|S|.

Given an image x, we seek a minimum energy region

y ∈ Y with respect to the energy Eλ(x) : Y → R which

is defined for the image and a parameter λ. Specifically, we

minimize the energy function:

Eλ(x,y) = λ
∑

p

φ0(x, yp) +wT

1

∑

p

φ1(x, yp)

+wT

2

∑

p,q

φ2(x,yp,q), (1)

whose terms here are grouped by weighted features

φ0, φ1, φ2. This energy can be minimized for multiple val-

ues of λ by parametric maxflow under further constraints

(see [17]), however the goal of this section is to model mid-

level grouping cues in the energy. To do so, we regroup the

energy (1) into subenergies that model their respective cues:

Eλ(x,y) = Eapp(x,y) + Eclo(x,y)

+ Esym(x,y) + Eλ
scale(x,y). (2)

The following sections will define the subenergies above.

3.1. Proximity

The grouping cue of proximity is a basic image relation

that is preserved through image projection. Since pairwise

potentials encode grouping relations, proximity is reflected

in placing a potential on every pair of adjacent superpixels,

thereby defining the edge set A(S) ⊂ S2.

3.2. Appearance similarity

Appearance similarity is a non-accidental regularity of

objects—the more similar a group of elements are to each

other, the more likely they belong to the same object. We

extract a color histogram hcol
p of dcol dimensions for every

superpixel p, and define a similarity for every pair (p, q) ∈
A(S) using the histogram intersection kernel [29]:

simp,q(h) =

d
∑

i=1

min(hp(i),hq(i)) (3)

We similarly define similarity for a texture histogram

htext
p of dtext dimensions. Appearance similarity is encoded

into our energy as a 2-dimensional feature consisting of

color and texture:

φapp(x,yp,q) = ✶[yp 6=yq ](simp,q(h
col), simp,q(h

text)) (4)

We note that φapp contributes a cost only when neigh-

boring superpixels with strong similarity are labeled dif-

ferently. The potentials are weighted by wapp which is

trained and shared across all superpixel pairs, and overall

contributes to the following energy:

Eapp(x,y) = wT

app

∑

p,q

φapp(x,yp,q). (5)

3.3. Contour closure

Contour closure is a non-accidental regularity of objects,

in which object coherence in 3D projects to a closed bound-

ary in 2D. The more contour evidence there is along the

boundary of a given region y, the more likely it is to en-

close an object. We use a cost function that sums contour

gap G(x,y) =
∑

b∈∂(y) g(x, b) along the region boundary

∂(y), where g(x, b) is the gap (lack of contour) evaluated at

pixel b of image x.

To express the cost G(x,y) in the form of unary and

pairwise features [22], we first define a unary feature:

φclo(x, yp) =
∑

b∈∂(p)

✶[yp=1]g(x, b) (6)
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Figure 2. Given a region defined by y ∈ {0, 1}|S|, the closure cue

sums gap along its boundary ∂(y). Summation is regrouped into

unary superpixel boundaries ∂(p) and pairwise superpixel bound-

aries ∂̄(p, q) for superpixels inside the region (see text for details).

that sums gap along selected superpixel boundaries. For a

region consisting of a single superpixel, the unary feature

sums the correct gap cost. However, as shown in Figure 2,

for a region consisting of multiple superpixels, simply sum-

ming the unary features will double count the gaps along

the internal boundaries shared by adjacent superpixels. We

thus define pairwise features to cancel them out:

φclo(x,yp,q) =
∑

b∈∂̄(p,q)

✶[yp=yq=1]g(x, b) (7)

The gap G(x,y) of region y is thus the sum of the unary

features, minus twice the pairwise features. In summary,

the closure cue contributes the weighted energy:

Eclo(x,y) = wT

clo

(

∑

p

φclo(x, yp)− 2
∑

p,q

φclo(x,yp,q)

)

(8)

3.4. Symmetry

Symmetry is a powerful regularity in objects. While

symmetry captures interactions among all parts of an ob-

ject, this must be balanced with the need for a low-order

energy. Coarse superpixels help by expanding the spatial

scope of each unit, however superpixel size must also be

limited in order to preserve boundary recall. Overall, it is a

computational challenge to capture grouping by symmetry.

