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Abstract

We elicit from a fundamental definition of action low-

level attributes that can reveal agency and intentionality.

These descriptors are mainly trajectory-based, measuring

sudden changes, temporal synchrony, and repetitiveness.

The actionness map can be used to localize actions in a way

that is generic across action and agent types. Furthermore,

it also groups interacting regions into a useful unit of anal-

ysis, which is crucial for recognition of actions involving

interactions. We then implement an actionness-driven pool-

ing scheme to improve action recognition performance. Ex-

perimental results on various datasets show the advantages

of our method on action detection and action recognition

comparing with other state-of-the-art methods.

1. Introduction

In this paper, we wish to inquire what principles can be

employed to extract actions in a way agnostic to the un-

derlying agent as well as the type of action itself. In oth-

er words, we hope to discover low-level cues that are hall-

marks of all biological motions. Oddly enough, little works

in the action recognition area seek such precategorical cues.

To us, it is an interesting question to ask, because it appears

that human has special sensitivity to the perceptual category

of biological motions in comparison to non-biological mo-

tions, even though these category boundaries are unlikely

to be sharply defined. We also feel that the very notion of

action is so intimately connected with action recognition re-

search that it will be no digression to revisit the definition

of action, with a view to discover some attributes which are

capable of distinguishing actions.

1.1. The Definitions of Action

If one consults what philosophers commonly understand

by action, one may elicit the following definition of action

— an intentional movement made by an agent. While one

may take issue with such a simplistic definition of action1,

1There are other philosophical difficulties that we do not consider in

this paper; for instance, should we draw distinction between the primitive
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Figure 1. Top half illustrates the movements present in a fenc-

ing sequence and which ensemble of motions should be under-

stood as the fencing action. The bottom half illustrates how the

proposed actionness attributes contribute to the action extraction.

From left to right, the trajectories highlighted in red show respec-

tively those with significant sudden change in motion, repetitive

motion and temporal synchrony, with the final panel on the right

showing the fused actionness map. Note that the two fencers have

been grouped together into a useful unit for further analysis. Best

viewed in color.

we are more concerned about the relevance of this definition

as far as discovering useful attributes of actions for comput-

er vision is concerned. The first thing to note in this defi-

nition is that “movement” can be interpreted very loosely,

so that it can include “movement” like standing fast and

mental acts like computing. We do not plan to tackle these

troublesome types of “movement” and so by movement, we

restrict ourselves to the bodily types of movements. Even

setting aside the non-bodily types of movements, we are

still faced with difficulties as far as effecting some litmus

test of intention is concerned. In general, there is no rea-

son to expect that merely knowing some low-level trait in a

actions (e.g. throwing a stone) and the actions which we refer to as con-

sequences (e.g. breaking a window), or should we puff out the primitive

action to include the effect caused by the basic act? This difficulty is also

inextricably bound up with the problems caused by the notion of causal-

ity. Interested readers are referred to [10] for a more detailed discussion.

While considering the problem at this level of abstraction is an important

philosophical project, thankfully for us, most of the action datasets in the

computer vision community seem to deal with clearly primitive actions.
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video say the trajectory, one can tell whether or not a move-

ment is intentioned. Consider these two action categories in

the HMDB51 dataset [19]: falling to the floor and smiling

(other examples not in HMDB51 abound: coughing, knock-

ing over someone, blinking, etc.). All the aforementioned

acts might be done spontaneously or involuntarily; there is

no simple way to know one from the other from low-level

features. Indeed, with the aforementioned definition, falling

to the floor is normally not an action (and thus should not

be included in the HMDB51 dataset), unless it is done in-

tentionally.

Despite the aforementioned exceptions and difficulties in

imputing intention, we will adopt in this paper the above

definition, and in what follows, we will show there exist

good tests of agency. Before that, we must spend a few

moments on the current state of action recognition research

which has prompted our research.

