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Abstract

In this paper, we propose a structural segmentation algo-

rithm to partition multi-view stereo reconstructed surfaces

of large-scale urban environments into structural segments.

Each segment corresponds to a structural component de-

scribable by a surface primitive of up to the second or-

der. This segmentation is for use in subsequent urban object

modeling, vectorization, and recognition.

To overcome the high geometrical and topological noise

levels in the 3D reconstructed urban surfaces, we formulate

the structural segmentation as a higher-order Conditional

Random Field (CRF) labeling problem. It not only incorpo-

rates classical lower-order 2D and 3D local cues, but also

encodes contextual geometric regularities to disambiguate

the noisy local cues. A general higher-order CRF is diffi-

cult to solve. We develop a bottom-up progressive approach

through a patch-based surface representation, which iter-

atively evolves from the initial mesh triangles to the final

segmentation. Each iteration alternates between perform-

ing a prior discovery step, which finds the contextual regu-

larities of the patch-based representation, and an inference

step that leverages the regularities as higher-order priors to

construct a more stable and regular segmentation.

The efficiency and robustness of the proposed method

is extensively demonstrated on real reconstruction mod-

els, yielding significantly better performance than classical

mesh segmentation methods.

1. Introduction

Modern multi-view stereo (MVS) algorithms are capable

of reconstructing a large-scale 3D urban surface with un-

precedented scalability and accuracy [1, 6, 7, 16, 27]. Seg-

menting the reconstructed surfaces is fundamental to higher

level operations like object modeling and understanding a

scene. Different from general clean meshes, the recon-

structed meshes contain high geometrical and topological

noises due to the imprecision of the reconstruction process.

Besides, the reconstructed surface is under-sampled due to

the insufficient image resolution or occlusion. Therefore,

Figure 1: An example of the structural segmentation de-

composing the reconstructed surface (left) into components,

such as roofs, façades, domes, spires, and chimneys and so

on (right).

the segmentation problem is challenging despite the exis-

tence of a vast body of mesh segmentation literature. In

this paper, we investigate the problem of a precise struc-

tural partition of a reconstructed urban surface. Each seg-

ment is intended to possess homogeneous textures and can

be described by a second order surface patch. Often, such

a segment corresponds to a structural component, such as a

façade, roof, dome or column, as shown in Figure 1.

Related work. A significant number of works have been

devoted to partitioning urban scenes into structural seg-

ments. The input can be 2D images [25], 3D points from

LiDAR [20], or 2D and 3D jointly [9, 16, 19]. The point

clouds used in these approaches are unstructured thus these

approaches are less aware of the topology. The approaches

in [9, 16] are closest to ours since we all focus on the MVS

reconstructed surface.

While mesh segmentation has rich literature, existing

methods handle relatively clean input meshes. General pur-

pose methods such as [10, 21] are able to produce seman-

tically meaningful segmentation, however do not guaran-

tee man-made characteristics like piecewise-qudraic, sym-

metry and the like. Our approach is highly related to the
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primitive-fitting based mesh segmentation methods, which

can be roughly divided into two approaches: the fast greedy

approaches [2, 18], and the accurate but time-consuming

variational approaches [3, 28]. In Section 5, our evaluation

shows that the performance of these approaches declines

with the existence of reconstruction noises.

CRFs, which encode powerful probabilistic formula-

tions, are ubiquitously applied to the segmentation problem.

Pairwise CRFs which only model local interactions between

variables can produce good segmentation results, but may

fail at boundaries, especially in the presence of noise, in-

completeness and ambiguities. Therefore the use of higher-

order potentials is motivated in a general manner, to encode

priors like label consistency [11, 12], co-occurrence statis-

tics [14, 15] and general pattern-based potential [13].

Different from the motivation of the above approaches,

we target a structural segmentation of reconstructed meshes

in urban environments, which possesses strong urban pri-

ors, such as piecewise-planarity [8], the Manhattan-world

assumption [5, 26], inter-element relations [16, 31], and co-

occurrence patterns [30]. Inspired by the pattern-based po-

tentials of CRFs [13], we encode the urban regularity pri-

ors in a higher-order potential in the form of the Pn Potts

model, which is later demonstrated to significantly improve

the segmentation accuracy.

