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Abstract

The key contribution of this paper is the compact square

object localization, which relaxes the exhaustive sliding

window from testing all windows of different combinations

of aspect ratios. Square object localization is category

scalable. By using a binary search strategy, the num-

ber of scales to test is further reduced empirically to only

O(log(min{H,W})) rounds of sliding CNNs, where H
and W are respectively the image height and width. In the

training phase, square CNN models and object co-presence

priors are learned. In the testing phase, sliding CNN models

are applied which produces a set of response maps that can

be effectively filtered by the learned co-presence prior to

output the final bounding boxes for localizing an object. We

performed extensive experimental evaluation on the VOC

2007 and 2012 datasets to demonstrate that while efficient,

square localization can output precise bounding boxes to

improve the final detection result.

1. Introduction

Object detection and recognition has been a long stand-

ing problem in computer vision. The advent of state-of-the-

art machine learning techniques has made important break-

through in recent years. Given a testing image, one of the

main tasks is to localize (that is, find the coordinates of an

image window that contains) a semantic object. Once an

image window is given, the remaining step is object recog-

nition, which has been well addressed recently by the state-

of-the-art convolutional neural network (CNN) [14] which

labels the most likely object categories (or background).

The exhaustive approach is what researchers call “sliding

window” testing, where image windows of all possible sizes

and aspect ratios at all possible locations are tested. Not sur-

prisingly, the exhaustive sliding window was quickly writ-

ten off as impractical due to its prohibitive cost, and most re-

searchers resort to compromises and consider significantly
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Object  Image Compact  Square  Object  Image

Figure 1. Object images and their compact square images.

Accuracy CNN model Human

whole image 87.3% 97.6%
compact square image 84.6% 95.4%

Table 1. Empirical recognition accuracy of the CNN model [14]

and human recognition on the VOC 2007 dataset. We ask people to

label the category based on compact square object (CSO) images.

With more careful parameter tuning of the CNN we believe the

above accuracy can be further improved.

fewer image windows. Representative approaches include

the effective selective search method [20]. In practice, the

exhaustive search can be sidestepped 1 but quantization will

be involved in the form of uniform object proposal sam-

pling.

While the exhaustive method searches over all possi-

ble positions, scales and aspect ratios of image windows,

given an H × W image, the number of aspect ratios and

scales combination is O(HW ) while the number of scales

is only O(min(H,W )). Therefore, if we could relax the as-

pect ratio requirement, the sliding window would be much

more efficient. Interestingly, we observe that both hu-

1 For example, a fixed set R of aspects (which can be learned form

the data) is used. Also in practice the sampling for the scale is propor-

tional to the object size, to have a constant variation of the object scale,

a logarithmic variation in terms of H (the image height) can be used.

The time complexity is thus O(R log(H)) which is comparable to our

O(log(min{H,W})).
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man vision and state-of-the-art computer vision are very

robust in object recognition when presented with what we

call a compact square object (CSO) image, defined as the

largest square region (hence fixed aspect ratio) within a tight

bounding box of the object in the image where some exam-

ples are given in Figure 1. Note that CSO images do not

contain the whole object. Table 1 tabulates our empirical

results on the top-1 recognition accuracy based on CSO im-

ages created from the VOC 2007 dataset. Specifically, We

train a 20 classes plus background CNN model respectively

on the whole images and CSO images, and evaluate the ac-

curacies by both computer (CNN model) and human. Both

recognition accuracies remain high on CSO images, show-

ing that objects can be recognized by seeing CSO image

with high chance.

This observation had inspired us to localize object re-

gions by localizing its CSO images, thus free of aspect ratio

testings, where on the other hand concatenating the detected

squares will reproduce the entire object. As our experi-

ments will show, our square localization scheme is efficient

and accurate as well, outputting precise bounding boxes to

increase detection rate in mAP. Computationally, we only

need to apply state-of-the-art recognition (e.g. CNN) ev-

erywhere in different scales to achieve compact square lo-

calization. Thanks to current GPU technology, GPU im-

plementation of CNN is extremely fast. As we will show,

we only need to implement O(min{H,W}) rounds what

we call sliding CNN. The logarithmic time complexity is

achieved by employing a binary search strategy that fur-

ther cuts down the number of landmark scales to be tested,

when the information content along a scale spectrum is

largely redundant. Large scale empirical studies confirm

that only O[log(min{H,W})] rounds of sliding CNN test-

ing is run in practice, though the worse complexity is still

O(min{H,W}) which is still impressive compared with

the exhaustive sliding windows. As we will show, our slid-

ing CNN is category scalable. That is, the running time is

largely independent of the number of object categories.

