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Abstract

We propose a new method for turning an Internet-scale

corpus of categorized images into a small set of human-

interpretable discriminative visual elements using powerful

tools based on deep learning. A key challenge with deep

learning methods is generating human interpretable mod-

els. To address this, we propose a new technique that uses

bubble images—images where most of the content has been

obscured—to identify spatially localized, discriminative con-

tent in each image. By modifying the model training pro-

cedure to use both the source imagery and these bubble

images, we can arrive at final models which retain much of

the original classification performance, but are much more

amenable to identifying interpretable visual elements. We

apply our algorithm to a wide variety of datasets, includ-

ing two new Internet-scale datasets of people and places,

and show applications to visual mining and discovery. Our

method is simple, scalable, and produces visual elements

that are highly representative compared to prior work.

1. Introduction

The rapid growth of online imagery and the emergence of

powerful machine learning techniques have led to exciting

developments in computer vision. While many of these

developments have been in visual recognition, these same

trends also enable new approaches to visual discovery. By

visual discovery, we mean a form of visual data mining—

identifying patterns or correlations in visual data that can be

used to propose or validate hypotheses about the world.

Towards this goal, a few recent papers have explored

visual discovery in particular domains. We are especially

inspired by the work of Doersch et al. [6] where visual

elements (i.e., patches) that give cities such as Paris their

distinctive look are automatically mined from a corpus of

Street View photos. This task is an application of a broader

set of methods for mining imagery for distinctive visual ele-

ments [18, 5, 11, 1]. Our work also seeks to discover visual

elements in the form of patches. However, while most prior
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Figure 1. Foveated imaging. Our method analyzes the contribu-

tion of localized content in images by modifying the data shown to

a CNN during training and at test time. Given an input image (top

left), we apply an alpha mask (center) to produce two representa-

tions: a foveal image (top right) and a bubble image (bottom right).

While a bubble image preserves a small amount of spatialized con-

tent, a foveal image includes a blurred, grayscale background to

provide additional context.

work uses hand-crafted features such as HoG, we seek to

harness the power of convolutional neural networks (CNNs)

for visual discovery. We believe the time is ripe for study-

ing this problem—just as text analysis can reveal trends on

social networking sites like Twitter, visual discovery driven

by powerful image understanding methods could enable the

automatic identification of visual trends in fashion, design,

art, and many other areas.

CNNs have shown astonishingly good performance for

visual recognition [12, 7]. However, in order to be useful

for visual discovery, we need to be able to extract insight

about what a CNN has learned, and communicate these

insights to humans. Extracting such insights at scale by

analyzing learned networks has proved challenging, because

CNNs tend to be very opaque. For instance, a given learned

unit (neuron) deep in a network can depend on almost all

of the input pixels in a highly non-linear way, making it

very difficult to associate features in the network with visual

elements that are meaningful to humans.

In contrast, rather than trying to interpret a network after
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the fact, our key contribution is a new type of training pro-

cess that forces the network to learn much more localized,

interpretable properties of the input imagery. Namely, we in-

tentionally restrict how much of the image the network gets

to see at training and test time. Inspired by the BubbleBank

work of Deng et al. [4], the network is only allowed to look

at a small portion of the image in high resolution, via a foveal

image, where the rest of the image is blurred out, or a bubble

image, where the rest of the image is blank, as illustrated

in Figure 1. However, the network can optimize the spatial

position of the bubble in order to maximize classification

confidence. In this manner, our approach efficiently learns

both network weights as well as the most salient parts of

each training image. We then cluster these salient image

regions to derive a set of visual elements for a given dataset.

Our new approach to finding discriminative visual ele-

ments has several key attributes: it is a simple modification

of existing CNNs methods, and it scales to large amounts

of data, which is critical for many applications. We show

a wide range of results on existing datasets, as well as two

new large-scale datasets of people and places. We also per-

form quantitative comparisons of the descriptive power of

our visual elements at classification tasks, showing they

outperform state-of-the-art algorithms. Finally, we show

applications of our method to visual discovery in analyzing

people over space and time.

2. Background and Related Work

Our work is in the vein of discriminative patch mining

methods [18, 5, 11, 14]. Such methods typically take in a

corpus of images and try to identify clusters of “mid-level

patches” where each cluster represents an element that ap-

pears often in a single category, and rarely in other categories.