1.2. Background and Motivation

Bag of features (BoF) together with its extension like

hierarchical spatial pyramid structure is a general paradig-

m which is used in many classification problems. One of

the well-documented drawbacks of such approach for ac-

tion recognition is that simple spatial arrangement such as

grids (or the complete lack thereof) does not contain infor-

mation about the pertinent structure of the various actions

to be recognized. In action recognition, indeed, the spatio-

temporal location of the meaningful actions varies drastical-

ly within each category. Spatial locations are not inherently

meaningful. This makes the subsequent mid-level represen-

tation, even after pooling, not distinct enough to classify ac-

tions correctly to categories. In a related development, there

are several recent works [30] that questioned the meaning of

the results obtained by many action recognition algorithm-

s based on the aforementioned paradigm. Have we really

learnt the essence of the action in these works, or are we

learning the background? When faced with a more com-

plex dataset like HMDB51 [19] with increasing varieties in

the background, performance of many algorithms dropped

significantly.

In an attempt to address this issue, a saliency-driven

perceptual pooling method [2] has been proposed to cap-

ture structural properties of the actions, independently from

their position in the image. While this has been shown to

work better in complex dataset like HMDB51, we contend

that there is still significant inadequacy in adopting these

conventional notions of saliency for the domain of action

recognition. The dominant paradigm in saliency research

is still that of picture viewing in which the interpretation of

the perceiver is supposed to be neutral. Even if we extend

the saliency feature channel with optic flow (like in vari-

ous saliency works dealing with video), it is still basically

a series of optic flows between two frames strung togeth-

er. The perceiver’s interpretation will be significantly dif-

ferent when he or she is “thrown” (in the sense of Martin

Heidegger [15]) into a natural dynamic settings. As an em-

bodied agent situated in and engaged with the world, we

are highly sensitive to various aspects of actions executed

by other agents. At the most basic level, all animals are

probably highly sensitive to the difference between animate

and inanimate motions, given the importance of the distinc-

tion of agents versus non-agents to their survival. At a fin-

er level, they would also be sensitive to the intent of these

moving agents or meaning of these actions. In sum, current

conspicuity-based saliency models lack explanatory pow-

er for the aforementioned dynamic and situated aspects of

saliency. This in turn motivates us to look for cues that can

capture these aspects.

1.3. Actionness

We now show that there exist low level attributes —

generic over action classes — that can make salient action-

s stand out against the background and we term these the

“actionness” attributes. These attributes are based on infor-

mation residing in a single trajectory that is related to the

distinction between agents and non-agents, as well as the

degree of temporal synchrony between different trajectories

that is characteristic of many animate motions; details will

be provided in the following paragraphs about these intra-

and inter-trajectory cues. Based on these actionness values,

we can then create an actionness-driven pooling scheme

that is more robust to space-time variance of actions, as the

actionness-based content has a more intrinsic relationship

with the semantics of the actions. Another significant ad-

vantage is that our temporal synchrony cue naturally high-

lights the spatiotemporal regions that belong together as a

unit of analysis. This is important for many human actions

that involve similar dynamics but have different meanings

depending on the objects being manipulated. Being able to

bind the object to the agent manipulating it is important in

differentiating these closely-related actions. In many inter-

action scenarios, the different regions that form a useful unit

of analysis might indeed be a mosaic of non-contiguous re-

gions with varying characteristics and thus difficult to bind

together, e.g. a forward and a defender (wearing different

jerseys) in a one-on-one situation in a football game. Again,

our actionness attributes will be able to pick out these play-

ers engaged in close interaction. In this sense, these action-

ness cues can be viewed as a kind of perceptual grouping

cues, the difference with the classical perceptual grouping

cues being that here the perceptual unit to be united togeth-

er is not object per se, but action, and it takes place in time,

not in space.

Let us consider a concrete example of action: that of

handshaking. Note that to recognize the proper meaning

of the extended hand, we need to discover the pertinent in-
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teracting units, i.e. who or what is the target of the extend-

ed hand? Only when we are able to discern the two hands

extending towards one another as one perceptual unit, the

meaning of the hand gesture can be properly interpreted.