Albeit the promise, this scheme faces a technical chal-

lenge in practice: the response map suffers from clut-

ters, which makes it difficult to accurately delineate the

true compact square object region. To address this prob-

lem, we propose a novel and effective object co-presence

filter to drastically reduce clutter response, thus making

amenable the output of the relevant bounding boxes. Our

technique gives adequate consideration of the object spatial

co-presence prior in a robust statistical manner. Full im-

plementation details of object co-presence for decluttering

a response map are available in the appendix section.

Comparison with Part-Based Model At first glance our

scheme bears some resemblance to the part-based model

[7], but readers may have noticed the significant differences:

first, part-based model seek appearance representation in

part-level (e.g. wheels in a car); compact square images are

still object-level representation. Second, part-based model

learns a part location structure model for each category,

which makes it not scalable with increasing number of cate-

gories [5]. In contrast, our method simply concatenates de-

tected compact square object images with no special model

for any category, making our method easily scalable with

increasing number of object categories.

2. Related Work

In this section, we focus on object localization which is

a core issue in object detection and the main subject of the

paper.

The part-based model has been widely adopted [9, 8, 7]

to model an object as a composition of various object parts.

Dean et al. [3] proposed a hash-based approach for effi-

cient part detection, and the method has achieved good re-

sults. These methods score regions by considering parts ap-

pearance and location distribution. Impressive performance

has been achieved thanks to the discriminative and effective

hand-crafted features such as HOG. Our method bears some

resemblance in their use of sliding window for computing

part appearance scores. However, these methods must learn

different part patterns for different object categories. In

other words, it is not scalable with increasing number of

object categories, and thus less amenable to modern large-

scale datasets such as the Imagenet [17]. Another difference

when compared with the part model method is that it uses

a part level representation, whereas our compact square im-

age is very close to an object level representation.

Significant research attempt has been made to address

the complexity issue of object-level sliding window testing.

Lampert et al. [15] proposed a branch-and-bound strategy

to avoid testing all sub-windows in image. With recent

developments in deep learning, such as the notable work

by Krizhevsky et al. [14] which significantly improved the

state of the arts in object recognition, work on how to ex-

tend the success of deep neural networks in object detec-

tion has been intensified. In RCNN [10], the localization

task is done by selective search [20]. Thousands of object-

ness bounding boxes are produced. Then, deep CNN clas-

sifier is applied on each candidate bounding box to label

the object which is time consuming. Instead of applying

CNN on each candidate separately, in SPP-Net [12], fixed-

length feature on proposals are extracted on the last convo-

lutional layer using max pooling, which accelerates RCNN

by a considerable factor. Albeit the compelling detection

accuracy, these methods still belong to the pipeline involv-

ing pre-computing object proposals, and intractable sliding

window problem remains unsolved.

The great success of RCNN has motivated researchers

to study various approaches to objectness proposal genera-
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tion [21, 2]. One approach is to regress a set of object loca-

tions directly using deep learning. The pioneering work is

Overfeat [18] which integrated recognition, localization and

detection, where the location bounding boxes are provided

by a boxes regressor. Recently, a notable work [5] also

adopted bounding boxes regression. Comparing to [18], this

method can predict a set of class-agnostic bounding boxes

by considering both bounding boxes coordinate regression

and their likelihood of containing any object of interest.

These two considerations are integrated into a unified op-

timization model in their training phase. Our work goes be-

yond the above methods by considering object co-presence

priors to output reliable bounding boxes and is related to

previous work [4] which models context of object layout

to post-process detection outputs. The scenario is however

more complex for selecting compact square object (CSO)

images to form object windows.

In summary, previous works avoid or sidestep the ex-

haustive sliding windows. In this paper, we propose a novel

strategy for localizing compact squares images which en-

ables the CNN to operate in a sliding window manner effi-

ciently. In contrast to most of previous methods, our method

is category scalable.

3. Square Localization

In this section, we present our square localization

pipeline. We first train square CNN models on compact

square object images. Given square CNN models, we im-

plement sliding CNN testing to test everywhere in the image

to produce response maps at each scale.

3.1. Square CNN Model Learning

In the training phase, unlike previous work that trains the

CNN models on the whole object image, we train the mod-

els on compact square object images, or CSO images for

short, and thus call the trained model square CNN model.

We describe here how to prepare CSO images for training.

