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Abstract

In this work, we address the human parsing task with a

novel Contextualized Convolutional Neural Network (Co-

CNN) architecture, which well integrates the cross-layer

context, global image-level context, within-super-pixel con-

text and cross-super-pixel neighborhood context into a uni-

fied network. Given an input human image, Co-CNN pro-

duces the pixel-wise categorization in an end-to-end way.

First, the cross-layer context is captured by our basic local-

to-global-to-local structure, which hierarchically combines

the global semantic information and the local fine details

across different convolutional layers. Second, the global

image-level label prediction is used as an auxiliary objec-

tive in the intermediate layer of the Co-CNN, and its out-

puts are further used for guiding the feature learning in sub-

sequent convolutional layers to leverage the global image-

level context. Finally, to further utilize the local super-pixel

contexts, the within-super-pixel smoothing and cross-super-

pixel neighbourhood voting are formulated as natural sub-

components of the Co-CNN to achieve the local label con-

sistency in both training and testing process. Comprehen-

sive evaluations on two public datasets well demonstrate the

significant superiority of our Co-CNN over other state-of-

the-arts for human parsing. In particular, the F-1 score on

the large dataset [15] reaches 76.95% by Co-CNN, signifi-

cantly higher than 62.81% and 64.38% by the state-of-the-

art algorithms, M-CNN [21] and ATR [15], respectively.

1. Introduction

Human parsing, which refers to decomposing a human

image into semantic clothes/body regions, is an important

component for general human-centric analysis. It enables

∗Corresponding author is Liang Lin (E-mail: linliang@ieee.org). This
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versity of Singapore.

many higher level applications, e.g., clothing style recogni-

tion and retrieval [5], clothes recognition and retrieval [30],

people re-identification [33], human behavior analysis [29]

and automatic product recommendation [14].

While there has been previous work devoted

to human parsing based on human pose estima-

tion [31] [6] [32] [20] [19], non-parametric label transfer-

ring [30][21] and active template regression [15], none of

previous methods has achieved excellent dense prediction

over raw image pixels in a fully end-to-end way. These

previous methods often take complicated preprocessing as

the requisite, such as reliable human pose estimation [4],

bottom-up hypothesis generation [1] and template dictio-

nary learning [23], which makes the system vulnerable to

potential errors of the front-end preprocessing steps.

Convolutional neural network (CNN) facilitates great ad-

vances not only in whole-image classification [26], but also

in structure prediction such as object detection [10] [16],

part prediction [27] and general object/scene semantic seg-

mentation [7][8]. However, they usually need supervised

pre-training with a large classification dataset, e.g., Ima-

geNet, and other post-processing steps such as Conditional

Random Field (CRF) [8] and extra discriminative classi-

fiers [24][11]. Besides the above mentioned limitations,

there are still two technical hurdles in the application of

existing CNN architectures to pixel-wise prediction for the

human parsing task. First, diverse contextual information

and mutual relationships among the key components of hu-

man parsing (i.e. semantic labels, spatial layouts and shape

priors) should be well addressed during predicting the pixel-

wise labels. For example, the presence of a skirt will hinder

the probability of labeling any pixel as the dress/pants, and

meanwhile facilitate the pixel prediction of left/right legs.

Second, the predicted label maps are desired to be detail-

preserved and of high-resolution, in order to recognize or

highlight very small labels (e.g. sunglass or belt). However,

most of the previous works on semantic segmentation with

CNN can only predict the very low-resolution labeling, such
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as eight times down-sampled prediction in the fully convo-

lutional network (FCN) [22]. Their prediction is very coarse

and not optimal for the required fine-grained segmentation.

In this paper, we present a novel Contextualized Con-

volutional Neural Network (Co-CNN) that successfully ad-

dresses the above mentioned issues. Given an input human

image, our architecture produces the correspondingly-sized

pixel-wise labeling maps in a fully end-to-end way, as il-

lustrated in Figure 1. Our Co-CNN aims to simultaneously

capture cross-layer context, global image-level context and

local super-pixel contexts by using the local-to-global-to-

local hierarchical structure, global image-level label pre-

diction, within-super-pixel smoothing and cross-super-pixel

neighborhood voting, respectively.

First, our basic local-to-global-to-local structure hierar-

chically encodes the local details from the early, fine layers

and the global semantic information from the deep, coarse

layers. Four different spatial resolutions are used for cap-

turing different levels of semantic information. The feature

maps from deep layers often focus on the global structure

and are insensitive to local boundaries and spatial displace-

ments. We up-sample the feature maps from deep layers

and then combine them with the feature maps from former

layers under the same resolution.