Our contributions are as follows:

• A new higher-order CRF formulation for the 2D-3D

joint segmentation.

• An implicit patch-based surface representation (Fig-

ure 2 bottom) that reduces the complexity, which

makes the higher-order CRF solvable in an efficient

manner. It embeds 2D and 3D information, and dy-

namically evolves from an input triangle mesh to struc-

tural components as the algorithm proceeds.

• An efficient algorithm involving intermediate graph-

matching to impose higher-order shape priors, that tol-

erates defects and produces results of high regularity.

2. Higher-order CRF Formulation

We start from a triangular mesh S , reconstructed from

multi-view images I, using large-scale MVS methodolo-

gies (e.g., [7, 17, 27]). Our target is to decompose the sur-

face into structural components like façades, roofs, domes,

and the like, as shown in Figure 1, 6. Every component pos-

sesses homogeneous textures, and fits a simple geometric

primitive (a quadratic surface in our method). We call such

decomposition a structural segmentation as it reveals the

architectural structure.

The surface S is represented by a set of disjoint patches

called surface units {x0, x1, ..., xn}. The structural seg-

mentation is formulated as a labeling problem: surface units

that belong to the same structural component are assigned

Data: mesh surface S , images I, threshold ǫ.
Result: structural segmentation represented by a

graph G (Each node x ∈ G represents a

disjoint surface patch, and y is the label of x
that represents a quadric.).

Initialize G(0) as the dual graph of S ;

repeat
Ensure local photo-geometry consistency using

lower order potentials φi and ψij (Eqn 2, 3);

Find regular patterns {R} in G(t) (Eqn 6);

foreach R do

Identify every subgraph Gc ⊆ G(t) that

closely matches R;

Conform Gc to R by imposing higher order

potential ψR (Eqn 7);

end

Infer the labeling y
(t) by minimizing E(t) (Eqn 1);

Reduce G(t) to G(t+1) by merging nodes with the

same label, and volume discrepancy is less than ǫ
(as shown in Figure 2);

Update the label set Ly by fitting new nodes

{x(t+1)} with quadrics;

until G(t+1) = G(t);

Algorithm 1: Overview of the iterative algorithm

with the same label. Unfortunately, the existence of noises

severely degrades the local properties of the surface units,

making them unable to recover the correct label. The neigh-

boring region, as well as the global context, needs to be

taken into consideration. This motivates us to adopt the

CRF framework, a structured probabilistic model, to pre-

dict the most probable label.

The goal of the CRF labeling is to assign every sur-

face unit xi with a labeling yi, which indicates the most

probable fitted quadric. We use a tuple (p, η) to describe

a quadric, where p is a parameterized quadratic primi-

tive (the shape attribute), and η the pose parameter (po-

sition and orientation) of the quadratic primitive. The

label set is composed of a set of such quadrics Ly =
{(p1, η1), (p2, η2), ..., (pM , ηN )}. These quadratic primi-

tives pi are constructed by quantifying the geometrically

best fitted quadrics of all surface units, using the DB-

SCAN [4] method.

Our approach progressively aggregates small surface

units into a larger one when they belong to the same struc-

tural component. Initially, each surface unit represents a

mesh triangle; at every iteration, neighboring surface units

that fit identical quadrics are merged; eventually, each sur-

face unit is described by a unique quadric.

At t-th iteration, the CRF is defined on a patch-based sur-

face representation G(t) = (x(t), y(t), a(t), b(t), C(t)) (e.g.,
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Figure 2 bottom), where x(t) = {x
(t)
i } is the set of nodes

representing the surface units, y(t) = {y
(t)
i } is the labeling

of x(t), a(t) ⊆ x(t) × x(t) is the set of edges representing

the 3D demarcation line intersected by neighboring surface

units, b(t) is the labeling of a(t) (b(t) is an auxiliary variable

to find regularities, detailed later in Section 4), and C(t) is

the set of cliques. A clique c, which may also be viewed as

a hyper-edge of G(t), contains a set of surface units that are

conditionally dependent on each other.