Given a H × W object image, without loss of gener-

ality, we assume H ≥ W . We require that the sampled

CSO images has 1 − τ overlap (τ = 0.2 in our paper)

with its neighboring CSO images. In other words, we will

uniformly sample (H − W )/(τW ) CSO images with size

W ×W along the vertical direction. Examples of the orig-

inal object images and their corresponding CSO images are

shown in Figure 1.

Let n be number of categories in the training data. We

train a n + 1 classes ways (square) CNN models on the

square images extracted from the training data. The addi-

tional way accounts for the background class in the n-object

category. We train the models on k (k = 3 in paper) differ-

ent input size, namely, {256 × 256, 128 × 128, 64 × 64}.

Our deep network architecture follows the setting of the

Figure 2. A sliding CNN example. The size of the square region

to be tested is s = 200. We choose the square CNN model u =

128 from {256, 128, 64} whose input size is closest to s. Then,

we resize the original image with u/s. The 200 × 200 square

window in the original image now becomes 128× 128 window in

the resized version . Sliding CNN testing is applied on the resized

image. A pixel in the response map then corresponds to a 200 ×
200 square window in the original image.

AlexNet [14], with the only difference being the size of the

input image in the first layer.

3.2. Sliding CNN

Now, we want to apply the learned square CNN models

on a testing image at different square scales. Recall that

each square CNN model requires the input size to be of size

{256 × 256, 128 × 128, 64 × 64}. Let s be the window

size under testing. We choose a square CNN model whose

input size u (u = {256, 128, 64}) is closest to s, and resize

the testing image with factor u/s. After applying sliding

CNN using the chosen square CNN model on the resized

image, the output of the square CNN model represents a

s × s square region in the original image. An example is

illustrated in Figure 2.

Our square model is applied on the entire resized im-

age with a stride of u/8, which is sufficient to cover a very

dense set of u × u square regions. Specifically, given any

u × u square region in the resized image, it has at least

0.88u2 ((1 − 1
16 )

2u2) overlap with one of the tested u × u
square regions. Our GPU implementation is similar to the

denseNet [13] which is very fast running at 0.05 second for

a million-pixel image on Nvidia’s K40 graphics board. The

difference is that the denseNet only operates on the first five

“convolutional” layers of a network, whereas we operate on

the fully-connected layers in a convolutional manner, and

use the CNN scores for indicating square regions.

3.3. Scale Selection by Binary Search

We have described above how to use square CNN model

given a testing window of arbitrary size. Ideally, we should

consider all possible square window scales in the testing im-

age which amounts to O(min{H,W}) running time com-

plexity. In practice, we found that the outputs within a range

of scales are similar. Therefore, we only test a number of

landmark square scales to reduce the computation.
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Figure 3. (a) input image, (b) ideal response map; the red pixels are “indicator pixels”. An indicator pixel denotes a compact square object

image. The entire object can be readily localized (the rectangle in blue) by concatenating indicator pixels, (c) cluttered response, the

response smaller than 0.2 is assigned to zero, (d) result filtered using our object co-presence prior.

We adopt a binary search strategy by recursively dividing

a given scale range into two halves until the scales within

the divided range have very similar output. To this end, we

define a similarity measure of two output. Since the output

size for two different scales is different, we resize each out-

put to the same size for comparison, where the chosen size

is their geometric mean. Then, given two scales L and S,

we denote M i
L and M i

S as the sliding CNN response output

for the ith category. Denoting the respective resize operator

as ϕi,L(·) and ϕi,S(·), we can write the distance measure as

d(S,L) =
1

n

n
∑

i=1

1

Πi

∥ϕi,L(M
i
L)− ϕi,S(M

i
S)∥2 (1)

where Π is the normalization factor, i.e., the number of pix-

els in ϕi,L(M
i
L). If d(S,L) is sufficiently small, the outputs

within scale range [S,L] are similar to each other. In other

words, we do not need to test the scales within [S,L] since

we already have the respective results at scale S and L.

Pseudo-code 1 summarizes the binary search strategy.

Calling scaleSelection(Smin, Lmax) will evaluate the scale

continuum [Smin, Lmax], where Lmax and Smin are respec-

tively the largest and smallest scales under consideration. In

our paper, we set ε = 0.03, Lmax = 500 and Smin = 32.

In practice, we found the number of selected scales is

O[log(Lmax − Smin)] ≤ O[log(min{H,W})]. Unlike the

denseNet which pre-assigns testing scales and thus may re-

sult in missing landmark scales or testing redundant scales,

our selection scheme is adaptive to testing data.

