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Abstract

To break down the geometry assumptions of conventional

motion models (e.g., homography, affine), warping-based

motion model recently becomes popular and is adopted

in many latest applications (e.g., image stitching, video

stabilization). With high degrees of freedom, the accu-

racy of model heavily relies on data-terms (keypoint cor-

respondences). In some low-texture environments (e.g., in-

door) where keypoint feature is insufficient or unreliable,

the warping model is often erroneously estimated.

In this paper we propose a simple and effective approach

by considering both keypoint and line segment correspon-

dences as data-term. Line segment is a prominent feature in

artificial environments and it can supply sufficient geomet-

rical and structural information of scenes, which not only

helps lead to a correct warp in low-texture condition, but

also prevents the undesired distortion induced by warping.

The combination aims to complement each other and bene-

fit for a wider range of scenes. Our method is general and

can be ported to many existing applications. Experiments

demonstrate that using dual-feature yields more robust and

accurate result especially for those low-texture images.

1. Introduction

The theory of conventional 2D motion models1 is well

studied [10, 22]. These models are widely used in many ap-

plications, including image registration [22], panorama [2] ,

and video stabilization [21], since they are parametric, com-

putationally efficient and robust to outliers compared with

general motion models (e.g., optical flow [13]). Neverthe-

less, these conventional models are limited by ideal geom-

etry assumptions. For example, homography only provides

high accuracy modeling for single-plane scene or purely ro-

tational camera motion.

To break down these geometry assumptions, some

warping-based motion models (a.k.a., mesh-based warping

or multiple homographies) are proposed in recent years. Im-

1“conventional 2D motion model” refers to 3 × 3 homography, affine

or similarity transformation.

keypoint-based approach

our dual-feature approach

(a) keypoints (b) homography by keypoints (c) result of APAP [27]

(d) dual features (e) homography by dual features (f) our final dual-feature warp

Figure 1. Top: the well-used keypoint-based approach (APAP [27]

is the state-of-the-art warping-based model). Bottom: Our pro-

posed dual-feature approach.

age warping is originally used for image editing (e.g., shape

manipulation [14], image resizing [3]). Recently, warp-

ing is also used to tackle the two-image alignment prob-

lem, such as image stitching [27, 29, 4, 15], video stabi-

lization [16, 9, 19], and produces promising results. Such

warping-based models adopt meshes transform to represent

the camera motion. Comparing with single homography,

it has more flexibility of dealing with scenes with multiple

planes and parallax due to higher degree-of-freedom (DoF).

The estimation of warping-based models leverages

matched keypoints in two images with smoothness con-

straints. The lack of reliable keypoints would easily cause

misalignments (shown in Figure 1(b)(c)). Moreover, the

distortion artifact is often induced by the flexible warps

(shown in Figure 1(c)) due to insufficient corresponding in-

formation (i.e., data-term). This artifact is highly noticeable

and unpleasant. Although some warping models avoid dis-

tortion at salient regions [16] as possible as they can or al-

leviate the perspective distortion [4], the structural contents

or rigid objects may not be explicitly preserved.

To deal with this problem, we resort to the line feature in

image content, and consider it as another type of data term.

Line structure is prominent in artificial scenarios (e.g., Fig-

ure 1(d)). The line feature can not only be considered as the

complement to keypoints, but also provide strong geometri-
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cal and structural constraints. Recently, the progress in fast

line detection [25, 1] and line matching [26, 30, 6] has made

the line feature practical in many applications. The usage

of dual features (keypoints and lines) can help achieve bet-

ter estimation in single homography (shown in Figure 1(e))

and even more accurate estimation in warping-based motion

model (shown in Figure 1(f)).

However, it is not a trivial task to combine dual fea-

tures into an unified framework of model estimation. The

most related trial is conducted by Dubrofsky [5], who

combined Direct Linear Transform (DLT) formulations of

points (x′ = Hx) and lines (l = HTl′) for single homogra-

phy H estimation. In deed, the simple combination is hard

to achieve a high-quality and robust estimation due to two

reasons: 1) the parameters of line [a, b, c] are not numer-

ically stable when the detected line is short, vertical, hor-

izontal or approaches the origin [28]; and 2) line has in-

consistent distance metric 2 to keypoints, making the opti-

mization, data normalization, outlier removal unfair or even

intractable. These two fatal issues would make line feature

virtually useless for most purposes.