Second, to utilize the global image-level context and

guarantee the coherence between pixel-wise labeling and

image label prediction, we incorporate global image label

prediction into our pixel-wise categorization network, illus-

trated as the global image-level context part of Figure 1.

An auxiliary objective defined for the global image label

prediction (i.e. Squared Loss) is used, which focuses on

global semantic information and has no relation with lo-

cal variants such as pose, illumination or precise location.

We then use the predicted image-level label probabilities to

guide the feature learning from two aspects. First, the pre-

dicted image-level label probabilities are utilized to facili-

tate the feature maps of each intermediate layer to generate

the semantics-aware feature responses, and then the com-

bined feature maps are further convolved by the filters in the

subsequent layers, shown as the image label concatenation

part of Figure 1. Second, the predicted image-level label

probabilities are also used in the prediction layer to explic-

itly re-weight the pixel-wise label confidences, shown as the

element-wise summation part of Figure 1.

Finally, the within-super-pixel smoothing and cross-

super-pixel neighborhood voting are leveraged to retain the

local boundaries and label consistencies within the super-

pixels. They are formulated as natural sub-components of

the Co-CNN in both the training and the testing process.

Comprehensive evaluations and comparisons on the ATR

dataset [15] and the Fashionista dataset [30] well demon-

strate that our Co-CNN yields results that significantly sur-

pass all previously published methods, boosting the cur-

rent state-of-the-arts from 64.38% [15] to 76.95%. We also

build a much larger dataset “Chictopia10k”, which contains

10,000 annotated images. By adding the images of “Chic-

topia10k” into the training, the F-1 score can be further

improved to 80.14%, 15.76% higher than the state-of-the-

arts [15] [30].

2. Related Work

Human Parsing: Much research has been devoted to

human parsing [31][30][6][32][28][18][25][21]. Most pre-

vious works used the low-level over-segmentation, pose es-

timation and bottom-up hypothesis generation as the build-

ing blocks of human parsing. For example, Yamaguchi et

al. [31] performed human pose estimation and attribute la-

beling sequentially and then improved clothes parsing with

a retrieval-based approach [30]. Dong et al. [6] proposed to

use a group of parselets under the structure learning frame-

work. These traditional hand-crafted pipelines often re-

quire many hand-designed processing steps, each of which

needs to be carefully designed and tuned. Recently, Liang

et al. [15] proposed to use two separate convolutional net-

works to predict the template coefficients for each label

mask and their corresponding locations, respectively. How-

ever, their design may lead to sub-optimal results.

Semantic Segmentation with CNN: Our method

works directly on the pixel-level representation, similar

to some recent research on semantic segmentation with

CNN [22] [11] [8]. These pixel-level representations are in

contrast to the common two-stage approaches[24] [10] [12]

which consist of complex bottom-up hypothesis generation

(e.g. bounding box proposals) and CNN-based region clas-

sification. For the pixel-wise representation, by directly us-

ing CNN, Farabet et al. [7] trained a multi-scale convolu-

tional network from raw pixels and employed the super-

pixel tree for smoothing. The dense pixel-level CRF was

used as the post-processing step after CNN-based pixel-

wise prediction [2] [3] [9]. More recently, Long et al. [22]

proposed the fully convolutional network for predicting

pixel-wise labeling.

The main difference between our Co-CNN and these

previous methods is the integration of cross-layer context,

global image-level context, local super-pixel contexts into

a unified network. It should be noted that while the fully

convolutional network [22] also tries to combine coarse and

fine layers, they only aggregate the predictions from dif-

ferent scales in the final output. In contrast, in our local-

to-global-to-local hierarchical structure , we hierarchically

combine feature maps from cross-layers and further feed

them into several subsequent layers for better feature learn-

ing, which is very important in boosting the performance as

demonstrated in the experiments.
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Figure 1. Our Co-CNN integrates the cross-layer context, global image-level context and local super-pixel contexts into a unified network. It

consists of cross-layer combination, global image-level label prediction, within-super-pixel smoothing and cross-super-pixel neighborhood

voting. First, given an input 150 × 100 image, we extract the feature maps for four resolutions (i.e., 150 × 100, 75 × 50, 37 × 25 and

18 × 12). Then we gradually up-sample the feature maps and combine the corresponding early, fine layers (blue dash line) and deep,

coarse layers (blue circle with plus) under the same resolutions to capture the cross-layer context. Second, an auxiliary objective (shown

as “Squared loss on image-level labels”) is appended after the down-sampling stream to predict global image-level labels. These predicted

probabilities are then aggregated into the subsequent layers after the up-sampling (green line) and used to re-weight pixel-wise prediction

(green circle with plus). Finally, the within-super-pixel smoothing and cross-super-pixel neighborhood voting are performed based on

the predicted confidence maps (orange planes) and the generated super-pixel over-segmentation map to produce the final parsing result.