The CRF energy function takes the following form (the

superscript (t) is omitted hereafter when we discuss each

individual iteration):

E =
∑

xi∈S

φi(yi) +
∑

xj∈N (xi)

ψij(yi, yj) +
∑

c∈C

ψR(yc) (1)

where the unary potential φi measures the photometric co-

herence of xi to the input multi-view images I, the pairwise

potential ψij encodes the 2D-3D joint domain discontinuity

constraints at the intersection of xi and xj , and the higher-

order potential ψR imposes regularity priors to enforce a

regular and clean partition.The potentials are further elabo-

rated on in the following sections. Parameters involved in

the potentials are learned by cross validation. As the penalty

function is semi-metric, αβ-swap is used for inference.

We assign the optimal labels to y by minimizing the en-

ergy function. When neighboring units are assigned to the

same label (effectively, the same quadric), they are evalu-

ated for merging by the volume discrepancy measurement
∫

xi∪xj
||n̂||2 dS, ||n̂||2 denotes the length of the difference

vector n̂ to the fitted quadric along the normal direction.

Taking plane, cylinder and sphere, the three most common

primitives in a man-made scene as examples: to fit a plane,

n̂ = n · (S − x); for cylinders, n̂ = ‖S − x‖2 − r; for

spheres, n̂ = ‖(S − x)× n‖2 − r.

After merging, a new set of surface units x(t+1) is con-

solidated for the next iteration, and y(t) is used as the ini-

tial labeling of x(t+1), as illustrated in Algorithm 1. The

patch-based surface representation is simplified after each

iteration, as shown in Figure 2. Our segmentation approach

is equivalent to a progressive graph reduction. As the graph

reduces, the labeling problem complexity decreases as well.

3. Lower-order Potentials

The first two lower-order potentials of the energy func-

tion, which incorporate local photometric and geometric

properties, are defined in this section.

Unary Potential. Structural components are mostly sim-

ple by design, for construction purposes. Therefore a struc-

tural component can be well described by a quadratic sur-

face. The unary potential measures how likely a surface unit

xi can be approximated by a quadric (pm, ηn) (associated
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Figure 2: The progressive segmentation and graph reduc-

tion. Every surface partition (top) corresponds to a patch-

based graphical representation (bottom). Since the segmen-

tation process is constrained by regularities, the reduced

graph becomes visually regular.

with the label yi) in terms of photo-consistency energy [16].

This term computes the aggregated dissimilarity of the pro-

jections in all pairs of the input images with respect to the

approximated quadrics.

φi(yi) =
∑

j,k

∫

Ω
qi
jk

f(Ij , Ik)(s)ds (2)

where f(Ij , Ik)(s) is implemented using the sum of nor-

malized cross correlations (NCCs) for multiple sizes of the

neighborhood of s [16], ΩSi

jk the intersected domain of pro-

jections in images Ij and Ik induced by the approximated

surface qi.

Pairwise Potential. Strong correspondences can be ob-

served between photometric and geometric edges. Due to

illumination change and silhouette, the boundary of surface

units can be projected onto gradient domain edges in im-

ages. Each pair of adjacent surface unit xi and xj share

a common boundary aij . The pairwise potential imposes

the joint-domain smoothness within a surface unit xi, while

allowing strong bends at adjacency aij , and is given by:

ψij(yi, yj) =

{

θe(1− e−fe(aij)) yi = yj
θe′e

−fe(aij) yi 6= yj
(3)

where fe(aij) measures the edge coherence of both 2D-3D

feature edges w.r.t. the adjacency boundary aij , θe and θe′

the balancing parameters.

fe(a) =

∫

a

(
∑

I∈I

f2d(a(t), I) + βf3d(a(t))) dt (4)

The 2D edge measurement f2d is defined similarly to

the directional edge filter proposed in [5]: f2d(~a, I) =
Ω(~a)∇dI(s) ds /

∫

Ω(~a)
∇d⊥I(s) ds, where Ω(~a) = Πm◦~a
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Figure 3: (a) Top: a surface partition at t-th iteration. Bottom: the corresponding patch-based surface representation G(t).