In this paper, we present a novel dual-feature approach to

warping-based motion model estimation, aiming at address-

ing the fragile problems of existing warping-based models,

especially for low-texture images (shown in Figure 1(a)).

We consider a different representation for detected line seg-

ment, which is parameterized by its two endpoints. The ge-

ometric distance of two line segments is thereby defined as

the distance from endpoint-to-line, which has same metric

to the Euclidean distance of points.

Based on the new parameterization and distance metric,

we can derive a new dual-feature DLT formulation and ad-

dress the normalization and RANSAC procedures for sin-

gle homography estimation, known as global warp used

in the first step of warping-based model estimation. Ac-

cordingly, we extend it to the second step, known as lo-

cal warp, which further minimizes the registration error via

mesh warping. Our quantitative evaluations indicate that the

usage of dual features outperforms the well-used keypoint-

based approach especially in low-texture conditions. More-

over, our dual-feature can be easily ported to existing appli-

cations (image stitching and video stabilization).

2. Related Work

With high DoF, warping-based motion model provides

more flexibility of handling parallax than single homogra-

phy model. These models are designed with specific pri-

ors. For example, Gao et al. [7] assumed most of scenes

have two dominant planes (ground and distant plane), which

can be described by combining two homographies. Lin et

al. [15] modeled the scenes using smoothly varying affine

2The algebraic distance ||l1 − l2|| of line and the distance ||p1 − p2||
of point have different physical measures.

l’

H-Tl
H

d’2

d’1

source target

Figure 2. Illustration of line segment distance measurement with

point-to-line distance, d(l, l′) =
√

d′
1

2 + d′
2

2.

field for image stitching. More recently, Zaragoza et al. [27]

proposed an elegant as-projective-as-possible (APAP) warp

for image stitching, which assumes global projectivity

while allowing local non-projective deviations. Content-

perserving-warps (CPW) is another warping-based model

that encourages local transforms to be similarity. The

technique has been successfully used in video stabiliza-

tion [16, 19, 31] and image stitching [29]. Furthermore,

mixture-of-gaussian model is a simplified 1D mesh motion

model, which was used to rectify rolling shutter artifacts [8].

However, all of these existing models heavily rely on key-

point correspondences. Once the quality and number of

keypoints become problematic, their estimations are usually

not reliable.

To consider additional correspondences, we resort to line

feature. Actually in early history when people studied pro-

jective geometry, line and point were deemed equally im-

portant as they contain symmetric information (i.e., dual-

ity principle [10]). However, the combination of both fea-

tures is not popular due to the difficulties of line: in 2D,

line cannot provide the exact position correspondence due

to its aperture problem; in 3D, line requires at least three

view (trifocal tensor) to construct constraints [23]. The

most related work to our intended work is [5], which naively

combined point and line for single homography estimation.

However, their method is extremely susceptible to noise and

may be not very suitable for warping-based model estima-

tion. Unlike their method, we use a different representation

(line segment instead of line) and a more reasonable dis-

tance metric for line, which help us easily consider dual

features in warping-based motion model estimation.

In recent years, the progress in fast line detection [25, 1]

makes the usage of line feature in image content popular.

For example, some image editing algorithms [3, 12] explic-

itly detect the straight lines in images and preserve their

properties (straightness, parallelism, etc) during warping.

Note that in their methods, the line is only a constraint (or

prior) for the warp. Indeed, our method considers line cor-

respondences into the data term of motion estimation.

3. Dual-feature Representation and Matching

3.1. Parameterization and Distance Metric

The parametrization of 2D point in homogeneous coor-

dinate is p : [x, y, 1]T. Similarly, 2D line is parameterized
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as a 3-vector, l : [a, b, c]T, which corresponds to its stan-

dard equation (l : ax+ by+ c = 0). Such a parametrization

is convenient for matrix operation (e.g., transform), but its

parameters are not stable when the line is vertical, horizon-

tal, or approaching the origin [28]. Besides, line can also be

parameterized by polar coordinates l = (r, θ) (i.e., Hough

space). It is geometrically intuitive but not convenient for

matrix operation.