Algorithm 1 Pseudo-code of Scale Selection Function

Function scaleSelection(S,L)
if d(S,L) < ε or L = S + 1 then

return

else

selecting scale M =
√
LS

call scaleSelection(S,M)
call scaleSelection(M + 1, L)

end if

With scale selection, we obtain m landmark scales to

test. For each scale, the learned square CNN is run as a

universal region on the resized image and outputs n classes

response maps, where each pixel value indicates likelihood

score of a given category in a square region. In total we have

m× n response maps for different scales and categories.

3.4. Bounding Boxes Extraction

The next step is to extract bounding boxes given the re-

sponse maps, which turns out to be a non-trivial task. Fig-

ure 3 (c) shows a response map produced by sliding CNN

with a large number clutters.

To understand the cause of clutter, let us first consider

what constitutes an ideal response map. For simplicity and

without losing generality, a single response map is consid-

ered for a given object category at a given scale. Define

“indicator pixel” to be the center pixel of a (ground-truth)

compact square object image, as shown in Figure 3 (b). An

ideal response map is one with a high impulse at an indica-

tor pixel and zero responses at other pixels. By concatenat-

ing high impulse responses horizontally and vertically, the

object bounding boxes in the original image (blue rectangle

in Figure 3 (a)) can be readily extracted.

However, in practice, we often find pixels around indi-

cator pixels to have high responses as well, since an object

image with a minor shift in location can also produce a large

response by the CNN model or any reasonable recognition

technique. These cluttered responses pose challenges to the

extraction of precise bounding boxes.

To reduce clutters, in this paper, we introduce the object

co-presence prior: given an indicator pixel, its neighbor-

hood pixels cannot be an indicator pixel for another object

(with the same category), based on the assumption that the

respective indicator pixels for two detectable objects cannot

be in extreme close proximity (Figure 4 illustrates an exam-

ple). This is similar to non-maximal suppression (NMS),

while standard NMS technique cannot be applied since each

indicator pixel represents a square image window. Full im-

plementation details of object co-presence for decluttering

a response map are available in the appendix section.

In practice two detectable objects with same category

may be highly overlapping but this is quite rare. In the
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Figure 4. Two indicator pixels for two detectable objects should

not be in extreme close proximity. The yellow and blue points are

two indicator pixels for the respective square regions.

ILSVRC 2014 detection dataset, only 0.00034% of the ob-

ject pairs have an overlap larger than 90%. In this paper, we

conduct statistical analysis on a large volume of data to de-

rive the object co-presence priors. Given a clutter response

map (see Figure 3(c)), the remaining pixels after our co-

presence filtering represent a compact square square object

region (see (d)). We concatenate these indicating pixels ver-

tically (or horizontally) to produce the final bounding rect-

angle to produce the entire object. In Figure 3, the bounding

rectangle of the cat is the union of square regions indicated

by red pixels (responses larger than 0.2) in (d).

4. Experiments

Our method is highly scalable in the number of cate-

gories in testing. That is, the computation overhead is ar-

guably negligible when the number of object categories in-

creases. In testing square CNN models, the computation

overhead for each additional category only occurs in the last

layer of CNN which is extremely small. Furthermore, the

number of object categories exhibiting in the same image

is limited, so most of the response maps are zero matrices

which can be quickly discarded. In practice, the number

of response maps need to be processed is nearly constant,

independent of the number of object categories.

We first describe our experimental settings and then eval-

uate our method using the standard Pascal VOC 2007 and

2012 datasets. Then we analyze our localization perfor-

mance. Since our contribution is primarily on localization,

we will focus on our localization results rather than overall

object detection results.

4.1. Experiment Settings

We generate m × n response maps for different scales

and categories. We reject the response maps whose maxi-

mum response is smaller than 0.5. Typically, we only need

to process about 10 to 20 response maps for each testing

image, where the output bounding boxes are used for lo-

calizing an object. Since our focus is localization, for the

recognition part, we use an established CNN recognizer to

predict the category label and score, instead of checking the

corresponding response map, since our square CNN model

is trained on CSO images rather than whole object images.

In detail, the regions under the output bounding boxes are

first resized to 256 × 256, followed by applying another

CNN model learned from whole images (also resized into

256 × 256). The reason of using another CNN is as fol-

lows: although in our square framework we can output the

object score directly upon concatenating the full object box,

we found a 2–3mAP difference in comparison with assign-

ing score using a trained CNN geared to whole object im-

ages. Note that the number of output boxes is small after

our localization and thus the extra time is minor for apply-

ing a whole-object CNN classifier. We will report the mAP

performance of both square CNN and an additional pass of

applying whole-object CNN.