More generally, the meaning of an action appears not only

in the form and motion of individual agent but in the spatial

and temporal relationships between the agent and other a-

gents or objects; i.e. these relationships form a higher-order

structure which carries the meaning. Thus it is important

to group the units involved in the action. Note that there

may be large intervening background regions separating the

two hands, i.e. the hands may not be close to one anoth-

er initially, so the grouping cannot be based on proximity.

As one of the actionness attributes mentioned above, tem-

poral synchrony between the two extending hands can be

used as a perceptual grouping cue to group them as a useful

perceptual unit. Also note that it is not necessary for the

entire object (the entire human body in this example) to be

involved. Arguably, the key unit here should involve on-

ly the two extending hands approaching one another; other

parts of the body might yield some supporting cues but they

are not absolutely essential; they might in fact be involved

in other composite actions (e.g. the two persons involved

might be standing or walking towards one another, or even

executing other composite actions like eating a snack), even

though one can argue that these composite actions can also

provide some useful contextual cues.

We now consider how the rather abstract defining char-

acteristics of actions (such as agency and intention) quoted

above can manifest themselves in low-level features. [13]

gave a good summary of cues that have been considered in

the visual psychophysics community: sudden direction and

speed change, rational interactions with spatial contexts and

other objects, apparent violations of Newtonian mechanic-

s, and coordinated orientations. For this work, we wish to

eschew the use of high-level semantics and non-visual cue

such as gravity direction. Thus, we only consider the fol-

lowing cues as the desired characteristics of actionness:

1. Trajectory showing sudden direction and speed

change; this is characteristic of ballistic movements

involving impulsive propulsion of the limbs, such as

striking and kicking.

2. Trajectory showing repetitive motions sustained over

a period of time; this is characteristic of mass-spring

movements of a more sustained character, like walking

and running.

3. Trajectory exhibiting temporal synchrony with other

trajectories. These well-synchronized movements can

be between various body parts of the same person (e.g.

in diving action), between different persons (e.g. in-

teractions like embracing, shaking hands), or between

person and object (e.g. hand and cup in drinking ac-

tion). Such coordinated movements often indicate a

sense of purpose and intention (e.g. in diving), and

a sense of cause and effect (cup lifted up by hand in

drinking action).

4. Trajectory that is associated with a salient region in

the conventional static sense. This is because action

is executed by agents and often on objects, not some

amorphous background stuff (sky, ground, water etc).

Note that these criteria are not mutually exclusive. In the

second and third criteria, we also favour trajectories that

exhibit significant changes in directions, as this indicates

self-propelledness rather than objects moving under exter-

nal forces such as gravity. For instance, two features or re-

gions moving in perfectly synchronous linear motion may

not be that interesting. Fig. 1 summarizes the ideas of our

framework, using the action fencing as an example.

Once the actionness map is extracted, it can be used to

detect actions in a way that is generic across action and a-

gent types. Furthermore, it also groups interacting regions

together as a more useful unit for pooling; this is crucial

for recognition of actions involving interactions, as will be

demonstrated experimentally later.

2. Related Work

In this section, we review works that are related from

various perspectives.

As remarked by [9], there has been a lack of attention

paid to the very notion of action itself in the action recog-

nition community. The definition of action in high level

terms is not difficult to secure, as it has been discussed thor-

oughly in the philosophical community; for instance, [10]

defined it as intentional biological movement. However,

from a computer vision point of view, it is much more d-

ifficult to secure the concrete operational steps that can cap-

ture the essence of action from these high level notions. For

instance, [9] defines actionness entirely in high-level terms

and assumes that the notion of action can be defined im-

plicitly by annotated examples in a dataset used to train an

actionness classifier. Other recent action localization works

[1, 6, 7, 12, 16, 18, 20, 26, 33, 37, 38] are similar in that

they are ambivalent about what exactly defines action and

require access to manually annotated training video set. In

contrast, we explicitly posit that actionness can be defined

in terms of low-level operations; the strength of our ap-

proach is corroborated by the much better action detection

results obtained.

