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Abstract

Several important classes of images such as text, barcode

and pattern images have the property that pixels can only

take a distinct subset of values. This knowledge can benefit

the restoration of such images, but it has not been widely

considered in current restoration methods. In this work, we

describe an effective and efficient approach to incorporate

the knowledge of distinct pixel values of the pristine images

into the general regularized least squares restoration frame-

work. We introduce a new regularizer that attains zero at the

designated pixel values and becomes a quadratic penalty

function in the intervals between them. When incorporated

into the regularized least squares restoration framework,

this regularizer leads to a simple and efficient step that re-

sembles and extends the rounding operation, which we term

as soft-rounding. We apply the soft-rounding enhanced so-

lution to the restoration of binary text/barcode images and

pattern images with multiple distinct pixel values. Exper-

imental results show that soft-rounding enhanced restora-

tion methods achieve significant improvement in both visual

quality and quantitative measures (PSNR and SSIM). Fur-

thermore, we show that this regularizer can also benefit the

restoration of general natural images.

1. Introduction

The task of image restoration is to recover an image from

its noisy and/or blurry observation [3]. Image restoration is

an example of ill-posed inverse problems, and unique solu-

tions can only be obtained by introducing proper regulariza-

tions and constraints on the clean images. Indeed, it is now

generally accepted that the more prior knowledge we have

about the properties of the uncorrupted images, the better

we can solve the image restoration problem [1, 9].

To date, the most widely used statistical regularities for

images are obtained from their band-pass filter responses

(such as gradients or wavelets) or mean-removed pixel

patches. Such responses have been observed to have heavy-

tailed marginal histograms, on the basis of which regular-

izers or priors that prefer sparse responses have been used to

attain the state-of-the-art restoration performances. Exam-

ples include regularizers in the form of the ℓ0 norm [25, 26]

and total variation [20], or prior models based on general-

ized Laplacian [11, 13] and Gaussian mixtures [23, 28]. In

these image restoration methods, pixel values are usually

treated as continuous variables.

However, images are captured and stored in a digital for-

mat, which poses a general constraint on pixel values. The

pixels of an image in a b-bit format can only take integer

values from the set {0, · · · , 2b − 1}. For some important

subclasses of images such as text or pattern images, their

pixels can take only a distinct set of the full range integer

values (see Fig.1(a) for an example). Furthermore, it is usu-

ally possible to obtain these values before we restore such

an image. For text and barcode images, the pixel values

are usually separated into two distinct classes of foreground

pixels and background pixels. For pattern images, image

pixels usually take multiple distinct pixel values, which can

be estimated from other images of the same type.

Knowing that the pristine image can only take some dis-

tinct pixel values provides a useful constraint for image

restoration, which can help to suppress visual artifacts and

improve the restoration performance. A straightforward ap-

proach would be to round the restored pixel values to the

nearest distinct pixel values as a post-processing step. How-

ever, such a simple solution often does more harm than

good, as the rounding step can undo the structures recovered

from the restoration step (see Fig.1(c)). On the other hand,

except in a few cases [10, 16, 18, 27], such prior information

about pixel values seems trivial and is largely overlooked by

most existing image restoration algorithms.

In this work, we describe an effective and efficient ap-

proach to incorporate the knowledge of distinct pixel values

of the pristine images into the popular regularized least

squares restoration framework. We introduce a new regu-

larizer of the uncorrupted images in the pixel domain. This

regularizer attains zero at the designated pixel values and is
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(a) original image (b) corrupted image (c) ℓ0 restoration [18]

PSNR = 19.45dB

SSIM = 0.79

(d) ℓ0 + post rounding

PSNR = 19.28dB

SSIM = 0.82

(e) ℓ0 + soft-rounding

PSNR = 19.84dB

SSIM = 0.85

Figure 1: An example demonstrating the effect of our method. (a) An original image with four distinct pixel values 0, 100, 150, 255. (b)