(b) R is a regularity that occurs four times in G(t). Nodes and edges are color coded by the labeling. (c) The the labeling of

the four subgraphs which contain R is regular. (d) The four cliques are encouraged to preserve their labeling. Translational,

rotational (e.g., c2 and c3) and reflective (e.g., c3 and c4) symmetry are detected.

is the 2D projection of an infinitesimal 3D edge ~a onto im-

age I , d the normalized direction vector of the correspond-

ing 2D edge, and d⊥ the direction vector perpendicular to

d. The 3D edge term f3d measures the ridges and valleys

value [22] in the direction of a.

4. Higher-order Regularity Potential

Reconstructed meshes inherently contain geometrical

and topological noises (e.g., distortions, holes, and genus

are ubiquitous in Figure 1, 6 ), which affect the reliability of

local geometric properties. An urban assumption, that man-

made objects of urban scenes are usually regular by design,

is utilized to disambiguate those noisy local properties. Our

key observation here is that the repetition of structural pat-

terns is a distinctive urban regularity. For instance, the par-

allelism is a repetition of surface orientation or edge direc-

tion; symmetry is a repetition of geometric shape; and archi-

tecture style is a repetition of the inter-relationship among

a combination of structural elements. Close to the idea in

[31], through favoring repetition, and suppressing the minor

details and noises, we are able to obtain a more regular sur-

face partition. The labeling of a clique (a set of surface units

that are conditionally dependent on each other) is regarded

regular when it conforms to a frequent labeling pattern, and

the pattern is called a regularity.

We first discuss the finding of the regularities using sub-

graph isomorphism, and then we propose a higher-order

potential to encode the regularities constraints as priors,

which eventually improves the segmentation quality. Our

proposed regularity-constrained potential encourages every

clique to take a sufficiently frequent labeling pattern.

ψR(yc) =

{

0 if yc is regular

ψc(yc) otherwise

Contextual Regularities. Different from a restrictive ap-

proach of using parallelism and orthogonality [5, 16, 26],

or further heuristically enumerating more pairwise regular-

ities [31], we define regularity intrinsically from the input.

For example, Figure 3 and 4 show regularities discovered

from a palace and a high-rise building. A regularity is a

sufficiently frequent graphical pattern R =(xR,yR,aR,bR)

in the patch-based surface representation. This definition

characterizes the inter surface units relations arising from

human design and construction. Thanks to the intrinsic na-

ture of the regularity, our approach is adaptive to a large

variety of input.

The recurrence of a graphical pattern is defined by a

graph theory concept, subgraph isomorphism, which is a

structure-preserving bijection between two labeled graphs.

Both nodes’ labeling y and edges’ labeling b contribute to

the isomorphism. Similar to the node label set Ly , the edge

label set is comprised of tuples Lb = {(q, θ)}, where {q}
is constructed by quantifying a as parametric conics, {θ}
by quantifying the dihedral angles between adjacent surface

units’ orientations, i.e., θij = arccos (ni · nj). The edge la-

beling b implicitly encodes pairwise geometric relations be-

tween surface units. Even better, a and b are translational,

rotational and reflective invariant. Thus, partial symmetry

of the surface S can be detected through a tailored isomor-

phism 1 (e.g., Figure 3(d)).