Only down-sampling, up-sampling, and prediction layers are shown; intermediate convolution layers are omitted. For better viewing of all

figures in this paper, please see original zoomed-in color pdf file.

3. The Proposed Co-CNN Architecture

Our Co-CNN exploits the cross-layer context, global

image context and local super-pixel contexts in a unified

network, consisting of four components, i.e., the local-

to-global-to-local hierarchy, global image label prediction,

within-super-pixel smoothing and cross-super-pixel neigh-

borhood voting, respectively.

3.1. Localtoglobaltolocal Hierarchy

Our basic local-to-global-to-local structure captures the

cross-layer context. It simultaneously considers the local

fine details and global structure information. The input to

our Co-CNN is a 150 × 100 color image and then passed

through a stack of convolutional layers. The feature maps

are down-sampled three times by the max pooling with a

stride of 2 pixels to get three extra spatial resolutions (75×
50, 37×25, 18×12), shown as the four early convolutional

layers in Figure 1. Except for the stride of 2 pixels for down-

sampling, the convolution strides are all fixed as 1 pixel.

The spatial padding of convolutional layers is set so that the

spatial resolution is preserved after convolution, e.g., the

padding of 2 pixels for 5× 5 convolutional filters.

Note that the early convolutional layers with high spatial

resolutions (e.g., 150×100) often capture more local details

while the ones with low spatial resolutions (e.g., 18 × 12)

can capture more structure information with high-level se-

mantics. We combine the local fine details and the high-

level structure information by cross-layer aggregation of

early fine layers and up-sampled deep layers. We transform

the coarse outputs (e.g., with resolution 18 × 12) to dense

outputs (e.g., with resolution 37× 25) with up-sampling in-

terpolation of factor 2. The feature maps up-sampled from

the low resolutions and those from the high resolutions are

then aggregated with the element-wise summation, shown

as the blue circle with plus in Figure 1. Note that we se-

lect the element-wise summation instead of other operations

(e.g. multiplication) by experimenting on the validation set.

After that, the following convolutional layers can be learned

based on the combination of coarse and fine information.

To capture more detailed local boundaries, the input image

is further filtered with the 5 × 5 convolutional filters and

then aggregated into the later feature maps. We perform the

cross-layer combination four times until obtaining the fea-

ture maps with the same size as the input image. Finally,

the convolutional layers are utilized to generate the C con-

fidence maps to predict scores for C labels (including back-

ground) at each pixel location. Our loss function is the sum

of cross-entropy terms for all pixels in the output map.
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Figure 2. Comparison of label confidence maps between Co-CNN

and that without using global labels. By using the global image

label probabilities to guide feature learning, the confidence maps

for skirt and dress can be corrected.

3.2. Global Imagelevel Context

An auxiliary objective for multi-label prediction is used

after the intermediate layers with spatial resolution of 18×
12, as shown in the pentagon in Figure 1. Following the

fully-connected layer, the C-way softmax which produces

a probability distribution over the C class labels is ap-

pended. Squared loss is used during the global image label

prediction. Suppose for each image I in the training set,

y = [y1, y2, · · · , yC ] is the ground-truth multi-label vec-

tor. yc = 1, (c = 1, · · · , C) if the image is annotated with

class c, and otherwise yc = 0. The ground-truth probability

vector is normalized as pc =
yc

||y||1
and the predictive proba-

bility vector is p̂ = [p̂1, p̂2, · · · , p̂C ]. The squared loss to be

minimized is defined as J =
∑C

c=1(pc−p̂c)
2. During train-

ing, the loss of image-level labels is added to the total loss

of the network weighted by a discount factor 0.3. To utilize

the predicted global image label probabilities, we perform

two types of combination: concatenating the predicted la-

bel probabilities with the intermediate convolutional layers

(image label concatenation in Figure 1) and element-wise

summation with label confidence maps (element-wise sum-

mation in Figure 1).