Each cluster represents a representative, identifiable visual

element that is discriminative for a class. These clusters

can then be used for recognition tasks, or can reveal inter-

esting aspects of the visual world [6]. By examining these

clusters, we can get a sense of what visual elements distin-

guish one category from another. For human interpretability,

it is also important that each cluster internally be visually

homogeneous, i.e., that is has an identifiable theme.

Low-level vs. deep-learned features. Prior discriminative

patch methods often build mid-level representations on top

of low-level features (e.g., HoG) [18, 5, 11]. However, recent

methods that learn features straight from pixels (e.g. CNNs)

have enjoyed great success on recognition problems [12, 7].

Can we also use CNNs to learn distinctive visual elements?

Raw CNN features (without fine-tuning) have been shown

to have useful properties for this task [14]. On the one hand,

the representative power of CNNs suggest that they can learn

visual elements that are more subtle and with greater invari-

ance to image appearance compared to low-level features.

But on the other hand, standard CNN architectures, such as

AlexNet [12], are opaque—their features and inner work-

ings are such that can be very challenging for humans to

understand and interpret.

Understanding deep networks. Most prior network visual-

ization methods have sought ways to analyze and visualize

existing networks. Given enough visual inputs, one can com-

pute and examine distributions over neural activations (i.e.,

the scalar outputs of individual units of the network). For

example, a particular neuron may learn a human face. An-

other may respond to text. By measuring which neurons are

highly correlated with certain types of inputs, we can gain a

low-level understanding of the organization taking place [7].

However, other recent results show that reasoning about

the semantics of individual high-level units can be mislead-

ing, because linear combinations of units are just as mean-

ingful as individual units [21]. Further, evidence suggests

that neurons undergo co-adaptation in order to robustly and

compactly encode concepts [26]. Indeed, our own experi-

ence has shown that it is challenging to reliably identify

human-recognizable concepts from the activations of indi-

vidual neurons. Units at the end of a large network often

have very large receptive fields—i.e., regions of input pixels

that pool together through the network to effect that unit—

perhaps even the entire input image. Many useful visual

elements are highly localized (e.g., the beak shape of a par-

ticular bird species), and it can be challenging to discern how

these local features are represented in the network.

An alternative to direct analysis of network activations

is to present controlled image stimuli to the network, and

measure the difference in classification performance. For

instance, one can slide an occluder (e.g., a gray box) over the

input image and see where the performance decreases the

most. These regions are identified as salient for a given cate-

gory [27, 29]. However, these subtractive methods present

CNNs with a new kind of image that they have never seen,

and there are no guarantees on how the network will perform.

We find that it is much better to fine-tune networks using

these kinds of modified images as training data. Further, for

many types of scenes (e.g., a bookstore full of bookshelves),

any occluder location may yield similar classification per-

formance; an additive method like ours is more suitable for

identifying the most salient regions.

Our work is also related to the scenes and objects work of

Zhou et al. [29], which uses a subtractive method to analyze

saliency of scenes, and shows that objects emerge as key

element of the learned representation. Our goal is a general

technique that we apply to a range of datasets.

Unlike these prior methods, we change the way we train

the network itself to make the results more interpretable.

Our method is in some sense the inverse of the occlusion

methods—we obscure or hide all of the image except for

a limited region (a “bubble”), and train the network to rec-

ognize these obscured images resulting in a new network
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that we call a BubbLeNet. This idea is inspired by work in

psychology on using bubbles for human studies, e.g., deter-

mining which parts of a human face are most important for

gender and expression recognition in people [9]. This idea

has been used in the vision community to use humans to iden-

tify discriminative elements in fine-grained categories [4]. In

our case, we flip this around—rather than learn what humans

see, we use bubbles to encourage the network to automati-

cally learn localized, human-interpretable visual elements.

Visual attention. Our work is also related to work on

saliency and visual attention. Recent work has used deep

learning to attend to salient regions of an image [22, 15], and

applied this to applications such as object recognition [2]

and automatic caption generation [25]. Our bubble model

also uses a form of visual attention to capture more local

properties of scenes, but in a much simpler way that can be

implemented by modifying the training data.