The concept of regularity can be formally defined with

an exact subgraph isomorphism. Let Gc denote the vertex-

1 Given two graphs g, g′, the tailored isomorphism ”≃” is a bijective

function f : x 7→ x′ satisfies,

∀i, lb(xi).p = lb(f(xi)).p, and (5a)

∀aij ∈ a, (f(xi), f(xj)) ∈ a
′ and

lb(aij) = lb((f(xi), f(xj))). (5b)

where ly : x 7→ Ly and la : a 7→ Lb are the label functions, lb(x).p is

the quadratic primitive.
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Figure 4: Left: a surface partition. Middle: examples of 1st,

2nd, 3rd order regularities. Right: an illustrative graph of

the patch-based surface representation.

induced subgraph formed by the clique c (e.g., in Figure 3,

Gi and ci), and the set of all vertex-induced subgraphs

G={Gc}. Given a minimum repetition frequency threshold,

minSup, R satisfies,

ς(R,Gi) =

{

1 ∃g ≃ R,VIS (g) = Gi

0 otherwise
(6a)

σ(R,G) =
∑

Gi∈G

ς(R,Gi) ≥ minSup (6b)

σ(R,G) denotes the occurrence frequency of R in G, ≃
the tailored isomorphism, and VIS (g) the vertex-induced

subgraph induced from g.

The regularities are found by using an exact subgraph

isomorphism based method, gSpan [29]. Every subgraph

Gi ∈ G is assigned a canonical label (identical canonical

labels lead to isomorphism), which is a minimum depth-

first search (DFS) code in this case. Through constructing a

DFS code tree based on the label set Ly and Lb, all k-length

frequent minimum DFS codes, or equivalently, regularities

consisting of k nodes, can be found.

Regularity-constrained potential. The higher-order po-

tential encodes the regularities we just discovered. These

regularities are far more expressive priors than local geo-

metric properties, on which conventional mesh segmenta-

tion approaches rely. Meanwhile, higher-order potentials

allow multiple interactions among surface units to be cap-

tured. The inter-relations between the surface units can dis-

ambiguate the unreliable local cues, and lead to a far more

accurate partition.

A regularity containing |c| nodes is a regularity of or-

der |c|, illustrated in Figure 4. The subgraph Gc, which is

vertex-induced from the clique c, is matched against all reg-

ularities of order |c|, to find a mapping to a regular labeling

R : (xc) 7→ L
|c|
y .

The straight forwards case is that Gc contains a regular-

ity R, meaning the clique’s initial labeling is identical to

yR. yc is already regular and is encouraged to be preserved,

i.e., R(xc) = yc. Otherwise, we use a volume discrepancy

measurement to define an inexact match [23] between Gc

and the closest regularity R. In that case, R maps every

Gc’s node to a label so that the labeling conforms to R,

R(xc) = yR.

The regularity potential takes the form of the Pn Potts

model [11]:

ψc(yc) =

{

0 if yc = R(xc)

θhp |c|
θα otherwise

(7)

where |c| =
∑

i∈c(1yi 6=R(xi)) measures the number of mis-

matches between yc and the labeling of the closest regular-

ity, θhp and θα are the parameters of the Pn Potts model.

Regularities essentially act as exemplars for frequently

occurring structures at the clique level. Once we have re-

covered the regularities, we can use them to perform inex-

act matching to find other imperfect instances, based on the

fact that: a few damaged instances of one regularity might

become difficult to recognize due to defects; meanwhile,

the other instances are still precise therefore can be used to

discover that regularity. Therefore, we first compute reg-

ularities through exact matching, which can be effectively

solved by exact graph isomorphism. Then we use these reg-

ularities to inexactly match them against all subgraphs in

G. These regularity priors enables our method to cope with

the noises. By utilizing this redundancy nature of the ur-

ban scene, our approach tolerates data imperfections. It also

outperforms previous methods when dealing with ambigui-

ties, which are inevitable in stereo reconstructed meshes.

5. Implementation and Experiments

We implemented the proposed algorithm in C++ and run

it on a PC equipped with 3.10GHz Intel Dual Core i5 CPU

with 16 GB RAM.

