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Abstract

The purpose of this paper is threefold. Firstly, the paper

introduces the One Triangle Three Parallelograms (OTTP)

sampling strategy, which can be viewed as a way to index

pixels from a given shape and image. Secondly, a frame-

work for cascaded shape regression, including the OTTP

sampling, is presented. In short, this framework involves

binary pixel tests for appearance features combined with

shape features followed by a large linear system for each

regression stage in the cascade. The proposed solution is

found to produce state-of-the-art results on the task of facial

landmark estimation. Thirdly, the dependence of accuracy

of the landmark predictions and the placement of the mean

shape within the detection box is discussed and a method to

visualize it is presented.

1. Introduction

Registration of shape landmarks in an image is an essen-

tial step in many computer vision applications. Early work

on shape landmark estimations commonly resorted to the

Active Appearance Model (AAM) [8, 4]. More recently,

Cascaded Pose Regression (CPR) [7] and Supervised De-

scent Methods (SDM) [21] have shown state-of-the-art re-

sults in shape estimation. Variants of CPR and SDM are

currently the focus in state-of-the-art facial landmark es-

timation frameworks [16, 2, 1, 15, 19]. A key element

in these shape regression approaches is that they predict

shapes in a cascaded manner. That is, starting with an ini-

tial shape, this shape is progressively refined by estimating

a shape increment stage-by-stage. At each stage a regressor

is learned on some features, these features are often variants

of shape-indexed features [10]. The way pixels are indexed

can, for example, be by using local coordinates around each

landmark [2] or indexing between two landmarks [1]. The

learning method in the cascade can involve several methods,

for example, gradient boosting, regression trees and linear

Figure 1. Top row are examples of OTTP shapes. Middle row

left is a shape of three points on a face; right and left eye and

the mouth, and right presents an OTTP placed on those three

points. Bottom row left demonstrates a shape with many points

and right are example of OTTPs created and placed on several cho-

sen triplets of points.

regression [19, 15, 1, 21, 14].

In this work, a new way to index pixels in a shape is

proposed. Furthermore, a cascaded shape regression frame-

work is presented with novel parts. The general principle in

the work builds on ideas found in recent research in shape

alignment [7, 16, 2, 21, 12, 1, 15, 19].

The main contributions of this work are:

1. The One Triangle Three Parallelogram (OTTP) sample

strategy. This is covered in section 2.

2. A novel cascaded shape regression framework involv-
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ing the OTTP sampling, a way of learning spatial loca-

tions for binary pixel tests and the use of explicit land-

mark positions to capture landmark correlations. The

framework is presented in section 3.

3. Performance results indicating state-of-the-art results

on two facial landmark datasets, see Fig. 4 and Fig. 5,

and a way to visualize the effect of shape initialization,

see Fig. 9. These results are found in section 4.

2. The One Triangle Three Parallelograms

Sampling Strategy

The One Triangle Three Parallelograms (OTTP) sam-

pling strategy proposed here is intended to form a way from

landmarks on a shape to shape-index features. A shape is

here defined as set of landmark points, Sp = [xp, yp], p ∈
1, 2, . . . , P . Shape-indexed features, introduced by Fleuret

et al. [10], depends on both the image and the current shape

estimate. The motivation for the proposed sampling strat-

egy stems from the observation that it is often desirable to

extract and capture appearance information between as well

as context around points in a shape. As an example, con-

sider the right and left eye as well as the mouth as thee land-

marks on a face, see middle row in Fig. 1. In addition, it is

advantageous if this sampling could be performed in a sim-

ple and quick manner.

The way a single OTTP is formed is from three selected

points in a shape. Lets denote these three points A = Si,

B = Sj and C = Sk for some chosen i, j and k. Three

parallelograms are created from the triangle and a given

scale α. The creation and placement for the parallelogram

at point A is performed by mirroring A, creating Ã, on the

line between B and C, now A, B, C and Ã forms a paral-

lelogram. Further, this parallelogram is centered with its

midpoint at the origin, scaled with α and translated back to

have its midpoint at A, see Fig. 2. In a similar manner, the

parallelograms at B and C are created.
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Figure 2. Steps to find the parallelogram at point A for an OTTP.