3. Method

Our method has two main parts: (1) patch discovery,

where we train a CNN that can localize discriminative visual

content and (2) patch clustering, where we aggregate the

discovered visual elements in a way suited for visualization

and for detecting visual elements in new images.

3.1. Patch Discovery

The main contribution of our method is a simple mod-

ification to the images shown to the classifier during both

training and test time. This modification intentionally re-

stricts the amount of information presented to the classifier

in a spatially-localized way. In particular, the classifier is

shown a blank background with a single “bubble” of exposed

image, as shown in Figure 1 (bottom right). By making this

modification, we can analyze the relative performance of

the classifier as we move the focal location of this bubble.

Effectively, this modification allows us to generate a saliency

map, by forcing the network to fixate on regions of the image

at a time. Once we have a saliency map, discovering discrim-

inative elements is much easier since we can use that map as

a distribution for sampling candidate visual elements.

Figure 1 illustrates this data modification. Given an input

image (which we call a “normal” image), we generate an

alpha mask with a single Gaussian blob (centered, for now,

on a random location). Similar to [9], we use this mask

to create a bubble image containing only a single colored

patch. By modifying a normal image to create several bubble

images with different focal locations, we can examine the

CNN’s prediction scores to determine which parts of the

image provide the most evidence for the true class label.

We found that in practice if you take a CNN that has been

trained on normal images for a particular task and then test

it with bubble images, it will perform no better than random

guessing. We found that the network can work much better

if it is fine-tuned on both normal and bubble images.

An alternative to a bubble image is a foveal image which

sits somewhere inbetween a normal image and a bubble im-

age. A foveal image is created by first generating a Gaussian-

blurred, gray-scale version of the normal image. This blurred

image is then composited with the normal image using the

same alpha mask used to generate the bubble image (Fig-

ure 1, top right). The result is an image which is very similar

to the images used in the user study of [4]. Foveal images

preserve some contextual information beyond the bubble

which potentially makes training easier. However, when we

do patch discovery using foveal images directly, the results

tend to be misleading since the silhouettes of objects can

still be discerned even if the focal point is placed far away.

After this FoveaNet has converged, these foveal images can

be replaced with bubble images and fine-tuned once again to

produce a BubbLeNet.

To recap, starting from a CNN trained on ILSVRC12 [17],

we use a three stage fine-tuning regimen to train a network

better suited for spatially localized predictions:

AlexNet/GoogLeNet: Fine-tune the network on 100%

normal images.

FoveaNet: Fine-tune the AlexNet/GoogLeNet on 50%

normal images and 50% foveal images.

BubbLeNet: Fine-tune the FoveaNet on 50% normal

images and 50% bubble images.

We found that in practice, it is sufficient to sample focal

locations uniformly at random when generating the foveal

and bubble images for training. Hence, generating this extra

type of training data is very fast.

Now that we have a CNN trained on bubble images, we

can use it to discover salient patches. A naive approach to ex-

ploring the saliency of a normal image is to generate a large

number of bubble images and pass each through the CNN,

recording the score for the true class label. However, this

is prohibitively expensive. Fortunately, our choice of alpha

mask makes local optimization of focal location quite easy.

We can easily compute the gradient of the bubble image

with respect to the Gaussian blob’s center, and use stochas-

tic gradient descent with the back-propagation algorithm to

compute the gradient with respect to the bubble location,

moving the bubble along that gradient until we reach a local

optimum. In the setting where we wish to mine for discrim-

inative patches, we know the class label for the image, so

we can minimize cross entropy between the true label and

the prediction distribution. In the setting where we wish to

predict the class label for a test image given only one bubble

to view at a time, we minimize the entropy of the prediction

distribution. We present a more rigorous justification of our

algorithm in Section 5.

This optimization has many local minima, so we sample

128 initial bubble locations per image at random and run
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SGD for 10 iterations to optimize the position of each bubble

according to the gradient of the loss function. The bubble

with the minimum loss at the end is selected as the most

discriminative bubble for that image.

3.2. Patch Clustering

Having discovered discriminative patches in each photo,

we now cluster them to produce better visualizations and to

build detectors for finding these patches in new photos.