First, consider that the feature maps of the m-th convo-

lutional layer are a three-dimensional array of size hm ×
wm × dm, where hm and wm are spatial dimensions, and

dm is the number of channels. We generate C additional

probability maps {xp
c}

C
1 with size hm × wm where each

x
p
i,j,c at location (i, j) is set as the predicted probability pc

of the c-th class. By concatenating the feature maps xm of

the m-th layer and the probability maps {xp
c}

C
1 , we gener-

ate the combined feature maps x̂m = [xm, x
p
1, x

p
2, · · · , x

p
C ]

of the size hm × wm × (dm + C). The outputs xm+1
i,j at

input 
Co-CNN  

w/o sp  
Co-CNN   

Co-CNN  

w/o sp  
Co-CNN   input 

Figure 3. Comparison of example results of using local super-

pixel contexts. For each image, we show the results from Co-CNN

and “Co-CNN w/o sp”, i.e. no local super-pixel information used.

location (i, j) in the next layer are computed by

xm+1
i,j = fk({x̂

m
i+δi,j+δj}0≤δi,δj≤k), (1)

where k is the kernel size, and fk is the corresponding con-

volution filters. We perform this concatenation after each

combination of coarse and fine layers in Section 3.1, as

shown in Figure 1.

Second, we element-wisely sum the predicted confi-

dence maps with the global image label probabilities. If

the class c has a low probability of appearing in the im-

age, the corresponding pixel-wise probability will be sup-

pressed. Given the probability ri,j,c of the c-th confidence

map at location (i, j), the resulting probability r̂i,j,c is cal-

culated by r̂i,j,c = ri,j,c + p̂c for the c-th channel. The

incorporation of global image-level context into label con-

fidence maps can help reduce the confusion of competing

labels.

3.3. Local Superpixel Context

We further integrate the within-super-pixel smoothing

and the cross-super-pixel neighborhood voting into the

training and testing process to respect the local detailed in-

formation. They are only performed on the prediction layer

(i.e. C confidence maps) instead of all convolutional layers.

It is advantageous that super-pixel guidance is used at the

later stage, which avoids making premature decisions and

thus learning unsatisfactory convolution filters.

Within-super-pixel Smoothing: For each input image

I , we first compute the over-segmentation of I using the

entropy rate based segmentation algorithm [17] and ob-

tain 500 super-pixels per image. Given the C confidence

maps {xc}
C
1 in the prediction layer, the within-super-pixel

smoothing is performed on each map xc. Let us denote the

super-pixel covering the pixel at location (i, j) by sij , the

smoothed confidence maps x̃c can be computed by

x̃i,j,c =
1

||sij ||

∑

(i′,j′)∈sij

xi′,j′,c, (2)

where ||sij || is the number of pixels within the super-pixel

sij and (i′, j′) represents all pixels within sij .
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Cross-super-pixel Neighborhood Voting: After

smoothing confidences within each super-pixel, we can

take the neighboring larger regions into account for better

inference, and exploit more statistical structures and

correlations between different super-pixels. For classes

with non-uniform appearance (e.g., the common clothes

items), the inference within larger regions may better

capture the characteristic distribution for this class. For

simplicity, let x̃s, x̃s
′ denote the smoothed responses of the

super-pixel s and s
′ on each confidence map, respectively.

For each super-pixel s, we first compute a concatenation

of bag-of-words from RGB, Lab and HOG descriptor for

each super-pixel, and the feature of each super-pixel can be

denoted as bs. The cross neighborhood voted response x̄s

of the super-pixel s is calculated by

x̄s = (1− α)x̃s + α
∑

s
′∈Ds

exp(−||bs − bs′ ||
2)∑

ŝ∈Ds

exp(−||bs − bŝ||2)
x̃s

′ .

(3)

Here, Ds denotes the neighboring super-pixel set of the

super-pixel s. We weight the voting of each neighbor-

ing super-pixel s′ with the normalized appearance similar-

ities. If the pair of super-pixels (s, s′) shares higher ap-

pearance similarity, the corresponding weight of neighbor-

hood voting will be higher. Our within-super-pixel smooth-

ing and cross-super-pixel neighborhood voting can be seen

as two types of pooling methods, which are performed on

the local responses within the irregular regions depicted by

super-pixels. When back-propagating through the network,

the gradients are back-propagated through each super-pixel.

Some results with/without incorporating the local super-

pixel contexts are shown in Figure 3.

3.4. Parameter details of CoCNN

Our detailed Co-CNN configuration is listed in Table 1.

We use the small 3×3 and 5×5 receptive fields throughout

the whole network, and the non-linear rectification layers

after every convolutional layer. The network has 21 layers

if only the layers with parameters are counted, or 27 layers

if we also count max pooling and up-sampling. The dropout

(30%) of fully-connected layer in the image-level label pre-

diction is set by the validation set.