We adopt another parametrization – endpoint parameter-

ization: a line segment l represented by its two endpoints

p0,p1. Suppose l undergoes a transformation by model

M. The transformed line is l̂ =M◦ l and its endpoints be-

come p̂0, p̂1(p̂0,1 =M◦p0,1). Thereby, the geometrically

meaningful distance can be defined as the endpoint-to-line

distance. That is, the Euclidean distance between the trans-

formed l̂ and the target l′ is defined as the square root of

sum of squared perpendicular offset from two transformed

endpoints p̂0, p̂1 to l′ (shown in Figure 2). i.e.,

d(̂l, l′) =
√

d2(p̂0, l′) + d2(p̂1, l′), (1)

where p̂ = [û, v̂, 1]T, l′ = [a′, b′, c′]T and d(p̂, l′) =
|l′T·p̂|√
a′2+b′2

is the distance from transformed point p̂ to the

target line l′. Note that this distance is originally used for

line-based Structure from Motion problem [23], and we bor-

row it for our 2D motion model estimation.

The motion modelM is then estimated by jointly min-

imizing the well-used Euclidean distance of points and our

newly defined distance of line segments:

M̂ = argmin
M

(

∑

i
d2 (p̂i,p

′
i) +

∑

j
d2(̂lj , l

′
j)
)

, (2)

where p̂i =M◦pi and l̂j =M◦ lj . i, j are the indices

for keypoint and line segment respectively.

The endpoint parameterization for line segment has three

advantages over previous representations: 1) the point-to-

line distance is geometrically meaningful and has consistent

metric with point-wise Euclidean distance; 2) it exempts

from numerical unstable conditions [28] because the cur-

rent geometric distance is invariant to rotation; 3) it provides

useful locality information (length and endpoint position)

for warping-based mesh model estimation.

3.2. Dualfeature Detection and Matching

To obtain keypoint matches, we simply use SIFT [20]

feature implemented by VLFeat [24]. As for line seg-

ments, we adopt EDLine [1] for line detection, but line

matching is more challenging due to less distinctive ap-

pearance, fragments of same line and no epipolar con-

straint. Although recent appearance-based line descrip-

tors (MSLD [26], LBD [30]) produce satisfactory match-

ing results with the presence of rotation, noise and illu-

mination change, they cannot handle large scale or per-

spective change (Figure 3(d)). The major reason is that

(b) rectangular

LSR for descriptor

(a) H0 estimated by 

keypoints

(c) H0 guided

LSR for descriptor

(d) w/o guidance: 1 inlier, 5 outliers

(e) w/ guidance: 27 inliers, 1 outlier

H0

source

unmatched

matched

target

source target target

Ωs
Ωt Ωt'

Figure 3. Illustration of guided line matching.

the descriptor samples a fixed width of rectangular region

(called line supporting region, LSR) around each line in

both source and target images (Figure 3(b)), making them

scale-sensitive. To get over, we leverages the global infor-

mation provided by initial keypoints and propose a method

called guided line matching.

Guided line matching. We consider two different LSRs

respectively in source and target frames for extracting de-

scriptors. The LSR in the source frame Ωs is still a fixed-

width rectangular region, while the LSR Ω′
t in the target

frame may be a trapezoidal region (Figure 3(c)) transformed

by an initial homography H0 (Figure 3(a)). Here, H0 is ini-

tially estimated keypoints and may provide the approxima-

tion to the scale/perspective change between two frames. In

order to achieve transformed LSR Ω′
t, we first back-project

the line segments from the target frame to the source frame

by H−1
0 , and then obtain the rectangular LSR Ω∗

t in the

source frame. Next, we transform Ω∗
t to the target frame by

H0 and yield Ω′
t, which is the final LSR for extracting de-

scriptors in the target frame. Once the LSR for the line seg-

ment descriptor is determined, we use MSLD to encode the

appearance of line into descriptor vectors, followed by the

usual feature matching procedure. To reduce the biased esti-

mation of H0, we adopt an iterative refinement. The pseudo

codes are shown in Algorithm 1. In our experiments, it usu-

ally needs 2 ∼ 3 iterations for the convergence. Figure 3(e)

shows our matching result.