We apply our BubbLeNet to a validation set of photos

and find bubble locations that maximize the correct class

label. We then take the top scoring bubble per photo. Each

photo in our validation set now has a normal image and

a bubble image as well as corresponding feature vectors

extracted from the penultimate layer of our CNN (e.g., fc7

for AlexNet) for both normal and bubble images. We split

this set of CNN features into two groups. We denote the

these sets Snormal and Tnormal, and the associated bubble

image feature sets Sbubble and Tbubble. Our algorithm then

(1) clusters the bubble images into groups of similar bubbles,

and (2) builds a classifier for each such cluster that predicts

whether a normal image contains that visual element.

This algorithm is based on [18]. We begin by running

k-means clustering on the elements of Sbubble and use the

cluster assignments as labels to train a linear multiclass SVM

on Sbubble. The resulting SVM is applied to the holdout set

Tbubble. The class prediction for each element in Tbubble is

used as its new label and we train a linear multiclass SVM on

Tbubble. This second SVM is applied to the new holdout set

Sbubble. These predictions are propagated from the elements

of Sbubble to their corresponding elements of Snormal and

a third linear multiclass SVM is trained. This produces an

SVM that can take a normal image and predict whether a

patch class is contained within.

Unless we have prior knowledge of the number of clusters

for a given dataset, we opt to over-provision the clusters, then

rank them to determine which ones to keep. Like [18], we

build a ranking function based on two measures of cluster

quality. The first is entropy: we want a cluster to cover a

small number of classes, i.e., have low entropy. The second

is confidence: we want the scores of the top activations in the

cluster to be high. Therefore, for each cluster we compute

entropy minus λ times the sum of the top N SVM scores.

We used N = 5, λ = 0.01 in our experiments. We apply

this function to each cluster and rank them accordingly.

The results of this algorithm are a ranked set of bubble

image clusters and a detector for each cluster. Because the

bubbles in each image have a small footprint, we can also

extract a patch from each bubble image as a square region

containing the bubble. These can be used for visualization.

Figure 4 shows examples of some of these clusters for a

variety of datasets (see supplemental for more).

Discussion. Our patch discovery and clustering algorithm

Figure 2. StreetViewCities dataset. Several tiles shown from var-

ious cities. The number of images per city varies from 102,192

(Venice) to 964,703 (Tokyo). Each 360
◦ spherical panorama has

been cropped to produce 7 tiles. Can you guess each city?2

Figure 3. InstagramPeople dataset. Several examples of cropped

people from the InstagramPeople dataset. Networks were trained

on crops shown resized to network input dimensions.

has several key features worth noting. It learns a network

that can jointly classify both normal and bubble images. This

property is very useful for building classifiers that predict

the presence of a visual element from a normal image. In

addition, because the network can model spatial location, the

patch clusters we discover not only can encode appearance

information, but also spatial distributions (e.g., if a feature

usually appears towards the bottom of an image).

4. Datasets

We evaluate on a range of existing datasets, plus two

large, new datasets: StreetViewCities and InstagramPeople.

Existing datasets. Our method is designed to highlight

discriminatively informative content between classes in a

dataset, so large-scale, fine-grained datasets are ideal. CUB-

200-2011 [23] is a standard bird dataset for fine-grained

classification. We crop the images with a padded bounding

box and we do not use the part annotations. Food-101 [3]

is a fine-grained food classification set. Indoor67 [16] and

Places205 [30] are datasets of scene images. Places205 is

much larger, while Indoor67 has been used in much prior

work. Finally, we apply our method to ILSVRC12 [17].

StreetViewCities. To mine visual elements from cities, in

the spirit of [6] (but on a much larger scale), we built a

very large-scale database of Street View images of 44 cities.

Google Street View photos were acquired by randomly sam-

pling pre-defined regions of the world. First we randomly

sampled a city from a short list of populous cities, and then

sampled a geodetic coordinate uniformly at random from that

city’s bounding box. If Street View found a panorama within

50 meters of our query, we retained the preprocessed tiles.

Figure 2 highlights tiles from several cities. Each tile was
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then resized to 256x256. We performed additional filtering

for the experiments in this paper. The dataset was subsam-

pled such that no two panoramas are within 30 meters of

each other to produce 15.4 million photos. Next, the dataset

was further subsampled to provide balanced classes. Finally,

a 99-1 training-test split was made with the constraint that

all tiles from a single panorama were placed entirely in the

same part of the split. This final training set contains about

4.5 million photos. (See supplemental for a full list of cities.)