The discriminative parts discovery approach does not

look for the action regions per se but any ensemble of re-

gions that could hopefully discriminate actions into classes.

Methods such as [20, 4, 36] try to learn a detector for these

regions but they require accurately annotated sub-regions

of every video (e.g. parts of the human bodies, a whole

person, etc.), a tedious and troublesome process. Weakly
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supervised methods [5, 17, 29] reduce the workload of an-

notation, requiring only the action label for every frame or

every video instead of every regions, but they usually need

extra process to mine for the discriminative regions. In con-

trast, our action detection step is unsupervised. There are

other unsupervised works [30, 2] but they can only extract

foreground or salient regions which may not pertain in any

way to the agent’s action. [22] characterizes the interaction

between all parts in terms of Granger causality; this is sim-

ilar to our use of temporal synchrony cues to characterize

motion in an unsupervised manner. However, the causali-

ty descriptors are not used for action localization in [22] but

serve as an additional feature channel to augment a standard

BoF recognition pipeline.

3. Actionness Attributes

To better characterize the long term motion cues that will

lead to actionness descriptors, we first employ [8] to obtain

the so-called temporal superpixels. We denote the ith su-

perpixel trajectory as a sequence of superpixel locations:

Tri = {(xk
i , y

k
i , t

k
i ), k = tsi · · · t

e
i}, i = 1 · · ·n, (1)

where (xk
i , y

k
i , t

k
i ) is the spatio-temporal position of the

centroid of the ith superpixel Rk
i at frame k, tsi and tei are

the start and the end time indices of Tri, with [tsi , t
e
i ] being

an interval inside [1, T ], and n is the number of detected

trajectories in V .

Based on this temporal superpixel representation, we can

now proceed to describe in details the various attributes

used in our actionness descriptor.

3.1. Sudden Change

One of the key attributes for agency is sudden direc-

tion and speed change in the trajectory. In addition, we

also model human’s sensitivity to onset and offset (when

a particular spatial region appears or disappears over time).

Specifically, we look out for any sudden change in the size

of a superpixel. For the former, we describe the displace-

ment change as ΔRk
disp = d

(
Rk

i , R
k−1
i

)
, where d() re-

turns the Euclidean distance between the centroids of Rk
i

and Rk−1
i . For the latter, we describe the size change of a

superpixel i between two consecutive frames k and k − 1
as ΔRk

sz = abs
(
|Rk

i | − |Rk−1
i |

)
, where |Rk

i | is the cardi-

nality of the superpixel Rk
i , and abs() returns the absolute

value. The “sudden change” (SC) attribute for the ith tra-

jectory at frame k (or equivalently, Rk
i ) can then be estimat-

ed as follows, with both the ΔRk
sz and ΔRk

disp weighted

equally with a suitable normalization:

SC(Rk
i ) =

⎧

⎨

⎩

1

2

(

∆Rk
sz

∆RMax
sz

+
∆Rk

disp

∆RMax
disp

)

tsi < k < tei

1 k = tsi or k = tei

.

(2)

Here ΔRMax
sz and ΔRMax

disp are the maximum size and

displacement change over all the trajectories in the current

video clip V . The second condition represents the instan-

t when the ith superpixel appears or disappears (onset and

offset respectively), during which we give maximum value

to the attribute. However we do not want to consider the

appearance and disappearance of superpixels at the image

boundary to be pertinent in that it is simply an artificial on-

set/offset caused by the image boundary. Furthermore, sud-

den change in speed or direction is also difficult to ascertain

at the image boundary. Thus, in addition to the above, we

also remove all those trajectories currently lying close to the

image boundaries from consideration.