We follow the approach of [21] of “outsourcing” sym-

metry to a region-based symmetry detector [20], and bi-

asing our energy to detected symmetric parts. Formally,

given a set T of region-scoped, scored symmetric parts, we

define pairwise potentials that prefer to merge superpixels

when they fall in the same symmetric part. For every pair

(p, q) ∈ A(S) we define:

φsym(x,yp,q) = ✶[yp 6=yq ] max
s∈S(p,q)

score(s), (9)

where the max considers symmetric parts T (p, q) ⊆ T that

overlap p and q by at least τ = 0.75, and selects the best-

scoring one. A value of zero is assigned when T (p, q) is

empty. Non-maximum suppression is applied over all su-

perpixel pairs so that at most one symmetric part contributes

to each pair. Overall, symmetry contributes the weighted

energy:

Esym(x,y) = wT

sym

∑

p,q

φsym(x,yp,q). (10)

3.5. Object scale

The grouping energies above accumulate higher costs for

regions with more superpixels, and thus the energy is arti-

ficially biased toward smaller regions and needs to be nor-

malized by the region’s size. To do so, we subtract unary

features φarea scaled by a factor |λ| from the energy, with

the effect of accommodating larger regions as |λ| increases.

Practically, a non-zero λ is necessary to remove trivial so-

lutions. We define φarea(x, yp) = ✶[yp=1]area(p), which

contributes the negative quantity:

Eλ
scale(x,y) = λ

∑

p

φarea(x, yp). (11)

A diverse set of solutions can be obtained with different

values of λ. Note that the cost of selecting an individual

superpixel is influenced by the magnitude of λ against other

potentials: a very large |λ| will more than offset the other

potentials and cause all superpixels to be selected. Since po-

tentials are empirically below 1, we can obtain all solutions

by varying λ within [−1, 0].

4. Parametric energy minimization

The domain Y over which the energy (1) is minimized is

too large for exhaustive search, but when written as a sum of

unary and pairwise potentials, the energy is seen to have the

required structure for an efficient solution. When submod-

ular pairwise potentials are guaranteed by requiring w ≥ 0,

and λ is held at a fixed non-positive value, the problem

ŷ = argmin
y

Eλ(x,y,w) (12)

can be solved exactly by a maxflow algorithm. Solving (12)

for all values λ ∈ [λmin, λmax] simultaneously is known

as a parametric problem, and can be done via parametric

maxflow. Furthermore, since the linear term φ0 measures

area, the monotonicity property is satisfied that guarantees

a solution size of size linear in |S| [17]. See Figure 3 for a

visualization of the solution set in an input image.

We rewrite (1) in a linear form that is amenable to large-

margin learning [28] by stacking the features and weights

of individual cues together. Specifically, we define a weight

vector w = (w0,w1,w2) where w0 = 1, and a feature

vector φλ = (−λΦ0,−Φ1,−Φ2). We can then rewrite

Eλ(x,y,w) = −wTφλ(x,y) and thus rewrite (12) as:

ŷ(x,w) = argmax
y

wTφλ(x,y). (13)
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Figure 3. Given the input image and superpixel segmentation

shown in the first row, our approach defines a parametric problem

whose solution set is shown in the second row. Optimal labelings

are listed in order of increasing λ ∈ [−1, 0].