Given the location of the triangle, as well as the three par-

allelograms, sampling points are calculated using Barycen-

tric coordinates [17]. The sample size is determined by set-

ting samples along the sides of the triangle, denoted Stri

leading to Ntri =
(Stri+1)Stri

2 sampling points in total for

the triangle. Given this Stri, weights for A, B and C can

be found as described in Algo. 1. Using these weights, it is

now possible to find the sampling points for the triangle as

A·wA,tri(k)+B·wB,tri(k)+C ·wC,tri(k), ∀k ∈ 1, .., Ntri.

(1)

Algorithm 1 Triangle sample point weights

Input Stri

k = 0

1: for i = 1, 2, . . . , Stri do

2: u = i−1
Stri−1

3: for j = 1, 2, . . . , Stri do

4: v = j−1
Stri−1

5: if u+ v ≤ 1 then

6: k = k + 1
7: wA,tri(k) = u

8: wB,tri(k) = v

9: wC,tri(k) = 1− (u+ v)
10: end if

11: end for

12: end for

The sampling points for the parallelogram around A is

determined by setting the number of samples along the sides

of the parallelogram, denoted Spar with Npar = S2
par being

the number of sampling points, as well as the scale α. Given

this Spar and the scale α, weights for A, B and C can be

found as described in Algo. 2. Using these weights, it is now

possible to find the sampling points for the parallelogram at

A as

A·wA,par(k)+B·wB,par(k)+C·wC,par(k), ∀k ∈ 1, .., Npar.

(2)

The weights for the parallelogram at A can be reused for

Algorithm 2 Parallelogram sample point weights

Input Spar, α

k = 0

1: for i = 1, 2, . . . , Spar do

2: u = i−1
Spar−1

3: for j = 1, 2, . . . , Spar do

4: v = j−1
Spar−1

5: k = k + 1
6: wA,par(k) = 1 + α− αu− αv

7: wB,par(k) = −α
2 + αu

8: wC,par(k) = −α
2 + αv

9: end for

10: end for

parallelogram B and C. The only important matter is to put
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the weights for A at the point you want to create the par-

allelogram. For example, sampling points for the parallelo-

gram around B can be found as

A·wB,par(k)+B·wA,par(k)+C·wC,par(k), ∀k ∈ 1, .., Npar.

(3)

Similarly, the sampling points for the parallelogram around

C is found as

A·wB,par(k)+B·wC,par(k)+C·wA,par(k), ∀k ∈ 1, .., Npar.

(4)

Given selected scale α, sample size on the sides of the tri-

angle Stri and the sample size on the sides of the parallelo-

gramSpar, the weights according to Algo. 1 and Algo. 2 can

be pre-calculated. Finding sampling points is only a matter

of weighting the triangle points as in Eq. (1), Eq. (2), Eq. (3)

and Eq. (4) to get all the sampling points, hence it is a rapid

operation. Furthermore, the notation OTTPα,Stri,Spar
will

indicate the settings used in an OTTP. As an example, the

top left OTTP in Fig. 1 is an OTTP0.25,3,4.

3. Framework for Cascaded Shape Regression

The shape regression framework predicts a shape S in

a cascaded manner [7, 19, 21]. Beginning with an initial

shape S(0), which here is a mean shape placed in a detection

box, a shape increment ∆S(1) is sought to find an improved

shape S(1). This operation is then repeated T times in a

cascade manner

S(t) = S(t−1) +∆S(t). (5)

At each step the goal is to to find the ground truth shape G,

hence ideally ∆S(t) = G − S(t−1).

The way ∆S(t) is calculated here requires the image I ,

the previous shape estimate S(t−1) and a mean shape from

training shapes. The mean shape from training shapes, de-

noted M, is found by generalized Procrustes analysis [13]

followed by translating the mean to the origin and uniform

scaling.

In order to simplify the regression task, the regression

targets are normalized [3]. This normalization implies that

a scale s, rotation matrix R and translation t is found by the

minimization

min
s,R,t

P∑

p=1

‖Mp −
(
sRS(t−1)

p + t
)
‖2 (6)

where Mp and S
(t−1)
p are points in the mean shape and

current shape, respectively. Only scale and rotation are used

to normalize the target, thus regression targets are

sR∆S(t)
p ∀p ∈ 1, .., P. (7)

The following subsections will describe the features, learn-

ing and prediction method used to find the normalized re-

gression targets and the final shape update ∆S(t) utilizing

the OTTP sampling strategy described in section 2.