3.2. Temporal Synchrony

There are motions that might not be considered partic-

ularly meaningful individually, but when they exhibit tem-

poral synchrony with other motions, they become highly

indicative of agency. These well-synchronized movements

might be between various body parts of the same person

or even from different persons. At the coarsest level, they

alert us to the presence of purposive behaviors and encode

causality. At a more fine-grained level, it could signify

something socially relevant and govern our interaction with

others, or it could even be maneuvers perceived as threaten-

ing (either in real physical combats or in sports).

We use mutual information (MI) to measure the de-

gree of synchrony between two trajectories Tri =
{(xk

i , y
k
i , t

k
i ), k = tsi · · · t

e
i} and Trj = {(xk

j , y
k
j , t

k
j ), k =

tsj · · · t
e
j} over the time interval during which they overlap.

We denote this overlapping time interval between Tri and

Trj by [ts, te] = [tsi , t
e
i ] ∩ [tsj , t

e
j ], assuming [ts, te] �= ∅.

For simplicity, we use the Gaussian distribution to model

the probability of motion vectors from a trajectory. That

is (vix, v
i
y) ∼ N(µi,Σi), where µi = [µi

x µi
y]

T and

Σi = Cii = diag(σi
x, σ

i
y). Similarly, for Trj , we have

another Gaussian N(µj ,Σj), where µj = [µj
x µj

y]
T and

Σj = Cjj = diag(σj
x, σ

j
y). The mutual information be-

tween Tri and Trj can then be estimated as [3]:

MI(Tri, T rj) =
{

1

2
log

|Cii|·|Cjj |
|C| Trj /∈ N (Tri) and |[ts, te]| ≥ 3

0 Otherwise
,

(3)

where |.| is the determinant of a matrix,

C =

[
Cii Cij

Cji Cjj

]

, and Cij = CT
ji is the

between-sets covariance matrix computed as

Cij =

[
cov(vix, v

j
x) cov(vix, v

j
y)

cov(viy, v
j
x) cov(viy, v

j
y)

]

. N (Tri) in the

first condition is the spatial-temporal neighborhood of Tri
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used to enforce a mutual inhibition zone: the reason being

that we should be allocating more attention only if the

temporally synchronous trajectories are not originating

from superpixels immediately adjacent to one another (im-

mediately adjacent superpixels exhibiting synchrony would

be less surprising). More specifically, N (Tri) is defined

as all the trajectories which are spatially connected to Tri
at some point in time. An example can be seen in Fig. 2,

in which the spatial-temporal neighbors of Tr5 originating

from frames k and k + 1 are illustrated, i.e. N (Tr5) =
⎧

⎪⎨

⎪⎩

· · · , T r1, T r2, T r3, T r6, T r7, T r8
︸ ︷︷ ︸

from frame k

, T r9, T r10
︸ ︷︷ ︸

from frame k+1

, · · ·

⎫

⎪⎬

⎪⎭

.

The condition |[ts, te]| ≥ 3 aims to measure MI only for

those trajectories which have temporal intersection of at

least three frames.

R_1

R_2

R_3
R_5

R_4

R_7

R_6

R_8

Frame  k

R_1 R_9

R_3
R_5

R_4

R_7

R_6

R_8

R_10

Frame  k+1

Figure 2. The spatial-temporal neighbors of Tr5 at frame k and

frame k + 1.

From the MI computed between all pairwise trajectories,

a mutual information matrix G ∈ Rn×n with G(i, j) =
MI(Tri, T rj) can be obtained between all trajectories. The

temporal synchrony (TS) attribute of Tri should then be the

maximum MI values in row i of G. However, we also want

to put into context the value of this MI. For instance, the

temporal synchrony exhibited between two ballet dancer-

s involved in complex pas de deux sequence should have

higher value than that between two parallel linear trajecto-

ries. Thus we use the entropy of motion vectors from Tri
itself to weigh TS as:

TS(Tri) = maxj (G(i, j))×Hi, (4)

where Hi =
∑tei

k=ts
i
(−pk log(pk)) is the entropy of motion

vectors of Tri, and pk, the probability of the motion vector

at frame k, can be obtained from N(µi,Σi). This attribute

is defined at the level of trajectory; thus all superpixels on

the trajectory Tri are assigned the same value.