InstagramPeople. We are also interested in exploring ele-

ments, such as fashion, that distinguish people in different

cities, or at different times, from one another. To that end,

we built a dataset of Instagram photos taken in cities around

the world, along with people detections in each photo. To

build this dataset, we created a list of populous cities and for

each city queried the Instagram API for public photos taken

within 5km of the city center. We remove exact duplicates,

and then each photo is then passed through a deformable

part model detector [8] trained on images of people. This

people detector has a low false positive rate, but we further

cleaned it using MTurk (see supplemental for details).

To provide precise face localization and to filter out pho-

tos where a person is facing away from the camera, we ran

all of our people detections through the faceplusplus.com

face detection API. Each image additionally contains time,

place, and weather annotations. Figure 3 shows several ex-

ample detections used in this dataset. Each detection has

been pose normalized such that that face appears in the same

location and at the same scale.

InstagramPeople can be used in many different ways. We

show results in Table 1 for classifying people in NYC during

summer vs. winter, labeled InstagramSeasons. The

full size of the dataset is 16.2 million people and each image

contains on average 2.36 people.

5. Experiments

We now evaluate our mining algorithm from Section 3.

In particular, we validate that our three stage fine-tuning

protocol makes training a network to recognize entire images

from isolated bubbles feasible, that we can mine for the best

regions in a dataset automatically, and that those regions are

in fact discriminative both qualitatively and quantitatively.

5.1. Raw Classification Performance

We first evaluate the performance of each stage of our

classifier on different types of input for each dataset—for

instance, testing how well a network trained only on normal

images performs on bubble images. These classification

numbers are in Table 1 (using two base network architec-

tures, AlexNet and GoogLeNet [20]). All of the accuracies

2Top row: Vancouver, Tel-Aviv, Hong Kong, Amsterdam, Singapore.

Bottom row: San Francisco, Tokyo, Taipei, Barcelona, Seoul.

AlexNet/GoogLeNet FoveaNet BubbLeNet

Normal Foveal+Normal Bubble+Normal

Foveal Foveal Foveal Foveal Bubble

Dataset Architecture Normal Random Best Normal Random Best Best

CUB-200-2011 AlexNet 0.673∗ 0.018 0.053 0.561 0.263 0.319 0.481

CUB-200-2011 GoogLeNet 0.810† 0.035 0.147 0.737 0.403 0.459 0.655

Food-101 AlexNet 0.689∗ 0.034 0.058 0.646 0.341 0.392 0.391

Food-101 GoogLeNet 0.764† 0.042 0.081 0.782 0.451 0.594 0.561

ILSVRC2012 AlexNet 0.574‡ 0.009 0.270 0.445 0.210 0.275 0.277

ILSVRC2012 GoogLeNet 0.688§ 0.021 0.072 0.435 0.149 0.214 0.235

MIT Indoor67 AlexNet 0.714¶ 0.033 0.033 0.688 0.382 0.444 0.450

MIT Indoor67 GoogLeNet 0.714† 0.043 0.067 0.702 0.398 0.533 0.584

MIT Places205 AlexNet 0.506‖ 0.017 0.025 0.472 0.272 0.312 0.256

MIT Places205 GoogLeNet 0.504† 0.035 0.025 0.495 0.275 0.346 0.311

StreetViewCities AlexNet 0.692∗ 0.027 0.021 0.678 0.272 0.326 0.300

StreetViewCities GoogLeNet 0.690† 0.037 0.036 0.708 0.328 0.397 0.400

InstagramSeasons AlexNet 0.716∗ 0.500 0.530 0.721 0.596 0.585 0.618

InstagramSeasons GoogLeNet 0.716† 0.510 0.495 0.703 0.634 0.634 0.659

Table 1. Raw classification performance. A synopsis of classifier

performance for different types of input (normal, foveal, and bub-

ble) and each stage of fine-tuning. Foveal random indicates that at

test time, a single, randomly-sampled focal location is used to pro-

cess the input that the classifier sees. Foveal best and bubble best

indicate that the network is allowed to search for the focal location

that produces the lowest entropy prediction distribution. ∗Fine-

tuned from [10] reference CaffeNet. †Fine-tuned from [10] refer-

ence GoogLeNet. ‡Original [10] reference CaffeNet. §Original

[10] reference GoogLeNet. ¶Fine-tuned from [30] Hybrid-CNN.
‖Original [30] Places205-CNN.