3.1. Appearance Features as Binary Pixel Compar-
isons

Given K selected triangle indices for vertices V (k) =
[vA(k), vB(k), vC(k)], ∀k ∈ 1, ..,K the image is sampled

with OTTPs. The triangle selection should be chosen to

cover the appearance in a proper manner. It might be ad-

vantageous to have triangles of various sizes and have them

cover each other in different parts due to the sparse sam-

pling. Hence, Delaunay triangulation [6] might not be the

best choice for this task. Note that there will be K OTTPs

and each OTTP will have

NOTTP = Ntri + 3Npar =
(Stri + 1)Stri

2
+ 3S2

par (8)

sample points, thus in total there are K ·NOTTP sampling

points.

The way the features are created involves pixel compar-

isons in each triangle and parallelogram individually. For

example, consider Ntri sample points in a triangle. In order

to find feature for pixel i it is compared to each of the other

j �= i pixels and a binary feature vector of size Ntri − 1
is the result. Similarly, a parallelogram results in a binary

feature vector of size Npar − 1 for one pixel. Let the matrix

xbin be such a binary feature matrix for one pixel in either

a triangle or parallelogram for every training sample, hence

xbin will be of size N × (Ntri − 1) or N × (Npar − 1)
where N is number of training samples. The aim with these

binary features is to find a spatial configuration of B, out

of Ntri or Npar, binary tests from each sample point in ei-

ther a triangle or a parallelogram. Let ybin be a vector, size

N×1, of regression values from the mean of the normalized

targets, see Eq. (7), for each training sample. Note that, in

general, one could have used different features for each re-

gression target, but this would imply 2P feature extractions

in general. Therefore, the mean of all the regression targets

are chosen resulting in only one feature extraction.

Given xbin and ybin, a weight vector wbin and a bias

bbin are found by minimizing

min
wbin,bbin

‖ybin − (bbin + xbinwbin)‖
2
2 . (9)

Then the absolute value of each of value in wbin is taken

and these absolute values are sorted from high to low and

the first B indices are kept for future feature calculations.

The regression result from this operation is discarded and

only the indices indicating the spatial location of the points

to be used for comparisons are kept. Furthermore, note that

this operation is repeated for all K ·NOTTP sampling points

resulting in indices of points to compare with for each sam-

pling point used.

With B found indices for each sampling point, the fea-

tures form an index in range [0, Q− 1] where Q = 2B. The
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appearance features extracted as described are denoted

Φa

(
I,S(t−1), V

)
(10)

and will have a dimension of

Da = K ·NOTTP ·Q. (11)

These feature are sparse since only one value in Q is active

for each of the K ·NOTTP sample points.

This selection of binary tests located within each trian-

gle and parallelogram enforces a form of locality principle.

Other locality principles has been argued for in previous

works. For example, the two step, locality before global,

regression proposed by Ren et al. [19] or the use of an ex-

ponential prior as proposed by Kazemi and Sullivan [15].

The binary features produced here have similarities to

randomized ferns [22] and Local Binary Patterns (LBPs)

[18]. However, the binary features proposed here differ in

that they find the spatial configuration by learning over a

larger set of points rather than randomized location of pixel

pairs [22] or the use of a predefined spatial configuration

[18].

3.2. Shape Features to Capture Point Correlations

The appearance features described make use of points

on the shape implicitly. With occlusions in mind, it may be

desirable to make use of the points on the shape explicitly

as well. The benefit to incorporate a way to capture corre-

lations between points was discusses, and argued for, as a

possible future improvement in conclusions of the work of

Kazemi and Sullivan [15].

The shape to update, S
(t−1)
p = [xp, yp] ∀p ∈ 1, .., P , is

scaled, rotated and translated by the normalization to the

mean shape, see Eq. (6), then a normalized shape can be

found as

S
(t−1)

p = sRS(t−1)
p + t, ∀p ∈ 1, .., P. (12)

Now the normalized shape S
(t−1)

p = [xp, yp], ∀p ∈ 1, .., P
will be used to create 2P shape features as

Φs

(
S(t−1),M

)
= [x1, y1, x2, y2, . . . , xP , yP ] . (13)

Thus, the dimension of shape features will be

Ds = 2P. (14)

3.3. Learning Linear Regression on Appearance
and Shape Features

Given appearance features, see Eq. (10), and shape fea-

tures, see Eq. (13), concatenated features

Φ
(
I,S(t−1),M, V

)
=

[
Φa

(
I,S(t−1), V

)
, Φs

(
S(t−1),M

)]

(15)

are calculated at each stage in the cascaded regression. In

each iteration t in the cascade, consider x to be a matrix of

size N × Dx, where N is number of training samples and

each training sample is found according to Eq. (15) result-

ing in a feature dimension of size Dx = Da + Ds. Let y

be a matrix of size N × Dy , where each training sample,

and its ground truth shape, produces a row in y according

to Eq. (7) resulting in Dy = 2P regression values to find.