3.3. Repetitive Motion

Many actions are rhythmic and repetitive in nature. To

find such repeating patterns, we employ the MI measure

in the preceding subsection but apply it to pairs of sub-

segments in a trajectory. Formally, given a trajectory Tri,
we split it into M sub-trajectory with equal time duration

Tri = {Seg1, · · · , SegM}. Mutual information is then cal-

culated for all pairs of sub-segments as MI(Segm, Segn).

Then the “repetitive motion” (RM ) attribute is obtained as:

RM(Tri) = maxm,nMI(Segm, Segn). (5)

By adjusting the length of the sub-segments, a scale-

invariant way to find the RM of the trajectory is implement-

ed. In all our experiments, five lengths (i.e. 3,6,9,12,15) are

used and the one which has the largest RM is selected as

the repetitiveness value of the trajectory.

3.4. Image Saliency

For static cues, we use conventional image saliency. Giv-

en a video clip V with T frames, for the tth(t ∈ [1, T ])
frame, we obtain its image saliency map St

I by the well-

known GVBS algorithm [14]. Since GVBS is pixel based,

we take the average saliency value within a superpixel as

the saliency value of the superpixel Sa.

3.5. Fusion and others

Before fusion, Sa is frame-wise normalized by its maxi-

mum value, whereas SC, TS and RM are video-wise nor-

malized by the respective maximum values. We now per-

form a simple weighted combination of the four normalized

actionness attributes, with the weights equal to 1

4
:

Ac(Rk
i ) =

1

4
(SC + TS +RM + Sa) . (6)

where Ac(Rk
i ) is the fused actionness score indexed by the

ith superpixel at the kth frame.

Background motion induced by camera movement could

significantly affect our actionness estimation. Thus, we first

estimate the background motion with a simple homography

model, using RANSAC to mark out the outliers (i.e. the

objects of interest) on each frame. Background motion is

then removed. For each trajectory, we now compute a con-

fidence factor of it being a foreground; this is given by the

fraction of the pixels inside the associated superpixel being

counted as outliers and this statistic is averaged across al-

l frames. Finally, the actionness value of the trajectory is

weighted by this confidence factor.

4. Experiments

4.1. Performance on Action Detection

We first test how well our algorithm performs in terms of

action detection. UCF-Sports [28] and HOHA datasets [21]

are employed because the ground truth in terms of bounding

box for each frame is provided. We compare our work with

[9], which also detects actions in a precategorical manner.

Fig. 3 shows the actionness maps of both methods. Qual-

itatively, it seems our method provides an actionness map

that more accurately characterizes the key action regions.

For a quantitative comparison, we adopt the evaluation pro-

tocol used in [9]. Basically, the actionness map is divided
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Figure 3. Actionness comparisons between our method (rows 2,5) and [9] (rows 3,6) on four UCF-Sports sequences (rows 1, 2, 3) and four

HOHA sequences (rows 4, 5, 6).

into uniform patches, with each patch evaluated separately.

Then, a precision-recall curve is obtained by continuous-

ly varying a threshold beyond which action is deemed to

occur. At last, the statistics are averaged over all patches

to obtain the mean average precision (mAP). Due to space

limitation, readers are referred to [9] for details of the e-

valuation method. The mAP for all videos in UCF-Sports

and HOHA dataset are shown in Table 1, with the results

of [9, 11] directly cited from [9].

Table 1. Mean average precision (mAP) of action detection on the

UCF-Sports and HOHA datasets.