4. Experiments

4.1. Experimental Settings

Dataset: We evaluate the human parsing performance

of our Co-CNN on the large ATR dataset [15] and the small

Fashionista dataset [31]. Human parsing is to predict every

pixel with 18 labels: face, sunglass, hat, scarf, hair, upper-

clothes, left-arm, right-arm, belt, pants, left-leg, right-leg,

skirt, left-shoe, right-shoe, bag, dress and null. Totally,

Table 1. The detailed configuration of our Co-CNN.

component type kernel size/stride output size

convolution 5 × 5/1 150 × 100 × 128
convolution 5 × 5/1 150 × 100 × 192
max pool 3 × 3/2 75 × 50 × 192

convolution 5 × 5/1 75 × 50 × 192
convolution 5 × 5/1 75 × 50 × 192

local-to-global max pool 3 × 3/2 37 × 25 × 192
convolution 5 × 5/1 37 × 25 × 192
convolution 5 × 5/1 37 × 25 × 192
max pool 3 × 3/2 18 × 12 × 192

convolution 5 × 5/1 18 × 12 × 192
convolution 5 × 5/1 18 × 12 × 192
convolution 1 × 1/1 18 × 12 × 96

image-level label FC (dropout 30%) 1 × 1 × 1024
prediction FC 1 × 1 × 18

Squared Loss 1 × 1 × 18
upsampling 2 × 2/2 37 × 25 × 192
convolution 5 × 5/1 37 × 25 × 192
element sum 37 × 25 × 192

concat 37 × 25 × 210
convolution 5 × 5/1 37 × 25 × 192
upsampling 2 × 2/2 75 × 50 × 192
convolution 3 × 3/1 75 × 50 × 192
element sum 75 × 50 × 192

global-to-local concat 75 × 50 × 210
convolution 5 × 5/1 75 × 50 × 192
upsampling 2 × 2/2 150 × 100 × 192
convolution 5 × 5/1 150 × 100 × 192
element sum 150 × 100 × 192

concat 150 × 100 × 210
convolution 5 × 5/1 150 × 100 × 192

convolution (image) 5 × 5/1 150 × 100 × 192
element sum 150 × 100 × 192
convolution 3 × 3/1 150 × 100 × 256
convolution 1 × 1/1 150 × 100 × 18

prediction element sum 150 × 100 × 18
convolution 1 × 1/1 150 × 100 × 18

within-S-P smoothing 150 × 100 × 18
super-pixel cross-S-P voting 150 × 100 × 18

Softmax Loss 150 × 100 × 18

7,700 images are included in the ATR dataset [15], 6,000

for training, 1,000 for testing and 700 for validation1. The

Fashionista dataset contains 685 images, in which 229 im-

ages are used for testing and the rest for training. We use

the Fashionista dataset after transforming the original labels

to 18 categories as in [15] for fair comparison. We use the

same evaluation criterion as in [30] and [15], including ac-

curacy, average precision, average recall, and average F-1

score over pixels. The images in these two datasets are near

frontal-view and have little cluttered background, and are

insufficient for real-world applications with arbitrary pos-

tures, views and backgrounds. We collect 10,000 real-world

human pictures from a social network, chictopia.com, to

construct a much larger dataset “Chictopia10k”, and an-

notate pixel-level labels following [15]. Our new dataset

mainly contains images in the wild (e.g., more challenging

poses, occlusion and clothes), which will be released upon

publication to promote future research on human parsing.

Implementation Details: We augment the training im-

ages with the horizontal reflections, which improves about

4% in terms of F-1 scores. Given a test image, we use

the human detection algorithm [10] to detect the human

1We sincerely thank the authors of [15] for sharing the dataset.
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Table 2. Comparison of human parsing performances with several architectural variants of our model and four state-of-the-arts when

evaluating on ATR [15]. The ⋆ indicates the method is not a fully end-to-end framework.

Method Accuracy F.g. accuracy Avg. precision Avg. recall Avg. F-1 score

⋆ Yamaguchi et al. [31] 84.38 55.59 37.54 51.05 41.80

⋆ PaperDoll [30] 88.96 62.18 52.75 49.43 44.76

⋆M-CNN [21] 89.57 73.98 64.56 65.17 62.81

⋆ ATR [15] 91.11 71.04 71.69 60.25 64.38

baseline (150-75) 92.77 68.66 67.98 62.85 63.88

baseline (150-75-37) 92.91 76.29 78.48 65.42 69.32

baseline (150-75-37-18) 94.41 78.54 76.62 71.24 72.72

baseline (150-75-37-18, w/o fusion) 92.57 70.76 67.17 64.34 65.25

Co-CNN (concatenate with global label) 94.90 80.80 78.35 73.14 74.56

Co-CNN (summation with global label) 94.28 76.43 79.62 71.34 73.98

Co-CNN (concatenate, summation with global label) 94.87 79.86 78.00 73.94 75.27

Co-CNN (w-s-p) 95.09 80.50 79.22 74.38 76.17

Co-CNN (full) 95.23 80.90 81.55 74.42 76.95

Co-CNN (+Chictopia10k) 96.02 83.57 84.95 77.66 80.14

Table 3. Per-Class Comparison of F-1 scores with several variants of our versions and four state-of-the-art methods on ATR [15].