Let y•,j be the j:th column in y, then there are j = 1, .., Dy

linear regressions to be found by minimizing

min
w•,j,bj

1

N
‖y•,j − (bj + xw•,j)‖

2
2

+ λ1‖w•,j‖1 + λ2‖w•,j‖
2
2, ∀j = 1, .., Dy (16)

where w•,j is the j:th column in the weight matrix w of

size Dx × Dy and b is vector with biases of size 1 × Dy .

Note that an elastic net regularization is applied. Regular-

ization is essential since the feature dimension is typically

very high and overfitting is an issue without it. Note that the

data involves sparse appearance features as well as dense

shape features and elastic net regularization, for this rea-

son a special coordinate solver for this problem was imple-

mented. In general, this implementation follows principles

found in works of Fan et al. [9] and Friedman et al. [11].

Given the T regressors, w(t) and b(t), the values for the

shape update ∆S(t) is found at each iteration, recall Eq. (5)

and Eq. (7), as

s−1R−1
(
Φ
(
I,S(t−1),M, V

)
w(t) + b(t)

)
(17)

where s and R are found by the minimization in Eq. (6) at

each stage.

4. Experiments

Experimental results are reported on two highly chal-

lenging facial landmark annotated datasets. The first is HE-

LEN [16] which consists of 2330 annotated images, 2000

training images and 330 testing images. This dataset is an-

notated with 194 landmarks and images are of high reso-

lution. The second is Caltech Occluded Faces in the Wild

(COFW) [1] which consists of 1852 annotated images, 1345

training images and 507 testing images. This dataset is an-

notated with 29 landmarks and was made to contain heavy

occlusions and large shape variations.

The error reported is the average normalized distance of

each landmark to its ground truth position normalized by the

Inter Ocular Distance (IOD) from the ground truth shape.

This error is reported in percent. An alignment resulting in

error above 10% is considered as a failure, this rule has been

adopted in other works as well [1, 5].

The system presented is fast and runs in a few millisec-

onds, depending on the number of landmarks and settings.
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Parameter Value

T 10
B 5
Stri 6
Spar 6
αt 1.1− 0.1t

Table 1. Parameters used in all experiments.

Parameter HELEN COFW

P 194 29
K 35 15
Da 144480 61920
Ds 388 58
Dx 144868 61978
Dy 388 58

Table 2. Parameters and dimensions for the datasets HELEN and

COFW.

Similarly to the work of Ren et al. [19], regressing on the

sparse binary features that make up the appearance features

can be implemented by an efficient look up table and vec-

tor addition. Calculating the transform in Eq. (6) at the test

time is another factor affecting the processing time in the

same manner as in other works [2, 15]. An additional fac-

tor in this work is the extra processing time related to the

shape features as in Eq. (13). While inclusion of the shape

features will require additional processing time, the result

from Eq. (6) is reused and the overhead is small in compar-

ison to the processing times for the appearance regression

part and finding the transformation.

In experiments, a face detector [20] is applied and the

bounding box for the face is used to place the mean shape in

accordance to this box. In the cases where the face detector

fails, a manual bounding box is inserted. Generic settings

used for both datasets can be found in Table 1. Note that the

OTTP scale shrinks as the stages in the cascade progresses.

For the HELEN dataset, 35 triangles are selected and for

COFW, 15 triangles are chosen. Given the generic settings

and the number of selected triangles, the parameters and

dimensions for the respective datasets can be found in Ta-

ble 2. For each training image, 40 initializations are used in

order to train the model. These initializations are created by

various scaled, rotated and translated mean shapes as well

as randomly selected shapes from all the training shapes.

Given the trained models at every stage in the cascade, a

final shape can be predicted on a test image, see Fig. 3.