Its corruption with a 101× 101 blur kernel and 1% white Gaussian noise. (c) Restoration results using the state-of-the-art method based

on ℓ0 regularization of image gradients [18]. The artifacts in the restored image are due to pixel values that are not consistent with the

four distinct pixel values. (d) Rounding (nearest neighbor) of the restoration results in (c) to the four distinct pixel values. Though some

artifacts in (c) are removed, some structures restored in (c) are also destroyed. (e) Restoration results using our method that combines

gradient domain ℓ0 regularization based restoration with soft-rounding operation. Note that our method achieves significant improvement

in comparison with (c) and (d) both visually and quantitatively (PSNR and SSIM).

a quadratic function in the intervals between them. As such,

it reflects the preference of the pixel values of the restored

image to take the designated distinct pixel values. When

incorporated into the regularized least squares restoration

framework, this regularizer leads to a simple and efficient

solution that resembles the rounding operation, which we

term as soft-rounding. We apply the soft-rounding en-

hanced solution to various state-of-the-art image restoration

methods, and show that it achieves significant improvement

in both visual quality and quantitative measures (PSNR and

SSIM) for the restoration of binary images and multi-value

pattern images. We also demonstrate its effectiveness for

general natural image restoration.

2. Background and Related Work

We formulate the image restoration problem as recover-

ing a pristine image of m pixels, which is vectorized and

denoted with an m-dimensional vector x, from its noisy

and/or blurry observation y. We assume that y is generated

from the convolution of x with a spatially invariant blurring

kernel k and further contaminated with additive Gaussian

noise n, as:
y = k⊗ x+ n, (1)

where ⊗ denotes the convolution operation [3]1. The

restoration problem can be solved within a regularized least

squares (RLS) estimation framework, as:

min
x

1

2
‖y −Kx‖22 + λNΓN (Dx) (2)

where K corresponds to the block Toeplitz matrix repre-

sentation of the convolution kernel k, D represents a lin-

1In the current work, we consider the setting that the blurring kernel and

noise variance are known, known as non-blind restoration. Our method can

also be extended to blind restoration [14].

ear transform through which image properties can be better

modeled, ΓN is a regularizer in the transformed domain,

and λN is an adjustable parameter balancing the contribu-

tions of the data fidelity term and the regularization term in

the objective function. For image denoising, K reduces to

an identity matrix.

The choice of the linear transform D and the regular-

izer ΓN is essential for effective restoration. A common

approach is to first transform image to band-pass domains

(e.g., gradients or wavelets) or use mean-removed patches,

then use regularizers in the form of sparsity-encouraging

norms, e.g., ℓ0 [25, 26] and total variation [20], or models

capturing statistical properties of images in such domains,

e.g., generalized Laplacian [11, 13], Gaussian scale mix-

tures [23], or general Gaussian mixtures [28].

To date, properties of the pristine images in the pixel

domain have been largely overlooked in image restoration

but in a few cases [4, 10, 16, 18, 27]. The constraint on

pixels to take distinct values has been considered in a few

recent works in binary image restoration, where the pixels

can take only two values. Zhang introduced a regularization

term to penalize pixel values that drift away from the two

values [27]. The specific regularizer used there is a fourth-

order polynomial and requires iterative numerical approx-

imations on each pixel. Pan et al. used a ℓ0 regulariza-

tion term if only the zero peak in pixel values is consid-

ered [18]. They showed that this ℓ0 intensity prior helps to

identify salient edges in text images and therefore improves

blur kernel estimation, but its non-blind restoration perfor-

mance was not reported in the paper. A potential limitation

of the ℓ0 intensity prior is that it might not be suitable for

binary images whose pixel values center around two peaks

far away from zero. Another common limitation of these bi-

nary image restoration methods is that they can not be easily
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extended to handle more than two distinct pixel values.