Complexity Reduction. Enumerating all subgraphs of G
to find the regularities triggers an exponential explosion,

which becomes the algorithm’s bottleneck. However, most

such subgraphs are weakly connected and present no regu-

larities. We only consider strongly connected disk-like sub-

graphs, like a sliding window on graph G. A breath-first

search starting from xi ∈ G is performed. The first |c| vis-

ited nodes forms a disk-like tree centered at xi. The nodes

form a clique c, and a vertex-induced subgraph Gc. The

enumeration complexity is reduced to O(|c||x(t)|), mean-

while, nearly all regular patterns are preserved.

The complexity of each iteration is proportional to the

size of G and the order of regularities. To balance the com-

plexity between G and R, we search up to t-th order regu-

larities at the t-th iteration for efficiency. At the early itera-

tions,G has a huge size and is comprised of over-segmented

surface units which are unlikely to represent complex reg-

ularities. Thus, we only search the local (lower-order) reg-

ularities. Later as G is significantly reduced, the segmen-
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Figure 5: Comparison with [2] on a public LiDAR dataset “Herz-Jesu-P8” [24] with close-ups shown in region A, B, and C.

Due to noises and ambiguities, primitive-based methods disturbs around the boundaries. In contrast, our method generates a

segmentation with clean and crisp border. Specifically, in B, our method successfully recovers tiny structures.

Table 1: Statistics of the experiments. #I: the number of

images used for reconstruction; Area: the covered area of

the reconstructed meshes in km2; #TRI: the triangle num-

ber of the reconstructed meshes. #SEG: the number of final

segments; #R: the number of discovered regularities at the

final iteration; ours: the time spent for segmentation using

method (in minutes); vsa: the time spent using [28]; prim:

using [2]; crf: using a naive pairwise crf.

data #I Area #TRI #SEG #R ours vsa prim crf

Capitol 68 0.03 203K 247 26 5 25 2 3

Hez 12 - 248K 320 8 3 53 2 2

Stadium 100 0.08 40K 286 12 4 31 1 3

Dualwing 32 0.01 50K 76 62 2 6 1 1

CityA 2,177 2.8 2,437K 7,408 247 85 - 21 78

CityB 2,092 8.2 3,669K 11,092 163 136 - 42 119

tation becomes abstractive, and we explore more sophisti-

cated regularities for shape priors. This bottom-up approach

shares same insight with the Apriori algorithm: any sub-

graph of a high order regularity must be a regularity as well.

Exploring only low order regularity in the early iterations

will not cause us to lose any high order ones in later itera-

tions. However, it saves us tremendous computation time.

As described in Section 4, the regularities will be retained

and aggregated through the iterations. This property enables

our approach to find regular features at multiple scales.

Datasets. We performed both empirical and quantita-

tive evaluation on six datasets: a public dataset “Herz-

Jesu-P8” [24], and challenging real world reconstruction

datasets include three buildings “Capitol”, “Stadium”, “Du-

alwing” and two city-scale “CityA” and “CityB”. The real

world reconstruction contains high geometric and topologi-

cal noises. As shown in Figure 6 “CityB” has a lot of topo-

Figure 7: Precision-Recall evaluation of four methods:

variational shape approximation (vsa), primitive-fitting

based segmentation (prim), a naive joint segmentation using

pairwise CRF (crf ), and our method (ours). Lines further to

the upper right represent better matches to the ground truth.

logical holes which are usually very difficult to handle in

general mesh segmentation methods. The same pipeline is

used for all the real world datasets to get the rough meshes.

We use [17] to estimate the poses of the input images, [7] to

reconstruct the surfaces, and [27] to refine the reconstructed

surfaces. Statistics of the datasets are listed in Table 1. The

volume discrepancy threshold ǫ is set to 0.001 for all the

datasets.