4. Warping-based Motion Model Estimation

The estimation of the warping model undergoes a global

step and a local step. The global transform helps greatly

reduce the penalty of local warps. This strategy is proved

to be effective in previous algorithms [21, 16, 19]. In the

first step, a global projective warp (homography) will be

estimated using line segments and keypoints (Section 4.1).
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Algorithm 1 Guided line matching

estimate H0 from p′ = H0p;

repeat

l∗ ← back-project l′ by H−1
0 ;

Ω∗
t ← the rectangular LSR for l∗;

Ω′
t ← Ω∗

t warped by H0;

extract line descriptors in Ω′
t for l′, Ωs for l;

find line correspondences (l, l′) between frames;

update H0 from new correspondences (Section 4.1);

until corresponding pairs (p,p′), (l, l′) are not changed.

In the second step, we solve for a mesh model that further

minimizes the registration error of feature correspondences

via mesh warping (Section 4.2).

4.1. Dualfeature Homography Estimation

-0.5em We first consider the motion model M to be a

3 × 3 homography H, which is estimated by minimizing

the combined geometric distances according to Equation 1

and 2:

min







∑

i

‖p′
i − p̂i‖2 +

∑

j

∣

∣

∣
l
′T
j p̂0

j

∣

∣

∣

2

+
∣

∣

∣
l
′T
j p̂1

j

∣

∣

∣

2

a′2 + b′2






, (3)

where p̂i ∼ Hpi and p̂
0,1
j ∼ Hp

0,1
j , and ∼ denotes

equality up to a scalar factor.

Obtaining an optimal solution requires non-linear op-

timization (Levenberg-Marquardt (LM) iteration) because

homography changes the value of homogeneous element.

As suggested by Hartley [10], Direct Linear Transforma-

tion (DLT) algorithm is more preferable for its efficiency,

linearity and simplicity in implementation. Even though it

minimizes the algebraic distance, it can produce compara-

ble accuracy to iterative methods (also as the initial solution

of LM iteration) with a proper normalization [11, 10].

Here, we formulate Equation 3 in DLT fashion as well.

Let pi ↔ p′
i and lj ↔ l′j be pairs of keypoints and line

segments, where pi = [xi, yi, 1]
T and lj = [aj , bj , cj ]

T

with its two endpoints pj
0,1 = [u0,1

j , v0,1j , 1]. The mapping

of keypoint should satisfy p′
i × p̂i = p′

i × Hpi = 0,

where × is cross product, and thus the algebraic distance

||p′
i ×Hpi|| is desired to be minimized.

As for the line segment, the transformed endpoints p̂
0,1
j

are expected to lie on the target line l′j for line-to-line map-

ping, which can be denoted as l
′T
j p̂

0,1
j = l

′T
j Hp

0,1
j = 0.

The algebraic distance ||l′Tj Hp
0,1
j || should be minimized.

Rewriting Equation 3 in DLT fashion yields,

Ĥ = argmin
H

(

∑

i
||p′

i ×Hpi||2 +
∑

j
|| l′Tj Hp

0,1
j ||2

)

= argmin
H

(

∑

i
||Aih||2 +

∑

j
||Bjh||2

)

,

where h = [h1, h2, h3, h4, h5, h6, h7, h8, h9]
T is a 9-vector

(a) normalization in source image

0 ~100

0
 2 

~100

0 ~100

0

~100

“average” point

“average” point 2 

“average” line
 2
2

 

(b) normalization in target image

Figure 4. Illustration of normalization in source and target images.

of the entries of H. The matrix

Ai =

[

xi, yi, 1, 0, 0, 0,−x′
ixi,−x′

iyi,−x′
i

0, 0, 0, xi, yi, 1,−y′ixi,−y′iyi,−y′i

]

can be inferred from Aih = p′
i ×Hpi = 0. The matrix

Bj = λj

[

a′ju
0
j , a

′
jv

0
j , a

′
j , b

′
ju

0
j , b

′
jv

0
j , b

′
j , c

′
ju

0
j , c

′
jv

0
j , c

′
j

a′ju
1
j , a

′
jv

1
j , a

′
j , b

′
ju

1
j , b

′
jv

1
j , b

′
j , c

′
ju

1
j , c

′
jv

1
j , c

′
j

]

can be inferred from Bjh = l
′T
j Hp

0,1
j = 0, where λj is a

scalar factor for balancing with Ai.