Method Hat Hair S-gls U-cloth Skirt Pants Dress Belt L-shoe R-shoe Face L-leg R-leg L-arm R-arm Bag Scarf

⋆ Yamaguchi et al. [31] 8.44 59.96 12.09 56.07 17.57 55.42 40.94 14.68 38.24 38.33 72.10 58.52 57.03 45.33 46.65 24.53 11.43

⋆ PaperDoll [30] 1.72 63.58 0.23 71.87 40.20 69.35 59.49 16.94 45.79 44.47 61.63 52.19 55.60 45.23 46.75 30.52 2.95

⋆M-CNN [21] 80.77 65.31 35.55 72.58 77.86 70.71 81.44 38.45 53.87 48.57 72.78 63.25 68.24 57.40 51.12 57.87 43.38

⋆ ATR [15] 77.97 68.18 29.20 79.39 80.36 79.77 82.02 22.88 53.51 50.26 74.71 69.07 71.69 53.79 58.57 53.66 57.07

baseline (150-75) 28.94 81.96 63.04 74.71 50.91 70.18 53.87 37.32 64.87 60.49 86.02 72.55 72.40 78.54 72.43 63.94 18.86

baseline (150-75-37) 63.12 80.08 36.55 83.12 63.17 81.10 65.38 28.36 65.75 69.94 82.88 82.03 81.55 75.68 76.31 77.36 37.15

baseline (150-75-37-18) 59.41 84.67 69.59 82.75 65.52 80.30 65.29 43.50 75.85 72.71 88.00 85.11 84.35 80.61 80.27 72.25 22.87

baseline (150-75-37-18, w/o fusion) 57.93 79.15 54.01 78.08 65.27 73.25 50.73 20.63 63.00 63.57 82.48 68.20 73.02 73.39 73.37 72.79 27.05

Co-CNN (concatenate with global label) 62.96 85.09 70.42 84.20 70.36 83.02 70.67 45.71 74.26 74.23 88.14 87.09 85.99 81.94 80.73 73.91 24.39

Co-CNN (summation with global label) 69.77 87.91 78.05 79.31 61.81 80.53 57.51 28.16 74.87 73.22 91.34 82.15 83.98 84.37 84.23 79.78 35.35

Co-CNN (concatenate, summation with global label) 65.05 85.11 70.92 84.02 73.20 81.49 69.61 45.44 73.59 73.40 88.73 83.25 83.51 82.74 82.15 77.88 35.75

Co-CNN (w-s-p) 71.25 85.52 71.37 84.70 74.98 82.23 71.18 46.28 74.83 75.04 88.76 84.39 83.38 82.84 82.62 78.97 33.66

Co-CNN (full) 72.07 86.33 72.81 85.72 70.82 83.05 69.95 37.66 76.48 76.80 89.02 85.49 85.23 84.16 84.04 81.51 44.94

Co-CNN (+Chictopia10k) 75.88 89.97 81.26 87.38 71.94 84.89 71.03 40.14 81.43 81.49 92.73 88.77 88.48 89.00 88.71 83.81 46.24

body. The resulting human centric image is then rescaled

into 150×100 and fed into our Co-CNN for pixel-wise pre-

diction. We choose the resolution of 150×100 for each im-

age, to balance computational efficiency, practicality (e.g.,

GPU memory) and accuracy. To evaluate the performance,

we re-scale the output pixel-wise prediction back to the size

of the original ground-truth labeling. All models in our ex-

periment are trained and tested based on Caffe [13] on a

single NVIDIA Tesla K40c. We set the weight parameter

α in cross-super-pixel voting as 0.3 by using the validation

set. The network is trained from scratch using the annotated

training images. The weights of all network parameters are

initialized with Gaussian distribution with standard devia-

tion as 0.001. We train Co-CNN using stochastic gradient

descent with a batch size of 12 images, momentum of 0.9,

and weight decay of 0.0005. The learning rate is initialized

at 0.001 and divided by 10 after 30 epochs. We train the net-

works for roughly 90 epochs, which takes 4 to 5 days. Our

Co-CNN can rapidly process one 150 × 100 image within

about 0.0015 second. After incorporating the super-pixel

extraction [17], we test one image within about 0.15 second.