Some recent methods further incorporate histograms of

the pixel values in image restoration. Chen et al. stud-

ied the intensity histograms of clear document images and

used them as reference information for blind deconvolu-

tion, leading to improved restored results with reduced vis-

ual artifacts [4]. Mei et al. recently proposed a framework

to enforce marginal histogram constraints in image restora-

tion. They showed that for pattern images, marginal inten-

sity histograms can significantly improve the denoising per-

formance under high noisy levels [16]. Although a pixel

histogram provides more information than specifying dis-

tinct pixel values in an image, estimating such histograms

from degraded images is a non-trivial task [5, 16, 29], which

poses a limitation for these methods in practice. In con-

trast, as we pointed out in Section 1, obtaining distinct pixel

values before restoring an image is usually possible for the

type of images we focus on in this work.

3. Method

As discussed previously, some subclasses of images have

distinct pixel values. When these values are known a priori,

they provide valuable information to improve the restora-

tion performance. In this section, we describe in detail an

approach to incorporate such information into the general

RLS restoration framework, Eq.(2). It turns out that the spe-

cific solution we obtained has a particularly intuitive inter-

pretation as a “soft-rounding” operation, which adaptively

adjusts the restored pixel values to the target values.

3.1. Distinct Pixel Value Regularizer

We first introduce a regularizer to encourage pixel values

of the restored image to take the designated distinct pixel

values. Formally, assuming we require the restored image

should have n distinct pixel values t1 < t2 · · · < tn, repre-

sented in a vector t = (t1, t2, · · · , tn), we define the regu-

larizer as

ΓI(x) =
∑m

i=1 γt(xi) (3)

where m is the number of the image pixels, and γt measures

the intensity deviation on each pixel:

γt(x) =











1
2 (t1 − x) if x < t1
1
2 (x− tj)(tj+1 − x) if x ∈ [tj , tj+1]
1
2 (x− tn) if x > tn

. (4)

Fig.2 shows an example of γt(x) in the range of [0, 1].
This function has the following distinct characteristics:

1. γt(x) ≥ 0 for x ∈ R;

2. γt(x) attains zero at tj (j = 1, · · · , n) and reaches

local maximum when x locates at the midpoint of each

interval;

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

Figure 2: An example of γt(x) in the range of [0, 1], with five

distinct values (⋄) corresponding to [0.1, 0.5, 0.7, 0.8, 0.9].

3. for x ∈ [tj , tj+1], γt(x) is a concave quadratic func-

tion, and γt(x) reduces to a linear function outside the

range of [t1, tn].

Note that γt(x) is neither a convex nor a concave function

over the whole real line, but at individual intervals it is con-

cave (it becomes either a quadratic or linear function).

3.2. Using ΓI in Image Restoration

We incorporate regularizer ΓI(x) into the RLS restora-

tion framework and solve the following problem:

min
x

1

2
‖y −Kx‖22 + λNΓN (Dx) + λIΓI(x) (5)

where we introduce two parameters λN , λI to balance the

contributions of the three terms in the overall objective

function. Note that Eq.(5) is a non-convex problem, and

we optimize it for a local minimum.

Following the general variable splitting scheme [2], we

introduce an auxiliary variable zI and convert Eq.(5) to the

following equivalent problem:

min
x

1
2‖y −Kx‖22 + λNΓN (Dx) + λIΓI(zI)

s.t. zI = x
(6)

We then solve this equality constrained problem using the

augmented Lagrangian method (ALM) [17]. Introducing

a Lagrange multiplier wI to the equality constraint and a

penalty parameter µI , we form the augmented Lagrangian

function of problem (6), as

L(x, zI ,wI) =
1
2‖y −Kx‖22 + λNΓN (Dx)

+λIΓI(zI) +
µI

2 ‖x− zI‖
2
2 −wT

I (x− zI)
(7)

Starting with initial values for zI ,x,wI and parameter µI ,

we iteratively update zI ,x,wI with regards to the aug-

mented Lagrangian starting from k = 1 as follows:

1. Update zI : zk+1
I = argmin

zI
L(xk, zI ,w

k
I )

2. Update x: xk+1 = argmin
x
L(x, zk+1

I ,wk
I )

3. Update wI : wk+1
I = wk

I − µI(x
k+1 − zk+1

I ).