Stacking up all the formulations of points (Ai) and line

segments (Bj) forms

[

A

B

]

h = 0, where SVD decompo-

sition is used to obtain the coefficients h.

Balancing is crucial since two types of feature are used

in a unified minimization framework. Let p be any point or

endpoint, w = [h7, h8, h9]p is the scalar to achieve equal-

ity: wp̂ = Hp. The point’s minimized algebraic residual

||Aih|| can be derived to d (Hpi,p
′
i)·wi (i.e., the geometric

distance multiplying wi).

The residual of line segment ||Bjh|| can be expanded to

λjl
′T
j Hp

0,1
j . To be consistent, we require the residual to

equal to the geometric distance multiplying wj :

λjl
′T
j Hp

0,1
j =d

(

p̂
0,1
j , l′j

)

· w0,1
j ⇒ λj =

1
√

a′j
2 + b′j

2
.

With the scalar λj , the weight between two residuals is

balanced in terms of geometric meaning.

Normalization is an indispensable step to improve nu-

merical precision. Its ultimate goal is to reduce the condi-

tion number of matrix in solving SVD decomposition. Hart-

ley’s normalization [11, 10] applies scaling and translation

on the 2D point coordinate such that an “average point” is

[1, 1, 1], which makes all entries in matrix A have similar

magnitude (∼ 1) and thus the condition number of A is

greatly reduced.
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Figure 5. Line segment correspondences in mesh-based model.

In our dual-feature formulation, hopefully all entries of

the stacked matrix

[

A

B

]

are close to 1. Please note that

in the source image, only points and endpoints (their pa-

rameters: x, y, u, v) are used in the formulation. Then we

simply employ Hartley’s normalization to all these points,

namely compute a similarity transform (translate and scale)

T applying to these points such that an “average point” is

[1, 1, 1] (Figure 4(a)).

The case is different in target image, because we actually

use target points and lines (their parameters: x′, y′, a′, b′, c′)
in the formulation. To make these values close to 1, we

first normalize a′, b′ by dividing c′, yielding [a′/c′, b′/c′, 1].
Now the distance of this line to origin is 1√

(a′/c′)2+(b′/c′)2
,

while the distance of a point to origin is
√

x′2 + y′2. To en-

sure a′/c′, b′/c′, x′, y′ ∼ 1, we compute the best similarity

transform T′ via least-square such that the average distance

from all lines to the origin is 1√
12+12

= 1√
2

, while the aver-

age distance from keypoints to origin is
√
12 + 12 =

√
2.

After applying T and T′ to the source and target im-

ages, the homography H⋆ is computed in normalized space.

The final solution is obtained by denormalization: Ĥ =
T

′−1H⋆T. The effectiveness of our normalization and nu-

merical stability issue are evaluated in Section 5.

Robust estimation. RANSAC is commonly used to re-

move outliers in robust estimation for homography. Based

on consistent distance metric between both features, we can

apply RANSAC on dual features simultaneously, which is

intractable in previous work [5]. Specifically, in the compu-

tation of RANSAC penalties, the fitting error for point uses

Euclidean distance d(p̂,p′) =
√

||p′ − p̂||2, and the fitting

error for line segment uses d(̂l, l′) =
√

|l′T·p̂0|2+|l′T·p̂1|2
a′2+b′2

,

where (p̂0, p̂1) are two endpoints of transformed line seg-

ment l̂. The inliers of dual-feature will be further used for

local warp estimation in Section 4.2.

4.2. Dualfeature Local Warps

After global warping using single homography, the reg-

istration error of feature correspondences is greatly reduced.

In the second step, we employ a mesh warp to further min-

imize the registration error. Here, we follow the framework

of as-similar-as-possible warp [16] and extend it by incor-

porating a new data term of line segment.