4.2. Pascal VOC

The Pascal Visual Object Classes (VOC) Challenge [6] is

one of the most common benchmarks for evaluating object

detection performance. The labeled objects belong to one of

the 20 object categories occurring in complex scenes with

different scales and aspect ratios.

Training methodology. Since the data size of VOC is

not large compared with more recent big datasets, we

first train three square CNN models with different input

sizes{2562, 1282, 642} on the ILSVRC 2014 object detec-

tion dataset which has 200 object categories. Then, three

square CNN models with 21 classes ways for VOC 2007

(2012) are fine-tuned on them respectively.

Detection Improvement. We extract bounding boxes for

all the testing images. The image regions under the out-

put bounding boxes are resized to 256 × 256. To make the

comparison fair, since we focus on localization, we use the

same recognition CNN models provided in the RCNN web-

site. Thus, any recognition improvement is directly due to

our better localization performance. Tables 2 and 3 show

the detection AP for different object categories using differ-

ent localization strategies under the RCNN framework on

the VOC 2007 and VOC 2012 datasets respectively. The

annotation of testing set of VOC 2012 is not available so

we submit our results to the VOC evaluation server. 2

As we can see, our localization has made improvement

in comparison to standard selective search [20] and edge

box [21]) given the same CNN recognition model. Note

that while [5] provides a localization scheme their resulting

bounding boxes are unavailable. Given the same recogni-

tion model, better mAP indicates better localization. Sam-

ple results are shown in Figure 5. Note that in comparison

with standard RCNN which produces a few thousands can-

didate boxes, we produce only 100 to 300 bounding boxes

per image. On the other hand, we are interested in the per-

2VOC 2012 testing set results using our square localization: http:

//host.robots.ox.ac.uk:8080/anonymous/CUY6QS.html
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VOC 2007 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

R-CNN (SS) 64.2 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 54.2 31.5 52.8 48.9 57.9 64.7 54.2

R-CNN BB (SS) 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5 54.5 61.2 69.1 68.6 58.7 33.4 62.9 51.1 62.5 64.8 58.5

R-CNN (EB) 63.7 64.8 50.3 42.2 31.4 59.4 68.4 61.3 31.2 54.7 42.6 58.6 63.1 64.2 56.3 30.2 53.1 45.2 58.6 66.2 53.2

Ours 73.1 76.1 55.8 45.6 40.6 71.4 80.0 69.4 39.1 67.4 57.6 64.7 72.5 72.3 62.6 35.7 64.6 56.2 65.6 69.7 62.0

Table 2. Per-class average precision score on PASCAL VOC 2007 dataset. We fix the recognition part and replace the localization part.

‘SS’ [20] and ‘EB’ [21] respectively denote selective search and edge box. ‘BB’ means the bounding boxes regression proposed in [20],

which can be regarded as a localization method.

VOC 2012 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

R-CNN (SS) 68.1 63.8 46.1 29.4 27.9 56.6 57.0 65.9 26.5 48.7 39.5 66.2 57.3 65.4 53.2 26.2 54.5 38.1 50.6 51.6 49.6

R-CNN BB (SS) 71.8 65.8 52.0 34.1 32.6 59.6 60.0 69.8 27.6 52.0 41.7 69.6 61.3 68.3 57.8 29.6 57.8 40.9 59.3 54.1 53.3

R-CNN (EB) 68.3 63.8 46.5 29.6 27.8 56.6 54.5 63.3 26.2 45.3 37.8 66.4 57.4 64.3 50.5 24.7 52.8 39.3 50.4 52.8 48.9

Ours 76.8 71.2 61.2 45.1 35.9 62.5 60.9 75.5 31.3 58.3 39.4 73.8 68.6 73.1 60.9 33.1 59.1 41.0 66.3 57.6 57.7

Table 3. Per-class average precision score on PASCAL VOC 2012 dataset. We fix the recognition part and replace the localization part.

‘SS’ [20] and ‘EB’ [21] respectively denote selective search and edge box. ‘BB’ denotes the bounding boxes regression proposed in [20],

which can be regarded as a localization method.