It is guaranteed in theory that the solution to the original

problem (6) can be obtained by solving (7) iteratively in

the ALM framework when penalty parameter µI increases
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to a sufficiently large value [17]. Compared with the half-

quadratic splitting method [8, 11], a significant advantage of

ALM is that its convergence can be assured without increas-

ing µI indefinitely, which is especially suitable for solving

problems with multiple equality constraints.

The update step for the multiplier (step 3) is straightfor-

ward as required by the ALM framework [17]. The sub-

problem updating x (step 2) can be reformulated as a RLS

problem:

min
x

1

2
‖y −Kx‖

2
2+

µI

2

∥

∥

∥

∥

zk+1
I +

wk
I

µI

− x

∥

∥

∥

∥

2

2

+λNΓN (Dx)

(8)

Compare to Eq.(2), Eq.(8) has an additional quadratic term

about x, i.e., the second term. If ΓN is also a quadratic term

on x, this subproblem can be solved through conjugate gra-

dient or FFT-based method. For most existing restoration

methods with non-smooth ΓN regularizers, this subprob-

lem can be further decomposed into smaller subproblems

through half-quadratic splitting or ALM [8, 11], for which

well-developed proximal operators for existing ΓN regular-

izers can be reused in the computation process. Note that

for practical implementations, the decomposition of the x

subproblem can be done within the same ALM framework

as zI , and its solution requires only a one-iteration approxi-

mate updating process. Compared to standard restoration

methods with only ΓN terms, our method requires extra

slight computation costs on the zI and wI updating steps.

For better understanding of the x subproblem, please refer

to the supplemental material for two concrete examples in-

volving different ΓN terms. The solution of the zI (step 1)

is detailed in the following section.

3.3. Soft­Rounding Operator

After rearranging terms, the subproblem of updating zI
(step 1) reduces to the following minimization problem:

min
zI

µI

2
‖zI − c‖

2
2 + λIΓI(zI), (9)

where we define c = xk − 1
µI

wk
I . Note that both terms

in Eq.(9) can be split into the the sum on each element of

zI (see the definition of ΓI(·) in Eq.(3)). Therefore this

problem can be optimized separately on each element as

(zk+1
I )i = φ

t,
λI
µI

(ci), (10)

where

φt,λ(c) = argmin
x

(

1

2λ
(x− c)2 + γt(x)

)

(11)

can be seen as the proximal operator of function γt(·) [19].

The following result shows that φt,λ(c) can be computed

with a piece-wise function.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure 3: Examples of function φt,λ(c) for different λ values

and the same set of t = [0.1, 0.5, 0.7, 0.8, 0.85] (⋄). Left: soft-

rounding (λ = 0.6). Right: rounding (λ = 1.1).

Theorem 1. For constant λ > 0 and t1 < t2 · · · < tn, the

optimal solution to Eq.(11) is given by:

(i) for c < t1, φt,λ(c) = min(t1, c+
λ
2 );

(ii) for c > tn, φt,λ(c) = max(tn, c−
λ
2 );

(iii) hard-rounding: for c ∈ [t1, tn] and λ ≥ 1,

φt,λ(c) =

{

tj c ∈ [tj , tj + dj)

tj+1 c ∈ (tj+1 − dj , tj+1]
(12)

where dj =
1
2 (tj+1 − tj) and j = 1, · · · , n− 1;

(iv) soft-rounding: for c ∈ [t1, tn] and λ ∈ (0, 1),

φt,λ(c) =











tj c ∈ [tj , tj + dj ]
c

1−λ
−

λ(tj+tj+1)
2(1−λ) c ∈ [tj + dj , tj+1 − dj ]

tj+1 c ∈ [tj+1 − dj , tj+1]
(13)

where dj =
λ
2 (tj+1 − tj) and j = 1, · · · , n− 1.

The proof of Theorem 1 is given in the supplementary

material. In Fig.3 we show examples of φt,λ with different

λ values and the same set of t. As can be seen from Theo-

rem 1 and Fig.3, when λ ≥ 1, φt,λ maps c ∈ [tj , tj+1] to

the nearest of tj or tj+1, i.e., it rounds c to either tj or tj+1.