Our Method L-CORF [9] DPM [11]

UCF-Sports 66.81 60.8 54.9

HOHA 70.16 68.5 60.8

4.2. Performance on Action Recognition

Endowed with a relatively stable tracking of the action-

ness regions, we want to see how much an actionness-driven

pooling scheme can improve action recognition. For this

purpose, we adopt the action recognition pipeline in the

dense trajectories approach [35], which together with it-

s spatial-temporal pyramid variant [21], will serve as our

baseline. The comparison was carried out over three public

datasets: SSBD [31], HMDB51 [19] and UCF50 [27].

4.2.1 BoF Pipeline with Actionness Pooling

The BoF approach is a powerful and prevalent framework in

action recognition [21, 35, 34, 2, 30]. In our experiments,

we follow the BoF pipeline but utilize the actionness mea-

sures in the feature pooling stage. For BoF, we use similar

Table 2. Comparisons of our actionness-pooling method with

baseline methods. Average accuracy is reported.

Methods SSBD HMDB51 UCF50

BoF 76.0 51.74 88.35

BoF-STP 69.3 52.75 88.22

Ours 77.33 56.38 89.35

settings as in [35] which yields the best results. We extrac-

t various feature descriptors including HOG, HOF, MBHx

and MBHy, using the improved dense trajectories [35]. For

each descriptor, we randomly sample 100,000 features from

the training videos and train a codebook of 4000 words us-

ing the k-means algorithm. In the feature pooling stage, we

divide a video into K spatio-temporal regions by clustering

the actionnness values with k-means, and pool the features

according to these K regions. Different descriptors in the K
regions are then concatenated as one feature vector. Final-

ly, a linear SVM is used for classification. For multi-class

classification, we use a one-against-rest approach and select

the class with the highest score. In the following, K is set

as three unless otherwise stated.

4.2.2 Comparisons to the Baselines

First, we compare our method (BoF-actionness-pooled) to

two baseline methods: the improved version of global

BoF [35] and BoF with spatial-temporal pyramid (BoF-

STP) [21]. For fair comparisons, we employ in all meth-

ods the same features (i.e. improved dense trajectories) and

feature encoding scheme (i.e. vector quantization). The re-

sults are shown in Table 2. In contrast to [21], we only use

a single level 2 × 2 × 2 spatial-temporal grid. It can be

observed that our actionness pooling mechanism improves

action recognition performance over the baselines on all the

employed datasets.
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cial Facial−w−obj Body Body−w−object Body−w−body

BoF
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Figure 4. Average accuracy of five sub-categories of videos in

HMDB51 dataset: general facial actions (Facial), facial action-

s with object manipulation (Facial-w-obj), general body move-

ments (Body), body movements with object interaction (Body-w-

obj) and body movements for human interaction (Body-w-body).

Among the three action recognition datasets, the HMD-

B51 dataset is the most challenging one. Delving into the

performance gain in HMDB51, we find that our method

achieves better accuracy in four of the five action types in

the HMDB51 dataset (see Fig. 4). These tend to be those

categories which involve interaction, because our method

is able to group the interacting humans or objects into a u-

nit. Some of the performance gains over BoF in individual

class are substantial, such as in hug (81% vs. 74%), brush-

hair (88% vs. 82%) and climb (82% vs. 73%). The hug and

brush-hair results are also illustrated in Fig. 5. In many body

movement sequences, our performance gain over BoF is al-

so significant, such as cartwheel (54% vs. 47%) and flic-flac

(82% vs. 69%). Cartwheel is also illustrated in Fig. 5; as

can be seen, in many such sequences with fast motion and

strong background clutter, often the camera motion com-

pensation is not perfect. Actionness attributes, being sensi-

tive to biological motion, serve to further suppress residual

(induced) motion that remains in the background.

In the category “facial actions with object manipulation”,

our method’s performance is less satisfactory. Looking at

the examples of “drink” and “eat” in rows 3 and 4 of Fig. 5,

the reason is not difficult to surmise. Our algorithm is able

to pick up the hands, the cup/food, but the face, with little

facial movements visible, are liable to be missed altogether.