Finally, the structured prediction function (13) is general-

ized to a set of solutions over a range of λ:

Ŷ (x,w) = {ŷλ(x,w) : λ ∈ [−1, 0]}. (14)

5. Parametric Min-Loss learning

When a ground truth region g annotates an object in input

image x, the quality of the set Ŷ (x,w) of predicted regions

can be evaluated against g. In the evaluation of region pro-

posals, for example, Jaccard similarity is considered by the

Average Best Overlap (ABO) metric [29]. In S-SVM learn-

ing [28], a task loss ℓ(ŷ,y) measures the mismatch of a

structured prediction ŷ against y. To measure the mismatch

of a set Ŷ of structured predictions, however, we generalize

the task loss to a set in the following way:

L(Ŷ ,y) = min
ŷ∈Ŷ

ℓ(ŷ,y), (15)

where (15) says that the quality of the entire set Ŷ of pre-

dictions is the quality of the best prediction. As in standard

S-SVM, the task loss ℓ is defined to be amenable to loss-

augmented inference [28] and decomposes into a sum of

unary losses. Each unary loss uses vp, as defined below, to

measure the mismatch of superpixel p against the ground

truth region g as follows:

ℓ(ŷ,y(g)) =
1

|g|

∑

p

|p|

{

vp ŷp = 0

1− vp ŷp = 1,
(16)

where vp is the fraction of p’s pixels that lie in g.

The weights of (1) are ideally learned by minimizing

L(Ŷ , y) in w, but in order to circumvent difficulties aris-

ing from non-convexity and discontinuities, we develop a

related loss function H(w) that is easier to minimize. Our

derivation of H(w) follows a strategy based on the (struc-

tured) hinge loss: as the hinge loss is an upper bound of

Algorithm 1 Parametric Min-Loss

Require: {φλ(x, ·),y, ℓ}Nn=1
Ensure: w∗ ≥ 0

1: τ ← 0
2: repeat

3: τ ← τ + 1
4: w

(τ) ← SSVM({φλ
(τ)

(x, ·),y, ℓ}Nn=1)
5: for n← 1 . . . N do

6: {(λi,yi)} ← PMF(−ℓ(yn)−w
Tφ(xn), [−1, 0])

7: hi ← ℓ(yn,yi)+w
T[φλi(xn,yi)−φ

λi(xn,yn)], ∀i

8: λ
(τ)
n ← λargminhi

9: end for

10: until converged or maxed out

11: return w
∗ ← w

(τ)
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Figure 4. The convex function h(λ) sampled at breakpoints (left),

and evolution of λ
(τ)
n ’s over time τ (right). Warmer colors repre-

sent later iterations.

the task loss, we derive a min hinge loss that is an upper

bound of the min task loss [13]. We first write the hinge

loss for parametric maxflow as follows, with dependence

on the training example (x,y) omitted for brevity:

h(w, λ) = max
ŷ

ℓ(ŷ,y) +wTφλ(x, ŷ)−wTφλ(x,y).

(17)

The min-hinge H(w) then takes the minimum of

h(w, λ) over a range of λ:

H(w) = min
λ∈[−1,0]

h(w, λ). (18)

Unlike in standard S-SVM, the loss function H(w) is not

guaranteed to be convex, however it is shown that H is an

upper bound for h [13].

Accounting for all ground truth regions, we obtain the

regularized min-hinge minimization problem:

min
w

1

2
||w||2 +

C

N

N
∑

n=1

min
λn∈[−1,0]

hn(w, λn). (19)

Although solving (19) is an NP-hard problem, we can

derive an efficient solution by rewriting the problem as:

min
w

min
{λn}

1

2
||w||2 +

C

N

N
∑

n=1

hn(w, λn) (20)
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and decomposing into two simpler problems that we iden-

tify as λ-update and standard S-SVM. Our algorithm, sum-

marized in Algorithm 1, alternates between holding w fixed

and optimizing the λ’s, and holding the λ’s fixed and solv-

ing S-SVM.