VOC 2012 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

NUS NIN c2000 [16] 80.2 73.8 61.9 43.7 43.0 70.3 67.6 80.7 41.9 69.7 51.7 78.2 75.2 76.9 65.1 38.6 68.3 58.0 68.7 63.3 63.8

R-CNN VGG [10] 76.8 70.9 56.6 37.5 36.9 62.9 63.6 81.1 35.7 64.3 43.9 80.4 71.6 74.0 60.0 30.8 63.4 52.0 63.5 58.7 59.2

Feature Edit [19] 74.6 69.1 54.4 39.1 33.1 65.2 62.7 69.7 30.8 56.0 44.6 70.0 64.4 71.1 60.2 33.3 61.3 46.4 61.7 57.8 56.3

SDS [11] 69.7 58.4 48.5 28.3 28.8 61.3 57.5 70.8 24.1 50.7 35.9 64.9 59.1 65.8 57.1 26.0 58.8 38.6 58.9 50.7 50.7

Ours 80.8 74.3 64.6 46.4 40.3 65.5 64.6 84.9 38.6 68.2 40.2 82.0 77.6 79.2 62.6 35.7 65.7 51.9 69.7 59.3 62.7

Table 4. Comparison with state of the arts on PASCAL VOC 2012 test dataset. We simply combine our localization with VGG network [1]

without using extra data and state-of-the-art results.

number of boxes 10 20 30 40 50 60 70 80 90 100

selective search [20] 0.02 0.03 0.06 0.09 0.10 0.14 0.17 0.20 0.25 0.27

Edge box [21] 0.01 0.03 0.07 0.12 0.14 0.17 0.20 0.25 0.30 0.34

[5] (max-center + 2 scale) 0.53 0.62 0.64 0.68 0.70 0.71 0.72 0.73 0.75 0.75

[5] (max-center + 1 scales) 0.52 0.60 0.63 0.64 0.67 0.68 0.70 0.71 0.72 0.73

[5] (one shot) 0.47 0.52 0.53 0.53 0.54 0.54 0.55 0.55 0.56 0.57

ours 0.37 0.41 0.54 0.60 0.64 0.73 0.76 0.80 0.81 0.82

Table 5. Detection rate of class object vs number of bounding

boxes per image suggested by [5].

formance without applying a whole-object CNN, so we also

compute the mAP of scoring an object image by averaging

selected square region indicator scores in the response map.

The resulting mAP in VOC 2007 is 59.3 or a 2.7 mAP drop.

Lesion Study. We also conduct a lesion study on the VOC

2007 dataset. First, we replace the binary scale search by

uniform scale sampling. Specifically, we set the smallest

and largest scale to be 32 and 500 respectively, and uni-

formly sample Z scales from [32, 500], where Z is the num-

ber of scales used in our binary scale search. The result is

57.1 mAP (i.e., with 4.9 mAP drop). Second, we replace

the square detection system with a sliding window search

run for K = 14 different discrete aspect ratios which cover

ratio 1
n

and n
1 , n = 1, . . . , 7. We obtained 54.8 mAP (i.e.,

with 7.2 mAP drop) while the computation cost goes up 14

times higher than our proposed scheme. Third, we replace

co-occurrence prior filtering with a fixed overlap criterion.

That is, the prior map is unique distribution. The final result

is 57.3 mAP (i.e., with 4.7 mAP drop).

Comparison with State-of-the-Art Method. We also

compare our results with other state-of-the-art methods on

VOC 2012 test set and Table 4 tabulates the results. Our per-

formance is comparable to other state-of-the-arts, and close

to the current best NUS NIN c2000 which uses 2000 cate-

gories of ImageNet for pre-training while we only use the

ILSVRC data 3

4.3. Localization Evaluation

In this subsection we analyze the performance of our

localization in isolation according to [5] using the Pascal

detection criterion. Two localization methods are com-

pared, namely, selective search and edge-box (with object-

ness score). Since our work is a supervised method with-

out objectness prediction, so we only produce 100 to 300

bounding boxes per image only which helps to reduce false

positives.

Table 5 tabulates the number of detected objects with

respect to the number of proposals, which shows that we

can achieve better localization results under different report-

ing number requirements. When only 100 boxes are used,

we can achieve 82% localization. Our results significantly

outperforms the results of selective search and edge boxes

which are unsupervised methods. We also found that our

square localization performs better than [5] which is a su-

pervised method.

3VOC 2012 testing set results using our square localization with VGG

model:http://host.robots.ox.ac.uk:8080/anonymous/8CIIOF.

html. Note that our main focus is localization. Replacing CaffeNet with

more sophisticated VGG model [1], our localization can help to achieve

state-of-the-art result: our mAP increases to 62.7% which surpasses

RCNN VGG by 3.5%.
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Figure 5. Sample detection results on the VOC 2012 dataset.