For future work, one can probably integrate a face detector

in the saliency attribute (perhaps even a generic face that is

not agent-specific), so that the face will feature more promi-

nently in the actionness map. Note that in contrast, many

sequences in the “facial actions” category tend to be taken

from more close-up views, so the facial motions are more

visible and thus explaining the better results.

4.2.3 Comparisons to the State-of-the-art

In the rest of the paper, unless otherwise stated, we use Fish-

er vector encoding for better performance; this encoding

is also being employed in most state-of-the-arts methods.

Table 3. Comparisons to the state-of-the-art works. Average accu-

racy is reported.

SSBD HMDB51 UCF50

[31] 44.0 [34] 46.6 [34] 84.5

[25] 73.6 [5] 47.2

[2] 51.8 [2] 92.8

[39] 54.0

[32] 58.8

[35] 57.2 [35] 91.2

[22] 58.7 [22] 92.5

[23] 61.1 [23] 92.3

[24] 66.7

Ours 76.0 Ours 60.41 Ours 92.48

Table 4. Results of our method on HMDB51 dataset based on the

individual actionness attributes and all four fused together. Here,

vector quantization is used for feature encoding.

% SC TS RM Sa Fused

mAP 54.81 54.10 51.20 54.59 56.38

Table 5. Sensitivity analysis of parameter K on HMDB51 dataset.

% K = 1 K = 2 K = 3 K = 4 K = 5

mAP 59.0 60.04 60.41 60.24 60.15

Table 3 compares our approach to the various state-of-the-

arts works that are based on the BoF paradigm. On SSBD

dataset, we achieve a new state-of-the-art result (76%). On

HMDB51 dataset, we are one of the three works that have

recognition rate over 60%. On UCF50 dataset, our perfor-

mance is lower, as in these scenarios, background provides

important information for recognizing the types of sport ac-

tions.

4.2.4 Others

We show in Table 4 the contributions of the individual at-

tributes towards the performance in action recognition. The

four attributes seem to complement each other well so that

when all four are fused together, there is a significant im-

provement. We also analyze in Table 5 the sensitivity of our

approach to the parameter K. As can be seen, the perfor-

mance is not sensitive to the value of K, with the best result

obtained when K = 3.

A note on the computational complexity. The compu-

tational cost consists of four main parts: 1) temporal su-

perpixels extraction, 2) actionness attributes calculation, 3)

actionness clustering, 4) trajectory features extraction. Ex-

cluding (1) and (4) which are implemented via public codes,

(2) incurs 34.74 minutes and (3) 0.13 seconds per video

(on UCF-Sports dataset) with Matlab implementation on

an Intel (R) Xeon (R) workstation (CPU E5-2609 and 32G

RAM).
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Figure 5. The estimated actionness maps on HMDB51 dataset, with examples from the five subcategories, each occupying two rows. From

top to bottom: general facial actions, facial actions with object manipulation, general body movements, body movements with object

interaction, and body movements for human interaction.

5. Conclusion

Our work shows that there exist reliable low level cues

that can differentiate biological from nonbiological motion-

s. We offer a clear account of how various abstract notions

of action such as agency and intention manifest themselves

in low level trajectory features such as sudden changes, rep-

etition, and temporal synchrony. This ability to capture the

action region allows us to better handle the difficulties be-

setting the pooling mechanisms proposed hitherto in cap-

turing the pertinent structure of action, especially in actions

involving interaction. Our advocated method has the advan-

tage of dividing the scenes into distinct units of analysis that

are related to the structure of the actions, and has a better

chance of capture the interacting units of actions. For future

work, we plan to improve the efficiency of the actionness at-

tributes computation. For instance, we could use a hashing

scheme to create an index in which correlated trajectories

are mapped into the same hash bins with high probability.

Then, one can locate the most correlated trajectories much

faster.
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