Fixing w, we obtain N independent problems that can be

solved in parallel. Each problem amounts to solving para-

metric minimization of the hinge-loss:

arg min
λ∈[−1,0]

h(w, λ) (21)

Since the function h(w, λ) is the maximum of 2|S| linear

functions, it is convex and piecewise-linear. It follows that

h(w, λ) reaches its minimum value at one of the λ break-

points, and so we need only to search for the breakpoint

that evaluates to a minimum. The set of breakpoints {λi}
and their solutions {yi} are found by solving the parametric

maxflow problem:

∀λ ∈ [−1, 0],min
ŷ

−ℓ(ŷ,y)−wTφλ(x, ŷ) (22)

To solve (21), we exhaustively evaluate h(w, λ) for each λi

using yi. We note that λ has monotonic coefficients and

thus there are at most O(|S|) breakpoints [17] containing

the solution. See Figure 4 for an illustration.

With {λn} fixed, problem (19) reduces to a single, stan-

dard S-SVM problem:

w = argmin
w

1

2
||w||2 +

C

N

N
∑

n=1

hn(w, λn) (23)

We solve (23) with the constraint w ≥ 0 using the cutting-

plane implementation of [25].

Although the learning algorithm alternates between min-

imizing w and λ, the learning goal for region proposals is

to optimize the weights. Minimization in λ reflects the se-

lection of the best region by a ground truth oracle, and pre-

diction has no access to such an oracle. Moreover, in the

absence of a specified object category, bottom-up grouping

cues are the only means of predicting region proposals.

6. Diversification

Diversification is an important step toward achieving re-

call without a specified object category. In a given image,

we sample seeds that make assumptions about object prop-

erties such as image location and color distribution. An en-

ergy function that is biased with a particular seed will then

yield proposals that are customized toward a particular lo-

cation or color distribution. Pooling together proposals as-

sociated with different seeds allows us to cover a wide range

of conditions with greater precision.

Location. We use individual superpixels to seed image

locations, with a total of |S| seeds. As shown in Figure 5,

Figure 5. A location-based seed is sampled on the motorcyclist’s

back, which induces the unary potentials as shown. Warmer colors

represent higher costs.

Figure 6. A color-based seed is sampled on the pair of foreground-

background color distributions, which induces the unary potentials

as shown.

each seed p defines unary features that discourage select-

ing yq = 1 depending on q’s “distance” from p. This is

encoded for any superpixel q with a cost based on the max-

imum distance of q from p. For non-compact superpixels,

this promotes compactness by encouraging smaller, nearby

regions to be “annexed” first (regardless of their color).

Color similarity. Here, we seed image colors (without

considering proximity) using a Gaussian mixture model ap-

plied to the color space. Specifically, we seed foreground-

background pairs of color distributions. For any given seed,

each superpixel q has a likelihood under the foreground dis-

tribution and a likelihood under the background distribu-

tion. The higher the likelihood ratio, the lower the cost of

assigning yq = 1. An example is provided in Figure 6.

In our application, diversification is complementary to

PML. While learning accounts for diversity over scale in λ,

here the energy is further diversified in location and color.

Moreover, learning and diversification balance each other

out, as the grouping cues combined in the energy have a

tempering effect on diversification seeds, e.g. by helping a

seed centered on a location to adapt to irregular shapes.

7. Postprocessing

All solutions pooled over diversification seeds enter a

pipeline of postprocessing steps. First, we process each so-

lution y ∈ Y to ensure that contiguous regions are consid-

ered for recall. We find connected components efficiently

in superpixel space, and include the top M = 2 connected

components as region proposals.

We then remove artefactual regions in the form of empty

labelings and labelings that are within a very high percent-

age of the image’s total area. We filter out redundant regions

in the form of duplicate labelings and clusters of labelings
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Figure 7. Comparison with perceptual grouping methods Multicue [21] and Superpixel Closure [22] (far left), and CPMC [5] and Selective

Search [29] (left) on VOC’12. Comparison with MCG [4] and perceptual grouping methods on COCO’14 (middle). See text for com-

parisons with more recent methods like GOP [18] and RIGOR [15]. Parametric Min-Loss learning improves segment overlap as weights

evolve (right). Improvement from smoothing the diversification seeds with trained mid-level cues (far right).

that are similar in overlap. Similarly to [5], we perform

agglomerative clustering of labelings by intersection-over-

union overlap, and consider clusters of labelings that exceed

a very high overlap threshold. For each cluster, we keep the

labeling with the best closure and discard the rest. Closure

is efficiently computed using the gap cost G(x,y).
Finally, we rank the proposals to allow a small number

of proposals to be selected. We cast this as a problem of

assigning a classification score to each region that indicates

how object-like it is. Unlike the perceptual grouping prob-

lem above, this is a verification step in which higher-order

relations are more easily captured over the full region scope.