IoU 0.5 0.6 0.7 0.8 0.9

[20] (equal num) 0.51 0.46 0.32 0.24 0.12

[21] (equal num) 0.53 0.47 0.36 0.22 0.06

[20] (1000) 0.89 0.82 0.77 0.54 0.31

[21] (1000) 0.92 0.88 0.79 0.50 0.13

ours 0.91 0.83 0.73 0.48 0.19

Table 6. Recall over IoU comparison with selective search [20]

and Edge box [21] in the VOC 2007 dataset. Here, “equal num”

means using the same number of proposals used in our method.

“1000” is the increased number of proposals used.

Category 5 10 15 20

First 6 layers 0.713 0.711 0.715 0.714

7th layer 0.001 0.001 0.002 0.002

Co-P filtering 0.024 0.024 0.025 0.025

whole-object CNN 0.110 0.109 0.110 0.110

Total 0.872 0.869 0.877 0.876

Table 7. Time performance of individual stage of our square local-

ization under different number of object categories. The reported

time performance is the average time running on the VOC 2007

testing dataset using a K40 GPU. Here “whole-object CNN” refers

to testing the whole object image using trained object CNN.

Table 6 reports the recall over overlap. From the table,

our method significantly outperforms [21, 20] at all IoUs

given the same number of proposals.

4.4. Time Complexity and Scalability

The main computation for the sliding CNN occurs in the

first 6 layers inference. The inference in the last layer and

object co-presence filtering are inexpensive when compared

with the main computation. Table 7 summarizes the time

cost of each part in VOC 2007 testing data. We found that

the running time of the overall system is nearly constant

with respect to the number of object categories, since the

main computation time of first 6 layer remains relatively

constant. Only the last layer is related to the number of cate-

gories, and its computation cost is low. For the co-presence

prior, its time performance depends on the number of re-

sponse maps, i.e., the number object categories present in

an image, which is scene dependent. Recall that weak re-

sponse maps are discarded and typically only a small num-

ber of object categories are present in an image.

We also empirically found that the number of selected

scales is O(log(min{H,W})). We selected 2000 images

from the VOC 2007 dataset and resized them into differ-
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Figure 6. Number of selected scales grows logarithmically as the

image size increases.

ent scales. Figure 6 plots the mean number of selected

scales which grows logarithmically. This is because as

the size increases the context information does not signif-

icantly increase. To corroborate this, we enumerate all the

logarithmic image sizes, and compute the correlation co-

efficient with their output selected number of scales. We

found that the correlation coefficient is 0.9442, that is, the

selected number of scales is linear with the logarithmic im-

age size, or in other words, the running time complexity is

O(log(min{H,W})).

5. Conclusion and Future Work

The key technical contribution of our paper is square ob-

ject localization which relieves the exhaustive sliding win-

dows from testing all windows of different combinations of

aspect ratios. Further reduction in the number of scale test-

ing is achieved by our new binary search strategy. Square

object localization is category scalable. We performed ex-

tensive experimental evaluation on two datasets, focusing

our evaluation on the last part to demonstrate how our lo-

calization method can effectively improve the final detec-

tion results.

A. Clutter Suppression

Different categories have different co-presence priors. In

the following we describe the co-presence prior for one

category where extension to all categories is straightfor-

ward. Let M and R be respectively the response map and

the de-cluttered map, and let M(x) and R(x) be respec-

2566



tively the intensity of M and R at pixel x. Given a pixel

x, we compare its neighborhood region pixels at scale s
Ω(x, s). We concatenate high responses in R(x) to finally

produce a rectangle object region, since most object image

windows are rectangles. We implement the concatenation

scheme along the horizontal and vertical direction respec-

tively. Here, we only discuss the vertical case, that is, pro-

ducing bounding boxes H > W . The horizontal case is

similar.

Design of Clutter Suppression Factor. We suppress the

response at x if the following two conditions hold: (1) pix-

els y ∈ Ω(x, s) have a higher response (an object is likely

at y); (2) the likelihood that if y is an indicator pixel, then x

cannot be an indicator pixel for another object is very high,

according to the statistics of the training data. We denote

this likelihood as γ(x|y, s) which ranges in [0, 1]. If pixel

y does not have an indicator pixel of another object in its

neighborhood, γ(x|y, s) = 1.