Performance comparison. We compare our results

against two representative quadric-fitting based segmenta-

tion methods: a greedy approach (prim) [2], and a varia-

tional approach (vsa) [28]. Furthermore, we perform a con-
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Figure 6: The reconstructed surface and segmentation of CityA downtown (top), CityB downtown (bottom). Our approach

can be easily scaled up to handle city-scale input. (Please refer to the color print for better visualization.)
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Figure 8: Robustness to noises evaluation of the methods on

the original “Herz-Jesu” data, and four artificial noise lev-

els (50/100/150/200% of the average edge length). A close

view of the meshes is shown on the top. The precision-

recall curves of our method are less influenced as the noise

level increases.

trolled evaluation to see how the higher-order component

affects our method. That is, we evaluate its performance

if the higher-order potential is removed (crf ). To the best

of our knowledge, there is no publicly available benchmark

for structural segmentation of urban scenes. We manually

label four datasets as the ground truth. In order to quan-

titatively compare the results of the algorithms against the

ground truth, we use the information retrieval statistics of

precision and recall. Precision is defined as the fraction of

segment boundaries in the algorithm’s result that are near

any segment boundaries of the ground truth. Recall is de-

fined as the fraction of segment boundaries in the ground

truth that are near any boundary of the algorithm’s result.

We define “near” by choosing a geodesic distance threshold

(twice the average mesh edge is used in the evaluation).

Figure 7 shows the results of the precision-recall evalua-

tion. The variational approach is very sensitive to noises [3,

28]. The vsa approach underperforms when compared to

the other three in all four test sets. With an appropriate num-

ber of segments (middle of the precision-recall curve), crf

outperforms prim thanks to the joint formulation. However,

when the surface is extremely over/under-segmented (two

ends of the precision-recall curve), the prim approach per-

forms better. This may be due to the image gradients being

computed at a fixed scale, in a range around the appropriate

number of segments.

To evaluate the robustness of the four approaches to-

wards noise, we apply the random vertex displacement

noise of four levels (50/100/150/200% of the average edge

length) to the “Herz-Jesu-P8” data, and measure four ap-

proaches’ performances (Figure 8). The accuracy of all

methods drops as the noise increases, while our methods

is the least susceptible. It maintains a precision-recall ac-

curacy of above 70%-70% at the 200% noise level. The

vsa approach (bottom-right) is computationally expensive.

Every vsa sample consumes more than six hours when the

number of segments go beyond 800. Therefore we use the

dashed lines to indicate the trend after 800 segments.

An example of an empirical evaluation is shown in Fig-

ure 5. The primitive-fitting based 3D segmentation method

can recover several dominant structural primitives on Herz-

Jesu-P8. Due to the lack of regularity awareness to enforce

a clear segment boundary, the boundaries are usually per-

turbed. On the contrary, our method can successfully re-

cover a more precise boundary. (For more results of empiri-

cal evaluation, please refer to the supplementary materials.)

Apart from the robustness in handling noise, our ap-

proach can easily be applied to a large-scale reconstruction

surface, as shown in Figure 6. On the contrary, vsa has high

time complexity, and prim has high space complexity. Thus

it is difficult for them to adapt to large-scale data.

In summary, our approach has an obvious advantage in

all test sets, showing the effectiveness of the urban regular-

ity prior. The advantage of considering contextual regulari-

ties prevails in tackling ambiguities and defects.

6. Conclusion

We have proposed an approach to jointly segment recon-

structed urban scenes from multi-view stereo. Structural

segmentation not only takes the textural and structural in-

formation into account, but also unveils and investigates the

relationship between structural segments to further regular-

ize the results. One of our key innovations is that the con-

textual information of the urban scene structure is encoded

in the higher-order potential of the CRF. Solving such an

optimization gives us superior results over the state-of-the-

art related segmentation approaches. Such topology-aware

structural segmentation provides a powerful representation

for manipulating and editing the unstructured reconstructed

meshes. We believe our topology-constrained structural

segmentation can be applied to improve and innovate a va-

riety of research and applications.
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[12] P. Kohli, L. Ladický, and P. H. S. Torr. Robust Higher Order

Potentials for Enforcing Label Consistency. International

Journal of Computer Vision, 82(3):302–324, Jan. 2009. 2

[13] N. Komodakis and N. Paragios. Beyond pairwise energies:

Efficient optimization for higher-order mrfs. In IEEE Con-

ference on Computer Vision and Pattern Recognition Work-

shops, pages 2985–2992, 2009. 2

[14] H. S. Koppula, A. Anand, T. Joachims, and A. Saxena. Se-

mantic labeling of 3d point clouds for indoor scenes. In

Advances in Neural Information Processing Systems, pages

244–252, 2011. 2

[15] L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr. Graph cut

based inference with co-occurrence statistics. In European

Conference on Computer Vision, pages 239–253. Springer,

2010. 2

[16] F. Lafarge, R. Keriven, M. Brédif, and H.-h. Vu. A hybrid

multiview stereo algorithm for modeling urban scenes. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

35(1):5–17, Jan. 2013. 1, 2, 3, 4

[17] M. Lhuillier and L. Quan. A quasi-dense approach to surface

reconstruction from uncalibrated images. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 27(3):418–33,

Mar. 2005. 2, 6

[18] Y. Li, X. Wu, Y. Chrysathou, A. Sharf, D. Cohen-Or, and

N. J. Mitra. GlobFit. ACM Transactions on Graphics,

30(4):1, 2011. 2

[19] Y. Li, Q. Zheng, A. Sharf, D. Cohen-Or, B. Chen, and N. J.

Mitra. 2D-3D fusion for layer decomposition of urban fa-

cades. International Conference on Computer Vision, 1:882–

889, Nov. 2011. 1

[20] H. Lin, J. Gao, Y. Zhou, G. Lu, M. Ye, C. Zhang, L. Liu,

and R. Yang. Semantic decomposition and reconstruction of

residential scenes from LiDAR data. ACM Transactions on

Graphics, 32(4):1, July 2013. 1

[21] J. Lv, X. Chen, J. Huang, and H. Bao. Semi-supervised

Mesh Segmentation and Labeling. Computer Graphics Fo-

rum, 31(7):2241–2248, Sept. 2012. 1

[22] Y. Ohtake, A. Belyaev, and H.-P. Seidel. Ridge-valley lines

on meshes via implicit surface fitting. ACM Transactions on

Graphics, 23(3):609, Aug. 2004. 4

[23] K. Riesen and H. Bunke. Managing and Mining Graph Data,

volume 40 of Advances in Database Systems. Springer US,

Boston, MA, 2010. 5

[24] C. Strecha, W. von Hansen, L. Van Gool, P. Fua, and

U. Thoennessen. On benchmarking camera calibration and

multi-view stereo for high resolution imagery. In IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1–8. IEEE, June 2008. 6

[25] Z. Tu, X. Chen, A. L. Yuille, and S. C. Zhu. Image parsing:

Unifying segmentation, detection, and recognition. Interna-

tional Journal of Computer Vision, 63(2):113–140, 2005. 1

[26] C. A. Vanegas, D. G. Aliaga, and B. Benes. Building recon-

struction using manhattan-world grammars. In IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

358–365. IEEE, June 2010. 2, 4

[27] H.-H. Vu, P. Labatut, J.-P. Pons, and R. Keriven. High accu-

racy and visibility-consistent dense multiview stereo. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

34(5):889–901, May 2012. 1, 2, 6

[28] D.-M. Yan, W. Wang, Y. Liu, and Z. Yang. Variational mesh

segmentation via quadric surface fitting. Computer-Aided

Design, 44(11):1072–1082, Nov. 2012. 2, 6, 8

[29] X. Yan and J. Han. gSpan: graph-based substructure pattern

mining. In IEEE International Conference on Data Mining,

volume 1, pages 721–724. IEEE Comput. Soc, 2002. 5

[30] J. Yuan, M. Yang, and Y. Wu. Mining discriminative co-

occurrence patterns for visual recognition. In IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

2777–2784, 2011. 2

[31] Q.-Y. Zhou and U. Neumann. 2.5D building modeling by

discovering global regularities. In IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 326–333. IEEE,

June 2012. 2, 4

2101