The image is first divided by regular meshes (shown in

Figure 5). The vertices of the mesh model that we solve for

are denoted as V (indicated as red dots in Figure 5). Let

l↔ l′ be a pair of matched line segments and p0,p1 are

two endpoints of line segment l. When l goes across more

than one meshes, we cut l into multiple line segments using

the boundary edges of mesh. Supposing {pk} represents

all the endpoints (indicated as blue dots in Figure 5) of the

cut segments in the source image, according to Equation 1,

we require the distance from all these endpoints to the tar-

get line, i.e., d(l′,pk) = |l′Tpk|√
a′2+b′2

, to be minimized. To

represent {pk} by V, we adopt bilinear interpolation, i.e.,

pk = wpk
Vpk

, where Vp = [v1
p,v

2
p,v

3
p,v

4
p] is four ver-

tices of enclosing quad of pk, and wp = [w1
p, w

2
p, w

3
p, w

4
p]

T

are the bilinear interpolation weights that sum to 1. There-

fore, our data term for line segments is defined as

Eline(V) =
∑

j,k
||(l′jT ·Vpk

wpk
)/(

√

a′j
2 + b′j

2)||2.

The merits of Eline(V) are twofold: 1) as a “data-term”,

it conduces to better alignment for line structures, and 2) it

naturally preserves the straightness property of line during

warping, as it requires all cut endpoints to be mapped onto

the same straight line (like a “constraint”).

The data term of keypoints Epoint(V) and smoothness

term Esmoothness are directly borrowed from [16]: Let

pi ↔ p′
i be a pair of matched keypoints. Representing pi

by the bilinear interpolation of its locating quad, the data

term for keypoints can be finally written as:

Epoint(V) =
∑

i
||Vpi

wpi
− p′

i||2.

The smoothness term Esmoothness encourages every

grid to undergo similarity transform. See [16, 19] for de-

tailed formulation.

The final objective function combines two data terms and

smoothness term together, i.e.,

E(V) = Epoint(V) + Eline(V) + αEsmoothness(V).

The scalar α (by default, α = 0.25) balances the tradeoff

between data terms and smoothness term. We usually use

a mesh of 32 × 32 grids for 720p image resolution. Since

the objective function is quadratic, it can be solved by a

sparse linear solver. Finally, each local homography can be

inferred from the transformation of each mesh vertex.

Figure 6 shows a comparison between two mesh-based

estimations of only using keypoints (w/o Eline) [16, 19] and

using dual features (w/ Eline). Likewise, our dual-feature

method should be able to applied to other warping-based

models (e.g., APAP [27]), since we only need slightly mod-

ify their data terms. We will leave it as a future work.
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(d) line segment feature(b) keypoint-based homography (c) keypoint-based warp (w/o E
line

) (e) our dual-feature warp (w/ E
line

)(a) keypoint feature

Figure 6. Comparison of mesh-based homographies estimation used in image registration. Misalignments are illustrated by red arrows.

5. Quantitative Evaluation

Numerical stability. The numerical stability is an impor-

tant indicator for linear methods of model fitting. Inspired

by [11], the first experiment evaluates our dual-feature DLT

formulation and normalization (in Section 4.1) in terms of

numerical stability (i.e., noise sensitivity). We synthesized

a virtual image (with the resolution 1024 × 800 pixels) by

randomly generating points and line segments with a to-

tal number of 300 features. We regard it as the source

image. In order to synthesize the target image, we map

all of original points and line segments to new positions

by a predefined 3 × 3 homography matrix H. In addi-

tion, the mapped position is randomly perturbed by a fac-

tor ǫ3. In our experiment, we use all of corresponding fea-

ture pairs to estimate the homography Ĥ. The quality of

model is measured by well-used average registration error,

i.e., E(H, Ĥ) = 1
N ·

∑

x∈I ||Hx− Ĥx||2, where x are all

image pixels and N is the total pixel number.
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Figure 7. Comparisons of registration error between our formula-

tion and others. Best viewed on screen.

ratio naive formulation point centric line centric ours

0% 2.12E+6 1.04E+3 2.12E+6 1.04E+3

20% 2.28E+6 2.87E+3 1.32E+6 1.05E+3

40% 2.60E+6 5.18E+4 6.78E+5 1.12E+3

60% 3.11E+6 5.30E+4 4.20E+4 1.19E+3

80% 3.20E+6 1.34E+5 3.26E+3 1.30E+3

100% 8.75E+6 8.75E+6 1.62E+3 1.49E+3

Table 1. The condition number data of matrix A in experiment

Figure 7(c). “ratio” refers to the proportion of line segments.