For 0 < λ < 1, φt,λ keeps a zone [tj + dj , tj+1 − dj ] ⊂
[tj , tj+1], inside which c is not rounded but undergoes a

linear transform, the slope of which is determined by λ. As

such, we term Eq.(13) as soft-rounding, drawing an analogy

from soft-thresholding, which is the proximal operator of ℓ1
norm [7]. The soft-rounding operator “softens” the round-

ing operator, and has an interesting effect on its output: if c

is close to the endpoints of an interval, it will be rounded to

the nearest endpoint. However, if c lies in the middle range

of an interval, it is “nudged” towards the nearest t value

through a linear interpolation.

Note that through the ALM framework, regularizer ΓI

and the resulting soft-rounding operator can readily work

with most existing RLS image restoration methods. The

two regularizers, ΓN and ΓI , collaborate in a closed loop to

recover the uncorrupted image. The former restores struc-

tures (edges and contours), and the latter encourages the
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restored image to have the desirable distinct pixel values.

Also, typical restoration methods tend to smooth the image,

and the soft-rounding operator, by enhancing the contrasts

of the restored image, serves as a countermeasure to such

over-smoothing.

Our method is advantageous to the simpler approach that

first restores the image and then applies rounding to project

the pixel values back to the target values. Since rounding

is performed independent of and after the restoration step,

it may destroy the structures recovered by restoration and

undo its effect. This difference is demonstrated in the sub-

sequent experiments in Section 4.

3.4. Obtaining Distinct Pixel Values

We first discuss several general ways to obtain distinct

pixel values to be used in ΓI , depending on the applica-

tion scenario and domain knowledge. (1) Distinct pixel

values can be extracted from external sources. For instance,

text images captured under similar illumination conditions

might vary in spatial layout and visual contents, but they

show very close distinct values for text and background

pixels respectively. (2) Distinct pixel values can be spec-

ified through user interaction. We first recover a clean im-

age from the degraded observation with existing restoration

methods, and then manually select dominant pixel values

from various regions as distinct pixel values. (3) For spe-

cific problems, distinct pixel values can be estimated from

the degraded observation. For images contaminated with

small Gaussian noise, their marginal intensity histograms

might be roughly estimated from the noisy observations fol-

lowing a 1D deconvolution approach [29], from which we

can extract distinct pixel values.

Apart from general discussions, we also provide a simple

but effective method to estimate distinct pixel values from

a degraded image. A natural idea is to first recover a clean

image with standard image restoration methods (e.g., L0)

and then use clustering methods such as K-Means to extract

the cluster centers as distinct pixel values. However, the im-

age degradation process blurs across different distinct pixel

values and shrinks the distances between them. This effect

might still be evident in the restored image, sometimes lead-

ing to inaccurate centers as shown Table 1. Inspired by the

local two-color model [10] and its recent extension [12],

we propose a simple two-step estimation method. In the

first step, we extract a small patch around each pixel and

estimate a local one-center or two-center model. If the in-

tensity variance in the patch is below a threshold, the patch

falls into the one-center model, and its mean pixel value is

collected for the second global clustering step; otherwise

the patch is a two-center patch, and its two cluster centers

are collected with a normalized two-class K-Means cluster-

ing method [12]. Compared to K-Means, normalized K-

Means tries to stretch the distance between the two cluster

Method
Examples

Fig. 1 Fig. 4 Fig. 6 (2nd Row)

True Values 0, 100, 150, 255 26, 217 24, 53, 158, 224, 255

K-Means 18, 98, 156, 245 62, 215 14, 55, 164, 221, 253

Our Method 9, 101, 155, 255 32, 217 20, 52, 162, 224, 255

Table 1: The distinct pixel values estimated by K-Means and our

method for three L0 deconvolution visual examples.

centers and fight against the shrinkage effect due to image

degradation. Then in the second step, we perform a global

K-Median clustering on all the collected local center values

to determine the final distinct pixel values. We provide the

estimation results for three L0 deconvolution text and pat-

tern image examples in Table 1: the pixel values estimated

by our method are very close to those of the clean images

and are more accurate than the results produced by a single

global clustering method such as K-Means.