for normal images in AlexNet/GoogLeNet are competitive

with state-of-the-art results.3 For all datasets, results were

computed on the test set, with the exception of ILSVRC12

which was computed on the validation set. This table high-

lights several interesting properties of our bubble training

method:

Normal networks don’t do well on foveal images. If a

AlexNet/GoogLeNet (normal-image-trained) classifier is

given a foveal image, it will nearly randomly guess, even if

the focal location is optimized to produce more confident

predictions (column “foveal best”). This motivates the use

of fine-tuning to adapt the network to a configuration that

can predict both normal and foveal/bubble images.

Foveal images can be classified with a FoveaNet. The

FoveaNet numbers show that it is indeed possible to pro-

duce a network that has non-trivial performance on im-

ages with such restricted content. Many of our datasets

have FoveaNets that can perform almost half as well as a

AlexNet/GoogLeNet applied to the full normal images (an

exception being ILSVRC12).4 In addition, by optimizing

the focal location to minimize prediction entropy (“foveal

best”), foveal performance for each FoveaNet improves sig-

nificantly, indicating that this “saliency landscape” is some-

thing that we can explore using SGD and backprop to drive

3 In terms of Indoor67 and Food-101, our networks exceed prior pub-

lished methods [14] [3]. Baseline networks from which we fine-tuned

were provided by [10] and [30]. Therefore, we replicate their reported

performance on ILSVRC12 and Places205. We do fall slightly short for

CUB-200-2011, but it does come very close to the best reported result of

68.29% [28] (no parts oracle-ft setting).
4Datasets such as Indoor67, Places205, and Food-101 are constructed

in such a way that looking at any random location in the photo will often

give some clue as to the correct class label. However, datasets such as

StreetViewCities often have sections such as the sky that are common

across all classes.
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Figure 4. Extracted patch clusters. Patches extracted from clus-

ters with low entropy. We show one example in the lower left of

each cluster with a mask indicating the size of the Gaussian bubble

used during discovery. The majority class label is shown below

each cluster.

the focal location.

Bubble images can be classified with a BubbLeNet. Bub-

bLeNet shows the performance of the classifier used to mine

patches after the entire background has been removed. This

is the classifier we use for our other evaluations. The per-

formance of classifying optimized bubble images is signifi-

cantly above chance. This shows that we can indeed classify

images based on finding single discriminative bubbles. Inter-

estingly, in some cases bubble image performance exceeds

that of the foveal images (e.g., for CUB-200-2011). Adding

foveal images also sometimes boosts classification perfor-

mance for normal images (e.g., Food-101 with GoogLeNet).

5.2. Qualitative Results

In order to get a visual sense of what kinds of elements

our algorithm discovers, we ran our patch discovery and

clustering algorithm to generate visual elements for each

dataset. Figure 4 shows a few patches from five clusters of

each dataset. For CUB-200-2011, often the best place to

look was the birds’ heads. However, for some species such

as the Geococcyx it is better to look at the body.

For some ILSVRC12 classes it is difficult to actually see

the object anywhere in the image. For one such class (hockey

puck), our patch selection method does highlight, however,

that it is important to look near the ice by the players, rather

than elsewhere, such as the players’ helmets. Some classes,

such as the winecellar in Indoor67, have multiple important

components. Figure 4 shows one component highlighting

racks of bottled wine, and another component highlighting

wine barrels. Most of these high-scoring patch classes are

easily identifiable as a particular element. Like Doersch et

al. [6], we find metal railings in Paris as a distinctive element,

as well as interesting types of features in other cities (e.g.,

motorbikes in Jakarta).