We turn to convolutional neural networks as they yield good

categorization results. The final network layers are fully

connected, and can be thought of as learned, mid-level fea-

tures that encode category-independent information that is

relevant for categorization. Specifically, to extract a fea-

ture vector for a given region proposal R, we place a crop-

ping box tightly around R, and warp the cropped image

to normalized dimensions. After normalizing pixel val-

ues, we evaluate OxfordNet and retain layer 20 as a 4096-

dimensional feature vector. Like R-CNN [11], we then

trained a SVM classifier on the feature to assign ‘object’

or ‘non-object’ to each R, and trained a logistic regressor to

map the output margin to a score between 0 and 1.

We obtained features for positive and negative training

examples by sampling from the training images of the VOC

2012 SEGMENTATION subset. For each image, we use the

ground truth boxes as positive examples, and a matching

number of random boxes as negative examples.

8. Results

For quantitative evaluation, the SEGMENTATION subset

of VOC 2012 provides a set of images containing different

objects annotated with at least one ground truth region per

image. We apply Parametric Min-Loss on the TRAIN subset

and evaluate our trained method on the VAL subset. We use

P to denote the set of proposed regions to be evaluated, and

G to denote the corresponding set of ground truth regions.

For all pairs (p ∈ P , g ∈ G) contained by the same image,

we consider the Jaccard similarity J (p, g) = |p∩g|
|p∪g| to score

the quality of a potential match. The Average Best Overlap

(ABO) metric [29] is defined over all images as follows:

ABO(k) =
1

|G|

∑

g∈G

max
p∈P(k)

J (p, g),

where P(k) represents the top k regions proposed for g’s

image. Plots sample ABO on increasing values of k to show

the trade-off between recall and the number of proposals.

Our method requires a single superpixel layer as pre-

processing. We found that non-compact superpixels, e.g.

Felzenszwalb & Huttenlocher [9], yielded better results

than compact superpixels, e.g. SLIC [1]. Results in this pa-

per were generated using UCM [3], thresholded at k = 0.1.

Overall results. We first compare our method with two

recent perceptual grouping methods most similar to ours, in

Figure 7 (far left). Superpixel Closure [22] used paramet-

ric maxflow to group superpixels into regions of minimum

closure cost, while Multicue [21] used S-SVM to train a

parametric energy function that combines appearance, clo-

sure, and symmetry cues. We improve on these methods via

a holistic learning framework and effective diversification.

While both methods were quantitatively evaluated only on

the Weizmann Horse Database, we evaluate on VOC 2012

VAL segmentations and COCO 2014 VAL segmentations.

Our results are comparable with leading region proposal

methods such as Selective Search [29] and CPMC [5] on

VOC 2012 VAL, as shown in Figure 7 (left). At 1585

proposals, GOP [18], RIGOR [15], MCG [4], and CMPC

achieve 75.1, 74.4, 69.8, and 64.9 ABO, respectively, while

ours achieves 65.2 ABO, so we are outperformed by the

most recent methods. Ours takes a similar approach to Se-

lective Search in using regional features to group superpix-

els, however we train a combination of cues and find min-

imum energy regions, allowing “better focused” proposals.

Our level of recall, however, is more comparable to that

of CPMC’s for higher numbers of proposals. While we

achieve higher recall with learning and effective diversifi-

cation, our simple ranking procedure with a SVM classifier

does less for precision than the sophisticated overlap regres-

sors of CPMC.