4. Experiment

In this section, we combine the soft-rounding operator

with several state-of-the-art RLS image restoration methods

and evaluate its performance on a variety of images. We

focus on the restoration of three typical categories of im-

ages with distinct pixel values, namely, text images with

two pixel values, pattern images with multiple pixel values,

and natural images with pixels of full range of 8-bit depth.

Furthermore, we also test our algorithm on other types of

images that are of practical importance, such as barcodes,

posters and license plates. In all experiments, we assume

the distinct pixel values are known.

4.1. Text Image Deconvolution

Text images form an important but special class of im-

ages. Many text images originate from text documents and

have two distinct pixel values for text and background pixels

respectively. State-of-the-art non-blind restoration perfor-

mance for text images was achieved with an RLS method

with an ℓ0 regularizer in the gradient domain (subsequently

denoted as L0 in Table 2) [18, 25, 26]. Assuming the pixel

values for foreground and background pixels have been ex-

tracted from similar text images, we augment the ℓ0-based

RLS restoration method with soft-rounding and denoted it

as L0+S. We also compare the performance of L0 combined

with three other pixel domain regularizers: a simple post-

processing method which directly rounds the restored im-

age to a binary image (denoted as L0+R), the fourth-order

polynomial regularizer to incorporate binary intensity con-

straints [27] (denoted as L0+P) and the ℓ0 intensity regu-

larizer from [18] (denoted as L0+L). For fair comparison

of each method, we adjust parameters and report the best

overall performance.

We collect 20 text images of different languages, equa-

tions and graphs. We use three kernel/noise settings to sim-

ulate the degradation process: (i) a 33 × 33 kernel and
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(a) original image (b) L0 (PSNR = 20.83dB, SSIM = 0.86) (c) L0+R (PSNR = 18.38dB, SSIM = 0.85)

(d) L0+L (PSNR = 21.01dB, SSIM = 0.87) (e) L0+P (PSNR = 21.72dB, SSIM = 0.90) (f) L0+S (PSNR = 21.88dB, SSIM = 0.92)

Figure 4: Text Image Deconvolution Example. The original image is degraded with a 51× 51 kernel and 1% Gaussian noise. The values

for text and background pixels are t1 = 26, t2 = 217 respectively. Details are best viewed on screen.

additive Gaussian noise with 3% standard deviation; (ii) a

45 × 45 kernel and 2% Gaussian noise; and (iii) a 51 × 51
kernel and 1% Gaussian noise. The kernels are motion-blur

kernels previously used in [13, 18].

Table 2 reports the average peak-signal-to-noise (PSNR)

and structural similarity index (SSIM) [24] results of the

five methods in three kernel-noise settings. Compared to

the original L0 method, the soft-rounding enhanced restora-

tion method significantly improves the average PSNR by

at least 0.5dB and the average SSIM by at least 0.04 for

all the settings, which is more effective than the other two

methods with intensity regularizers (L0+L, L0+P). The sim-

ple rounding method (L0+R) actually lowers the perfor-

mance for most settings. These quantitative results demon-

strate the effectiveness of our method.

Kernel/Noise
Avg. PSNR (in dB)

L0 L0+R L0+L L0+P L0+S

33× 33+3% 19.46 16.75 19.71 19.91 20.03

45× 45+2% 18.20 15.71 18.47 18.57 18.86

51× 51+1% 18.03 15.95 18.23 18.93 19.16

Kernel/Noise
Avg. SSIM

L0 L0+R L0+L L0+P L0+S

33× 33+3% 0.86 0.84 0.87 0.88 0.90

45× 45+2% 0.82 0.81 0.83 0.86 0.88

51× 51+1% 0.78 0.83 0.79 0.83 0.86

Table 2: The average PSNR and SSIM results of the 20 text im-

ages in three kernel-noise settings.