We compared four linear approaches of homography es-

timation using dual features: naive formulation is to directly

combine p′ = Hp and li = HTl′i without normalization;

point centric [5] is to conduct normalization only on point

data; line centric [5] is to conduct normalization only on

line segment data; our method (dual-feature homography,

described in Section 4.1). For each approach, we test three

3For fairness, after perturbation, the Euclidean distance to the original

position is ǫ for both line segments and points.
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Figure 8. Illustration of translational camera motion experiment

setup (left) and the measured RMSE (right) for five methods.

different perturbation factors ǫ ∈ {0.5, 1.0, 2.0} and try

a varying percentage of line segments from 0% to 100%.

Figure 7 shows the comparison results. As we can see, naive
formulation produces the worst result, and is very sensitive

to slight perturbations. Either point centric [5] or line cen-

tric [5] respectively works well for either keypoints or lines

segments accounting for the majority. However, our method

consistently yields the smallest registration error and pro-

vides more stable solution compared with other three meth-

ods. Table 1 shows the condition number of the matrix for

SVD decomposition in experiment Figure 7(c). The effect

of a large condition number is to amplify the divergence in-

duced by noise. The data of condition number shows con-

sistent conclusion to the registration error.

Translational camera motion. To further investigate the

benefit of dual features in non-ideal scenes, we synthesize

the scenario when the camera center is not fixed (as shown

in Figure 8). The scene is a simulation of typical indoor

environment with three orthogonal planes. 100 points and

a varying number of line segments are randomly plotted on

three planes in space, which will be projected by two virtual

cameras with translational motion (0.5 units).

Five methods are compared: 1) keypoint-based homog-

raphy (Baseline), 2) dual-feature homography (DF-H, Sec-

tion 4.1), 3) content-preserving-warps [16] (CPW), 3) as-

projective-as-possible warps [27] (APAP) , 5) dual-feature

warps (DF-W, Section 4.1). The points are evenly splitted

into two sets. The model is estimated on the first set of

points plus included line segments, and the fitting error is

measured on the second set of points in terms of the root

mean square error (RMSE) in pixel unit. To evaluate the

benefits of line feature, we vary the number of included line

segments. Note that the errors for methods 1, 3, 4 are flat

because they do not make use of line segments.

As can be seen in Figure 8, For single homography, the

effect of extra line segments (DF-H) is trivial because the

model becomes the bottleneck. For the dual-feature warp
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Figure 9. The dataset of our experiments on real images.

(DF-W), including more line features helps to gradually re-

duce the fitting error. This is because the model is “flexible”

enough to fit more features and increase the model accuracy.

Quantitative evaluation on real images. Our approach

is evaluated on dataset of real images as well. Figure 9

depicts our data, which is collected from public available

datasets [15, 27, 30] or captured by ourselves. Each image

pair has at least 30% overlapping region but the two-view

motion is not pure rotation. All images are splitted into two

categories: Category A (low-texture images, mainly from

indoor) and Category B (ordinary images with texture).

The same five methods are compared. Here, the accuracy

is measured by the RMSE of one minus normalized cross

correlation (NCC) over a neighborhood of 3 × 3 window,

i.e., RMSE(Ii, Ij) =
√

1
NΣπ(1−NCC(xi,xj))2. N is

the number of pixels in overlapping region π and xi,xj is

the pixel in image Ii, Ij respectively.

Table 2 shows RMSE of compared methods. As we can

see, our dual-feature homography consistently yields bet-

ter accuracy than the Baseline (keypoint-based homogra-

phy). As for warping-based model, our method performs

the best in Category A (low-texture) as the line feature play

an important role in such scenes without reliable keypoints.

For Category B (ordinary images), though the role of line

feature is reduced, it still helps to improve the accuracy of

alignment. APAP performs better in road and bench be-

cause these two image pairs have wider baseline. APAP

tends to be more flexible to handle larger parallax.