In Figure 8, we show some example region proposals.
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Figure 8. Example region proposals found for images from VOC 2012. Red masks denote ground truth, green masks denote the corre-

sponding top proposals (from left to right).

For the images of the airplane, bird, and cat, our approach

does well in separating figure from ground. For images of

more complex scenes such as the dinner table, over- and un-

dersegmentation occurred due to low contrast or in objects

of highly heterogeneous appearance.

Learning. The second part of our results focuses on

learning. We note that S-SVM is a natural baseline for

Parametric Min-Loss due to the structure of the iterative al-

gorithm. Specifically, we track the energy functions cor-

responding to weights as they evolve over iterations (in-

dexed by τ ), where the first iteration corresponds to S-SVM

with initial λ values. We initialize λ’s to −0.01, as done

in Multicue [21]. As shown in Figure 7 (right), successive

energy functions yield better recall, iteratively improving

on the S-SVM baseline. Additionally, since recall is mea-

sured by segment overlap, the result also shows that Para-

metric Min-Loss and its surrogate are effective approximat-

ing training objectives. Finally, in Figure 7 (far right), we

demonstrate the effectiveness of structured learning within

our own method. In particular, we test for an increase in

recall achieved by combining mid-level grouping cues with

diversification seeds. As we expected, recall is significantly

boosted with mid-level cues.

9. Conclusion

We introduced Parametric Min-Loss (PML), a novel

structured learning framework for parametric energy func-

tions, and demonstrated it in the context of region proposal

generation. Our perceptual grouping method learns how to

combine multiple cues to generate a set of figure-ground re-

gion proposals. By applying the MCL optimization strategy

to parametric maxflow, we bridge the gap between learning

and inference for parametric energy functions. Moreover,

our framework supports efficient superpixel-based diversifi-

cation that yields a diverse set of region proposals that com-

petes favorably with recent state of the art on VOC 2012.

In future work, we plan to use our general framework to

learn how we can integrate other classical grouping cues to

improve region proposal generation.
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[4] P. Arbeláez, J. Pont-Tuset, J. Barron, F. Marques, and J. Ma-

lik. Multiscale combinatorial grouping. CVPR, 2014. 2, 3,

7

[5] J. Carreira and C. Sminchisescu. Cpmc: Automatic object

segmentation using constrained parametric min-cuts. PAMI,

34(7):1312–1328, 2012. 1, 2, 3, 7

[6] X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler,

and R. Urtasun. 3d object proposals for accurate object class

detection. In NIPS, 2015. 3

[7] L. Cohen and T. Deschamps. Multiple contour finding and

perceptual grouping as a set of energy minimizing paths.

EMMCVPR, Jan 2001. 2

[8] I. Endres and D. Hoiem. Category independent object pro-

posals. ECCV, Jan 2010. 3

[9] P. Felzenswalb and D. Huttenlocher. Efficient graph-based

image segmentation. IJCV, 59(2):167–181, 2004. 1, 7

[10] M. Fromer and A. Globerson. An lp view of the m-best map

problem. NIPS, Jan 2009. 2

[11] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. CVPR, Jan 2014. 7

[12] G. Guy and G. Medioni. Inferring global perceptual contours

from local features. CVPR, Jan 1993. 2

[13] A. Guzman-Rivera, D. Batra, and P. Kohli. Multiple choice

learning: Learning to produce multiple structured outputs.

NIPS, pages 1799–1807, 2012. 2, 5

[14] A. Guzman-Rivera, P. Kohli, D. Batra, and R. Rutenbar. Effi-

ciently enforcing diversity in multi-output structured predic-

tion. AISTATS, Jan 2014. 2

[15] A. Humayun, F. Li, and J. Rehg. Rigor: Reusing inference

in graph cuts for generating object regions. CVPR, Jan 2014.

2, 7

[16] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active

contour models. IJCV, 1(4):321–331, 1988. 2

[17] V. Kolmogorov, Y. Boykov, and C. Rother. Applications of

parametric maxflow in computer vision. ICCV, 8, 2007. 2,

3, 4, 6
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