5.3. Discriminability

While our main goal is to extract a human interpretable

representation of categories, we also wish to evaluate our

method quantitatively—how good of a representation of the

data does our method produce? To facilitate comparison

with prior work [18, 5, 14, 13, 24, 19, 3] we evaluate using

Indoor67. There are often two goals at hand. One is to show

that the patch mining method itself produces a set of mid-

level features that are well-suited for learning a classifier.

However, our baseline CNN produced by fine-tuning outper-

forms all prior work. Perhaps more interesting is how well

the mid-level representation acts as a method of compres-

sion. For instance, how well can we encode the 67 classes in

Indoor67 with as few visual elements as possible?

Figure 5 shows the trade-off between representation size

and discriminability for a range of methods, including our

own (red line). To create an image encoding with our method,

we use a method inspired by the BubbleBank algorithm [4]:

we take the top K scoring bubble clusters produced by our

algorithm, and, for a given input image run each of the

classifiers for these clusters on the input image. These K

classifier outputs are then stacked into a vector, and a new

SVM is learned for categorizing based on this representation.

Compared to bag-of-words methods, our approach detects

each visual element once on the entire image, and also takes

into account any spatial information encoded in the classifier.

Figure 5 (top) plots the performance of our method as a

function of number of patches per class, and similarly plots

the results of other published methods on this dataset. The

results of running PCA or random projections on the penul-

timate CNN vectors are plotted for comparison (note that

these representations are not sparse). As the figure shows,

our method requires only a couple of patches per scene class

to exceed the performance of the 20-50 patches per class

used in prior work (the closest competitor is the MDPM al-

gorithm, which also uses deep learning [14]). This suggests

that (a) scenes in Indoor67 can often be classified accurately

with only a couple canonical elements per scene, and (b)

the invariances baked into the CNN are what make the good

performance possible. Despite these invariances, we find
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Figure 5. Indoor67 evaluation. Top: Our patch selection method

allows us to select a very small set of semantic elements as a repre-

sentation, yet still retain good classification performance. Bottom:

We validate two alternate BubbleBank design choices. (1) We take

the BubbleBank feature vector (a) or PCA applied to the penulti-

mate layer of the CNN (b) and perserve the top N features of each

descriptor while setting the remaining to zero. For example, N = 1

would produce a feature vector with exactly 1 non-zero located

in the position of the component with largest magnitude. (2) We

use only the top N ranked bubble features given by (a) a random

ranking or (b) our ranking.

that the visual elements are still understandable. Please see

the supplemental material for a more comprehensive set of

patches shown in Figure 4.

Figure 5 (bottom) shows the effect of (1) sparsifying

BubbleBank feature vectors rather than using PCA on the

penultimate CNN layer and (2) using our ranking to se-

lect which clusters are to be included in the BubbleBank

feature vector to build more concise representations. (1)

shows that only a few non-zeros in this vector are needed for

good classification suggesting the representations are much

sparser compared to dimensionality-reduced vectors from

PCA and (2) shows that incorporating clusters according to

our ranking leads to better classifiers than selecting clusters

at random.

5.4. Localization

We perform two experiments to evaluate the localization

power of our method. In the first experiment, we measure

how closely the most discriminative part per photo in the

CUB-200-2011 dataset matches to a part annotation. If a

element is close to a part, that suggests we are correctly

localizing near an object of interest. We measure this by

normalizing image coordinates to [0, 1] × [0, 1] and com-

puting the Euclidean distance between the centroid of the

optimal bubble and its nearest visible part. We compare

this to random guessing. The histogram in Figure 7 shows

Figure 6. Occlusion analysis. Given a AlexNet/GoogLeNet clas-

sifier, we analyze how much the classification score is impacted

by occluding parts at random and as guided by our discriminative

bubbles.

Figure 7. Part localization. Normalized distance to closed part

for the bubble location that maximizes correct class label on CUB-

200-2011. Our bubble method chooses locations closer to part

annotations more often than random guessing.

that the distributions of element-to-part distances clearly dif-

fer where random guessing has a median of 0.140 and our

method has a median of 0.091.

The second experiment measures the performance of the

original AlexNet/GoogLeNet classifiers applied to unaltered

images and to images that have had a grey occluder box

inserted as in [27]. Bubble images can be seen as a additive

method; the occluder box is a subtractive method. In this

experiment, we select one location for this occluder per

image based on the most discriminative part detected by

our bubble method. Figure 6 compares the performance of

several AlexNet/GoogLeNet classifiers on bubble-guided

occluders and random occluders. The performance drops

significantly, and much more if the occluder is guided by our

bubble method than by random guessing, suggesting we are

locating salient features.