This compares much favorably to other state-of-the-art ap-

proaches, as current state-of-the-art approaches have higher

complexity: [30] runs in about 10 to 15 seconds, [6] runs

in 1 to 2 minutes and [15] runs in 0.5 second.

Figure 4. Exemplar images of our “Chictopia10k” dataset.

4.2. Results and Comparisons

We compare our proposed Co-CNN with five state-of-

the-art approaches [31] [30] [21] [15] [25] on two datasets.

All results of the competing methods and our methods are

obtained by using the same training and testing setting de-

scribed in the paper [15].

ATR dataset [15]: Table 2 and Table 3 show the per-

formance of our models and comparisons with four state-

of-the-arts on overall metrics and F-1 scores of foreground

semantic labels, respectively. Our “Co-CNN (full)” can
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Table 4. Comparison of parsing performance with three state-of-

the-arts on the test images of Fashionista [31].

.

Method Acc, F.g. acc. Avg. prec. Avg. recall Avg. F-1 score

⋆ Yamaguchi et al. [31] 87.87 58.85 51.04 48.05 42.87

⋆ PaperDoll [30] 89.98 65.66 54.87 51.16 46.80

⋆ ATR [15] 92.33 76.54 73.93 66.49 69.30

Co-CNN (full) 96.08 84.71 82.98 77.78 79.37

Co-CNN (+Chictopia10k) 97.06 89.15 87.83 81.73 83.78

significantly outperform four baselines: 35.15% over Ya-

maguchi et al. [31], 32.19% over PaperDoll [30], 14.14%
over M-CNN [21] and 12.57% over ATR [15] in terms of

average F-1 score. Since the code of ATR [15] is not pub-

licly available, we only take our “Chictopia10k” dataset as

the supplementary dataset to the training set and report the

results as “Co-CNN (+Chictopia10K)”. After training with

more realistic images in our newly collected dataset “Chic-

topia10k”, our “Co-CNN (+Chictopia10k)” can further im-

prove the average F-1 score by 3.19% and the average pre-

cision by 3.4%. This indicates that our “Chictopia10k”

dataset can introduce greater data diversity and improve the

network generality. We show the F-1 scores for each label

in Table 3. Generally, our Co-CNN shows much higher per-

formance than other methods. In terms of predicting small

labels such as hat, belt, bag and scarf, our method achieves

a very large gain, e.g. 72.81% vs 29.20% [15] for sunglass,

81.51% vs 53.66% [15] for bag. We also achieve much

better performance on human body parts, e.g. 84.16% vs

53.79% [15] for left-arm. It demonstrates that Co-CNN per-

forms very well on various poses (e.g. human body parts),

fine details (e.g. small labels) and diverse clothing styles.

Fashionista dataset [31]: Table 4 gives the comparison

results on the 229 test images of the Fashionista dataset. All

results of the state-of-the-art methods were reported in [15].

Note that deep learning based algorithm requires enough

training samples. Following [15], we only report the perfor-

mance by training on the same large ATR dataset[15], and

then testing on the 229 images on Fashionista dataset. Our

method “Co-CNN (full)” can substantially outperform the

baselines by 10.07%, 32.57% and 36.5% over “ATR [15]”,

“PaperDoll [30]” and “Yamaguchi et al. [31]” in terms of

average F-1 score, respectively. We cannot compare all met-

rics with the CRF model proposed in [25], since it only re-

ported the average pixel-wise accuracy, and only achieved

84.88%, which only slightly improved the results 84.68%
of PaperDoll [30] on Fashionista, as reported in [25].

The qualitative comparison of parsing results is visual-

ized in Figure 5. Our Co-CNN outputs more meaningful

and precise predictions than PaperDoll [30] and ATR [15]

despite the large appearance and position variations.

4.3. Discussion on Our Network

We further evaluate the different network settings for our

three components, presented in Table 2 and Table 3.

Local-to-Global-to-Local Hierarchy: We explore dif-

ferent variants of our basic network structure. Note that all

the following results are obtained without combining the

global image-level label context and the local super-pixel

contexts. First, different down-sampled spatial resolutions

are tested. The “baseline (150-75)”, “baseline (150-75-37)”

and “baseline (150-75-37-18)” are the versions with down-

sampling up to 75× 50, 37× 25 and 18× 12, respectively.