Time cost. The proposed method is implemented in C++

on a PC with a 3.5GHz Intel Core i7 processor. For a typical

pair of images (1024×800 px), it takes around 2∼4s to find

the warp. The majority of time spends on feature detection

and matching, and solving the sparse matrix for local warps.

model homography model warping-based model

method Baseline DF-H CPW APAP DF-W

four 12.78 6.12 7.42 6.92 2.36

door 14.47 8.31 4.89 7.37 3.50

shelf 8.62 3.04 6.28 8.76 1.54

window 9.90 6.94 7.46 5.78 4.94

cabinet 6.75 3.72 3.48 4.55 2.63

roof 4.84 4.28 5.68 7.82 2.25

desk 16.94 12.71 10.67 6.17 4.89

corner 10.02 4.34 8.67 6.84 1.44

park 21.73 12.61 16.87 11.07 8.18

car 3.08 2.77 2.65 2.07 2.13

bridge 11.37 7.70 8.47 7.95 6.60

girl 8.76 7.82 9.17 5.20 4.81

villa 16.23 13.38 7.58 6.72 5.20

road 8.17 6.38 6.48 2.28 4.59

rotation 2.57 2.28 1.37 1.12 1.06

bench 11.5 7.18 8.97 4.01 7.12

Table 2. The RMSE ([0, 255]) for five compared methods on each

image pair. Baseline: keypoint-based homography; DF-H: our

dual-feature homography (Section 4.1); CPW: content-preserving-

warps [16]; APAP: as-projective-as-possible warps [27]; DF-W:

our dual-feature warps (Section 4.2)

6. Qualitative Evaluation on Applications

In this section, we apply our motion model to two appli-

cations: image stitching and video stabilization.

6.1. Image stitching

The quality of image stitching depends on the accuracy

of camera motion estimation between two views. Recently,

warping-based motion models [7, 15, 27, 29] are proposed

to partially handle parallax issue, which is intractable for

global motion model (single homography). However, all of

these techniques only consider keypoints as corresponding

features. Here, we want to study how well they work for

challenging scenes without too many reliable keypoints.

We compared four methods on several image pairs cap-

tured in typical indoor environments (shown in Figure 10):

keypoint-based homography (baseline), two representative

warping-based models (content-preserving-warps [16] and

as-projective-as-possible warps [27]), and our dual-feature

warping-based model. We use linear blending to illustrate

the misaligned regions. As we can see in Figure 10, sin-

gle homography obviously cannot model the parallax well

and produces misalignments. CPW allows higher DoF, but

it also produces ghost artifacts (highlighted areas in Fig-

ure 10) at structural lines due to the lack of keypoints along

these lines. APAP is more aggressive and easily causes

local distortions on structural regions. Our method yields

the best results with least ghost artifacts and preserves line

structures. We show all the dual features for better under-

standing the role of line segments in these scenes.
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Figure 10. Comparison of image stitching on four image pairs from typical indoor scenes (best viewed on high-resolution digital display).

(c) Liu et.al. [18]

(a) subspace [17] (b) L1 path optimization [9]

(d) our result

Figure 11. Comparison of different video stabilization methods on

sample frames (highlights indicates shearing/skew artifacts).

6.2. Video stabilization

The first step of video stabilization is to estimate camera

motion between adjacent frames. Similar to image stitch-

ing, when the video frame lacks reliable keypoints, previous

methods may fail to obtain an accurate estimation, which

would result in distortion or skew artifacts. However, Our

dual-feature approach can better address this problem.

Figure 11 shows a challenging case (from [18]) of video

stabilization, which lacks rich textures and has parallax.

Two popular 2D stabilization techniques: Subspace [17]

(with robust implementation in Adobe After Effects CS6)

and L1 path optimization [9] (with robust implementation in

Google YouTube) fail to estimate the accurate motion. We

can see shearing/skewing artifacts in sampled frames shown

in Figure 11(a)(b). Our dual-features warps can achieve as

good result as [18], which employs additional 3D depth in-

formation, but our approach is 2D motion estimation. The

reason is that warping-based model, to some extent, is a

good 2D solution to slight parallax, and line features fur-

ther help such high DoF model achieve a robust estimation.

7. Conclusion

The paper presents a warping-based motion estimation

using point and line features. We address fragile problems

in existing keypoint-based model estimation methods, and

suggest a practical solution for challenging scenes with less

keypoint correspondences. The heart of the method is the

stable combination of two types of features, making it ro-

bust for practical purposes. However, due to the intrinsic

limitation of 2D model, our method cannot handle scenar-

ios with large parallax or sudden depth variation. As the line

feature gradually becomes mature, in the future we would

like to study the dual-feature strategy for other problems.
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