5.5. Exploring Visual Data

The ultimate goal of our method is as a tool for visual

discovery. To conclude, we use our technique to explore

visual elements of our datasets across time and space.

How do people change over a year? There are many inter-

esting questions about the appearance of people over time,

relating to fashion, weather, and so on. As a simple experi-

ment, we took photos of people from NYC from our Insta-

gramPeople dataset and learned a bubble image classifier

that predicts the month when the photo was taken. Rather

than train an n-way classifier, we opted to train a shared

CNN to produce an intermediate representation on which

a large set of one-versus-one logistic regressors could be

trained; the entire network was fine-tuned end-to-end. The

results are shown in Figure 8 as a matrix of one-to-one test
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accuracies. Some observations: adjacent months are hard to

differentiate, and there are clusters of months corresponding

to similar seasons (summer and winter). Furthermore, by

examining the off-diagonal, we find that the classifier can

differentiate between summer and winter.

However, two adjacent months—March and April—are

much more distinguishable than other pairs. What has the

network learned? We ran our algorithm on the task of NYC

March vs. April. It was clear from the extracted patches

(shown in the supplemental material) that clothing had be-

come lighter, but the top-ranked cluster was sunglasses. By

running our detector for this cluster on the 2014 March+April

portion of our dataset, we recorded a sunglasses score (per-

cent photos with thresholded score) for each photo. We also

collected weather condition reports from wunderground.com

and categorized them: clear, cloudy, and precipitation. We

found a strong correlation between the occurrence of sun-

glasses and the weather condition. Namely, the Pearson’s

r of the “sunglasses” signal to the “clear weather” signal is

0.487 and of the “sunglasses” signal to the “cloudy weather”

signal is -0.593 (see Figure 8). This illustrates an end-to-end

use of our algorithm to explore trends in a dataset.

How do people change over space? Style varies across

space as well as time. Can we discover variations in personal

fashion between different locales? To explore this ques-

tion, we ran our method to classify the NYC and London

subsets of InstagramPeople. Figure 9 shows several

top-ranked clusters of patches. Accuracy is 60.8%. Sports

caps, and stripes and certain text on shirts are more discrimi-

native for NYC, while collared and textured shirts and dark,

shiny jackets are more discriminative for London. More

visualizations can be found on our project website.5 Some

clusters are specialized for color, some hair, and others cloth-

ing. However, despite high purity, some clusters remain

difficult to interpret suggesting more is required to guarantee

interpretability than enforcing spatial compactness alone.

Limitations. These initial experiments required that we use

some intuition to figure out what signals might be correlated.

An automated discovery system might be able to search

through a diverse body of data to find correlations. We also

present additional qualitative results in the supplemental

material highlighting spatial trends in StreetView photos

for which we do not have a way to automatically validate.

Finally, the high invariance of the CNN features can still

cause some clusters to be too invariant and appear noisy.

6. Conclusion

We presented a simple, scalable, new method for discov-

ering visual elements in large datasets that directly builds on

CNNs via a new form of modified training data. We believe

that such techniques can start to open the door to new kinds

5www.cs.cornell.edu/projects/bubblenet/

Figure 8. Finding temporal correlations. Top: NYC one-versus-

one month classification accuracies. Bottom: We found sunglasses

to be a discriminative element that makes April in NYC visually

distinct from March and correlated them to weather reports.

London

NYC

Figure 9. NYC vs. London patches. We used our method to find

what makes people in NYC visually distinct from London. We

show clusters correlated with NYC (top) and London (bottom).

of visual discovery. In the future, it would be intriguing to

build on our preliminary work to explore fashion, design,

art, and other visual arenas to identify differences across

populations, as well as trends and influences. There are also

a number of other interesting areas for future work. One key

problem is that humans still have to interpret the clusters—

this one represents hats, another represents a certain pattern,

etc. Doing this kind of labeling automatically—perhaps us-

ing text or other cues found on the web, would further enable

automatic interpretation of discovered elements.
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