Mathematically, if there exists a pixel y, γ(x|y, s)M(y)
(that is, both conditions hold) is larger than M(x), we will

suppress the response at x. Therefore, we design the clutter

suppression factor h(M,x) as

max

(

tanh(β[M(x)− max
y∈Ω(x,s)

{γ(x|y, s)M(y)}]), 0
)

(2)

where β is a non-linearity strength parameter. We will

discuss how to set β shortly. If M(x) is larger than

maxy∈Ω(x,s){γ(x|y, s)M(y)}, h(M,x, β) is close to 1,

and thus we do not suppress the intensity at x.

Object Co-presence Prior. We now detail the design of

γ(x|y, s) by conducting statistical analysis on a large vol-

ume of data using the ILSVRC 2014 dataset. First, we im-

plement the domain y ∈ Ω(x, s), whose elements (x,y)
are indicator pixels of the same category at the similar scale

(relative different smaller than 0.05). Let v(x,y, s) = x−y

s

be the scale normalized difference vector of two indicator

pixels at locations x and y. We consider pixel pairs (x,y)
where both components of v are within [−1, 1]. That is, the

two square regions corresponding to the two indicator pix-

els are overlapping. Let {v1, . . . ,vN} ∈ [−1, 1] × [−1, 1]
be the set of v’s for the given category.

We uniformly partition the space [−1, 1] × [−1, 1] into

32 × 32 sub-regions, thus producing 1024 bins. Given a

difference vector v we cast it into its corresponding bin in-

dexed using the function bin[v]. Therefore, we can compute

the distribution of difference vectors in bin k as P (k) =
1
N

∑N

i=1 U(bin[vi] = k) where U(bin[vi] = k) outputs 1

if vi falls in bin k; otherwise it returns 0. Now, we design

our object co-presence prior is:

γ(x|y, s) = exp

(

−µP (bin[
x− y

s
])

)

u(x|y, s/2) (3)

where µ is a contrast non-linear parameter, we will discuss

how to determine in follows. If pixel y never sees an in-

dicator pixel of another object in its neighborhood, we set

γ(x|y, s) = 1. u(x|y, s/2) is an indication function that

outputs 1 if pixels y and x are in the same vertical line

and their distance is smaller than s/2; otherwise returns 0.

Thanks to this indication function, we do not suppress the

vertical neighborhoods for better vertical concatenation.

Object Co-presence Filtering. Now, we consider the fil-

tered response map

R(x) ≈ M(x)h(M,x), (4)

and concatenate high responses in R(x) to finally produce

a rectangle object region, since most object image windows

are rectangles. We implement the concatenation scheme

along the vertical direction. We define a concatenation

prior: W (R) =
∑

x |∇vR(x)|2 where ∇v is the first order

gradient operator along the vertical direction. By minimiz-

ing this equation zero vertical gradient is encouraged, that

is, two vertical neighborhood pixels should have the same

intensity. So, we have the following optimization function:

min
R

(

∑

x

(R(x)−M(x)h(M,x, β))2 + λW (R)

)

(5)

where the first term serves to satisfy Eq. 4, the second

term encourages vertical neighbors to have similar inten-

sity, and λ is a balance parameter, we will discuss how to

determine in follows. We rewrite Eq. 5 into its matrix form

minR ∥R−G(M)∥22+λ∥DvR∥22} where pixel x in G(M)
is M(x)h(M,x) and Dv is a vertical gradient matrix with

∥DvR∥22 = W (R). This is a quadratic optimization prob-

lem which can be solved by seeking the zero-root on the dif-

ferentiated objective function R−G(M)+λDT
v DvR = 0.

Finally, we solve the above equation in the frequency do-

main using Fast Fourier Transform,

R = IFFT
( FFT [G(M)]

1+ λFFT [Dv]∗ · FFT [Dv]

)

(6)

where IFFT and FFT are Fast Fourier Transform and In-

verse Fast Fourier Transform, 1 is a matrix whose elements

are all one, and · is the pixel-wise multiplication operator.

Here, FFT [Dv] is the vertical gradient matrix. Thus, given

M we can produce a de-cluttered map by filtering M us-

ing Eq. 6 which incorporates the object co-presence prior.

An example is shown in Figure 3 (d). We pick up the pix-

els whose response after the above filtering is larger than

0.2, and then concatenate them vertically (or horizontally)

to produce the final object bounding box.

Parameters. We have two non-linear parameters β and µ.

They are determined by exhaustive search to achieve the

highest mAP (mean average precision) in the validation data

set, which are fixed in the testing phase.
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