When only convolving the input image with two resolutions

(“baseline (150-75)”), the performance is worse than the

state-of-the-arts [15]. After further increasing the depth of

the network by down-sampling up to 37 × 25 (“baseline

(150-75-37)”), the F-1 score can be significantly increased

by 5.44%, compared to “baseline (150-75)”. The “baseline

(150-75-37-18)” can further improve the F-1 score by 3.4%,

compared to “baseline (150-75-37)”. We do not report re-

sults by further down-sampling the feature maps since only

slight improvement is achieved with smaller resolutions.

Second, we also evaluate the effectiveness of the cross-

layer context combination. The “baseline (150-75-37-18,

w/o fusion)” represents the version without cross-layer

combinations. The large decrease 7.47% in F-1 score com-

pared with the “baseline (150-75-37-18)” demonstrates the

great advantage of the cross-layer combination. Combin-

ing the cross-layer information enables the network to make

precise local predictions and respect global semantic infor-

mation.

Finally, we also test the FCN architecture [22] on seman-

tic segmentation in the human parsing task, i.e., fine-tuning

the pre-trained classification network with the human pars-

ing dataset and only performing the combination for the

pixel-wise predictions. Its performance is much worse than

our network (i.e. 64.63% vs 72.72% of “baseline (150-75-

37-18)” in average F-1 score).

Global Image-level Context: We also explore differ-

ent architectures to demonstrate the effectiveness of uti-

lizing the global image label context. All the following

results are obtained without using local super-pixel con-

texts. After the summation of global image label probabil-

ities (“Co-CNN (summation with global label)”), the per-

formance can be increased by 1.26%, compared to “base-

line (150-75-37-18)”. After concatenating the global im-

age label probabilities with each subsequent convolutional

layer, “Co-CNN (concatenate with global label)”, the per-

formance can be improved by 1.84% in F-1 score, com-

pared to the version without using global label (“baseline

(150-75-37-18)”). The further summation of global image

label probabilities can bring 0.71% increase in F-1 score,

shown as “Co-CNN (concatenate, summation with global

label)”. The most significant improvements over “baseline
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Image PaperDoll ATR

glassup skirt scarf r-shoe r-arm pants l-shoe

l-arm hat face belt bag hair nulldressl-leg

r-leg

Co-CNN (full) Image PaperDoll ATR Co-CNN (full) Image PaperDoll ATR Co-CNN (full)

Figure 5. Result comparison of our Co-CNN and two state-of-the-art methods. For each image, we show the parsing results by Paper-

Doll [30], ATR [15] and our Co-CNN sequentially.

(150-75-37-18)” can be observed from the F-1 scores for

clothing items, e.g., 7.68% for skirt and 4.32% for dress.

The main reason for these improvements may be that by ac-

counting for the global image-level label probabilities, the

label exclusiveness and occurrences can be well captured

during dense pixel-wise prediction.

Local Super-pixel Contexts: Extensive evaluations are

conducted on the effectiveness of using local super-pixel

contexts. The average F-1 score increases by 0.9% by em-

bedding the within-super-pixel smoothing into our network

(“Co-CNN (w-s-p)”), compared to the version “Co-CNN

(concatenate, summation with global label)”. Our full net-

work “Co-CNN (full)” leads to 1.68% increase. For the F-1

score for each semantic label, the significant improvements

are obtained for the labels of small regions (e.g. hat, sun-

glasses and scarf). For instance, the F-1 score for hat is in-

creased by 7.02%, and 9.19% for scarf, compared with “Co-

CNN (concatenate, summation with global label)”. This

demonstrates that the local super-pixel contexts can help

preserve the local boundaries and generate more precise

classification for small regions. Previous works ofter apply

the super-pixel smoothing as the post-processing step.

5. Conclusions and Future Work

In this work, we proposed a novel Co-CNN architec-

ture for human parsing task, which integrates the cross-

layer context, global image label context and local super-

pixel contexts into a unified network. For each input

image, our Co-CNN produces the correspondingly-sized

pixel-wise prediction in a full end-to-end way. The local-

to-global-to-local hierarchy is used to combine the local de-

tailed information and global semantic information. The

global image label prediction, within-super-pixel smooth-

ing and cross-super-pixel neighborhood voting are formu-

lated as the natural components of our Co-CNN. Exten-

sive experimental results clearly demonstrated the effective-

ness of the proposed Co-CNN. A new large dataset “Chic-

topia10k” has been built. In the future, we will further ex-

tend our Co-CNN architecture for generic image parsing

tasks, e.g., object semantic segmentation and scene parsing.

Our online demo website will be released upon publication

to demonstrate the efficiency and effectiveness.
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