We provide a visual example of kernel/noise setting (iii)

in Figure 4, which contains an equation and some English

text. As shown by the example, the original L0 method pro-

duces pixel values that do not exist in the original text im-

age, leading to many visible artifacts. A direct rounding to

the binary image (L0+R) removes out-of-range pixel values,

but it also destroys recovered structures, which lowers both

visual quality and quantitative measures. Using the ℓ0 reg-

ularizer in pixel domain (L0+L) slightly improves over the

L0 method in PSNR and SSIM, but visual artifacts are still

visible in the restored image. On the other hand, regular-

izers specifically enforcing distinct pixel values including

the method of [27] (L0+P) and our regularizer (L0+S) can

more effectively incorporate the binary intensity constraint.

Our method recovers more structures and suppresses more

intensity artifacts with the soft-rounding operator, leading

to the best visual quality and quantitative results. More ex-

amples can be found in the supplemental material.

4.2. Pattern Image Restoration

Pattern images are an important class of images which

can be frequently found from human-made objects, artis-

tic designs and paintings. An important property of pattern

images is that their visual contents are represented with a

few distinct pixel values [16]. We test our method to re-

move noise from pattern images. In our experiments, we

collect 10 pattern image examples and degrade them with

three high Gaussian noise levels (15%, 20% and 25%),

such that the restoration performance depends heavily on

the regularizers. We adopt the BM3D denoiser as the base-

line method [6] and combine it with the soft-rounding reg-

ularizer (denoted as BM3D+S). The numerical solution of
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(a) original image (b) noisy observation (c) BM3D

PSNR = 19.97dB

SSIM = 0.69

(d) BM3D+R

PSNR = 19.82dB

SSIM = 0.71

(e) BM3D+S

PSNR = 20.93dB

SSIM = 0.76

(a) original image (b) noisy observation (c) BM3D

PSNR = 29.65dB

SSIM = 0.93

(d) BM3D+R

PSNR = 32.02dB

SSIM = 0.94

(e) BM3D+S

PSNR = 34.35dB

SSIM = 0.96

Figure 5: Pattern Image Denoising Examples. Top row: this pattern image is degraded with 25% Gaussian noise. The distinct pixel

values are 32, 76, 142, 230 respectively. Bottom row: this pattern image is degraded with 20% Gaussian noise. The distinct pixel values

are 32, 70, 135, 158, 231 respectively. Details are best viewed on screen.

Noise
Avg. PSNR (in dB)

BM3D BM3D+R BM3D+S

15% 29.77 29.75 31.13

20% 26.71 27.21 28.67

25% 24.59 25.21 25.96

Noise
Avg. SSIM

BM3D BM3D+R BM3D+S

15% 0.92 0.91 0.94

20% 0.89 0.89 0.92

25% 0.86 0.85 0.88

Table 3: The average PSNR and SSIM results of the 10 pattern

images in three noise settings.

BM3D+S can be found in the supplemental material. For

comparison, we include a post-processing method which di-

rectly rounds the BM3D denoised image pixels to nearest

known pixel values (denoted as BM3D+R). Note that previ-

ous binary intensity regularizers [18, 27] can not be easily

extended to handle more than two distinct pixel values.

Table 3 reports the average PSNR and SSIM results

over 10 pattern images for the three noise levels. Com-

pared to BM3D, our method (BM3D+S) improves the av-

erage PSNR by at least 1.3dB and the average SSIM by at

least 0.02 for the three cases. The simple rounding method

(BM3D+R) sometimes leads to a deterioration either in

PSNR or in SSIM. We provide two visual examples with

different noise levels are in Figure 5. As these results show,

the original BM3D method tends to introduce out-of-the-

range pixel values and blurred boundaries. The post round-

ing method (BM3D+R) improves the image contrast with

known intensity information, but it also introduces visible

errors on region boundaries. On the other hand, our method

improves both visual quality and quantitative results with

better contrast and image structures.

We further present several deconvolution examples of

practical pattern images in Figure 6. We use the L0 decon-

volution method as the baseline method and combine the

distinct pixel value information with the L0+R and L0+S

method. As in the case of denoising, our method (L0+S)

significantly improves the visual quality and the quantita-

tive results, while the direct rounding method (L0+R) in-

troduces extra artifacts and removes useful structures in the

original images. Please refer to the supplemental material

for more examples.

4.3. Natural Image Deconvolution

We randomly select 200 natural images from the

BSDS500 dataset [15] and test them with the same ker-

nel/noise settings used in Sec. 4.1. For natural image de-

convolution, we choose the total variation method (denoted

as TV) [20] as our baseline method. We integrate the in-

teger intensity constraint into the TV method using soft-
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(a) original image (b) degraded image (c) L0

PSNR = 13.18dB

SSIM = 0.70

(d) L0+R

PSNR = 12.50dB

SSIM = 0.80

(e) L0+S

PSNR = 21.02dB

SSIM = 0.97

(a) original image (b) degraded image (c) L0

PSNR = 18.69dB

SSIM = 0.67

(d) L0+R

PSNR = 17.87dB

SSIM = 0.72

(e) L0+S

PSNR = 19.13dB

SSIM = 0.78

Figure 6: More L0 Deconvolution Examples. Top row: the 1D barcode image is degraded with a 65× 65 kernel and 1% Gaussian noise.

The distinct pixel values for barcode and background pixels are t1 = 0, t2 = 255 respectively. Bottom row: the license plate image is

degraded with a 55 × 55 kernel and 3% Gaussian noise. The distinct pixel values are 24, 53, 158, 224, 255 respectively. Details are best

viewed on screen.

Kernel/Noise
# of Images with PSNR Difference D

> 0 < 0 > 0.01 < −0.01

33× 33+3% 129 71 24 0

45× 45+2% 126 74 22 0

51× 51+1% 132 68 68 1

Table 4: Quantitative comparison of TV+S and TV on 200
BSDS500 images for the three kernel/noise settings. The PSNR

difference is defined as D = PSNRTV +S − PSNRTV .

rounding (denoted as TV+S) and compare it to the post-

rounding method (denoted as TV+R).

Our experiments show that compared to TV, TV+S

improves the average PSNR by 0.005dB, 0.005dB and

0.025dB for the three cases, respectively, while TV+R

slightly degrades the performance by about 0.002dB for

each case. Even though the average contribution of the con-

straint on integer pixel values seems marginal, a detailed

performance breakdown can shed more light on its effect.

Specifically, we report the PSNR difference between TV+S

and TV on the 200 images in Table 4: for all the three ker-

nel/noise settings, TV+S improves TV on most images; and

for at least 11% of the images, the improvement obtained

with TV+S over TV is at least 0.01dB; on the other hand,

it decreases TV performance significantly (> 0.01dB) only

on one image example from all the cases.

Summary. As all the experimental results show, even

though the constraint on pixel values is simple, effectively

incorporating it in image restoration often improves the vis-

ual quality and the quantitative results for a variety of im-

ages and various restoration methods. Furthermore, for spe-

cial classes of natural images that have distinct pixel values,

it leads to considerable performance improvement.

5. Conclusion

In this work, we describe a new regularizer to augment

current image restoration algorithms when the original im-

ages have known distinct pixel values. Our regularizer is in

the form of a function and can be efficiently implemented

with a soft-rounding operation. This regularizer can be

readily incorporated into most existing image restoration

methods and our experiments on restoration of binary text

images, pattern images with multiple pixel values and natu-

ral images show that its incorporation leads to considerable

performance improvements to the state-of-the-art methods.

There are a few directions we would like to further im-

prove the current work. Currently, our method relies on the

knowledge of the distinct pixel values in the original image.

Another scenario is when we only know the exact number

of distinct pixel values but not the values themselves. One

subsequent study is to augment our algorithm so that it can

also simultaneously estimate the distinct pixel values and

restore the corrupted image. Furthermore, discriminative

image restoration methods [21, 22] seem to be an effective

alternative to the generative methods, and it is also of inter-

est to combine our regularizer with such methods.
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