Results and comparisons to results stated in other works

on the HELEN dataset can be found in Fig. 4. Note that the

result on HELEN is on par with the state-of-the-art. While

HELEN is challenging due to the large amount of land-

marks, COFW is challenging due to the larger amount of
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Figure 4. Average error results on the HELEN database.

occlusions. Comparisons and results on the COFW dataset

can be found in Fig. 5. Additionally, similar to the work

of Burgos-Artizzu et al. [1], the failures on the test set is

reported in Fig. 6. As results on COFW indicate, the pro-
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Figure 5. Average error results on the COFW database.
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Figure 6. Failures on the COFW database.

posed method copes with occlusions fairly well. The reason

for this could be various factors, such as the OTTP sam-

pling, or the design of features, or the use of explicit shape

features. Here the effect of the use of explicit shape fea-

tures is investigated. Furthermore, as mentioned earlier, the

triangles used are here manually selected and a comparison

to Delaunay triangulation would be in place. The Delau-

nay triangulation on the mean shape results in 49 triangles,

compared to the 15 selected ones, on the 29 landmarks in

COFW. Results on COFW using Delaunay triangulation,

omitting shape features, only triangles, and only parallel-

ograms can be found in Fig. 7. This result opens the ques-

tion on how to select the triangles, since the same results
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S(0) S(1) S(5) S(9) S(10)

Ground Truth

Figure 3. Shape estimates at different stages in the cascade. Top left is the initialization with mean shape and top right is the final estimate.

Bottom shows the OTTP sampling used for the shape above, note how the parallelograms shrink as stages progresses, and bottom right is

the ground truth shape.
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Figure 7. Comparision on the COFW dataset of using OTTP, with

manually chosen triangles versus using Delaunay triangluation,

omitting shape features, only triangles, and only parallelograms

in the cascaded regression.

with only 15 manually selected triangles can be achieved

compared to the 49 produced by Delaunay triangulation.

A more systematic way to select them could possibly be

found. Furthermore, the explicit shape features seem to

complement the shape indexed appearance features and give

an improvement. Using only parallelograms, which capture

features around the landmarks, shows better results than us-

ing only triangles, which captures features between land-

marks. However, using both gives slightly better perfor-

mance.

4.1. Face Detection Bounding Box and the Mean
Shape Placement

In some images, the face detector fails and a manual box

is put in. In general, the detection fails to large rotations of

the head or severe occlusions. Hence, omitting the missed

detections would simplify the landmark regression task. Us-

ing the COFW dataset, this statement can be justified. The

proposed method results in 7.3% error with all test images

and it would improve to 6.8% if the missed face detections

was not accounted for.

While the face detection box is one factor, another is the

placement of the initial shape. In some works, different

schemes of multiple initializations and restarts have been

explored [2, 1]. Initialization of the landmarks here uses

one single mean shape placed in the face detection box, this

approach has been used in other works as well [19, 15]. It

is a known fact that pose regression frameworks typically

require a good shape initialization provided by a face detec-

tor to accurately locate landmarks [12]. The way to place

the mean shape in the face detection bounding box is here

performed by a similarity map of the mean shape eye posi-

tions to a fixed position of the left and right eye inside the

detection box. A way to control the insertion of the mean

shape, with the eyes aligned, is to use two ratios, fx and fy ,

related to the bounding box width W and height H as

fx =
∆x

W

fy =
∆y

H
(18)

where ∆x and ∆y are distances, see Fig. 8. All the results

W

H

∆x ∆x
∆y ∆y

Figure 8. Positioning of the mean shape eyes in the face bounding

box.

reported in this paper used fx = 0.3 and fy = 0.375. An-

alyzing the effect of the initialization could be performed

by elaborating on choices of fx and fy , for test results on
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COFW see Fig. 9. This way, an objective visualization
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Figure 9. Average errors for different choices of fx and fy on the

test set of the COFW database. White contour indicates the area

in which the average error is below 10%.

of the performance related to the initialization can be pre-

sented. Research on methods that leads to an expansion of

the area indicated in Fig. 9 should be encouraged.

5. Conclusion

The proposed One Triangle Three Parallelogram (OTTP)

sampling strategy was presented. This sampling strategy

was further included in a framework for cascaded shape re-

gression. This framework included binary features created

from the OTTPs, inclusion of explicit shape features and a

large linear regression with elastic net regularization to per-

form the regression at each stage in the cascade. The pro-

posed framework resulted in state-of-the-art results on the

two tested facial landmarks datasets, HELEN and COFW.

Additionally, it was shown that the explicit shape features

complement the appearance shape index features and that

the way to chose triangles is important and should get more

attention. Finally, a way to visualize the effect of shape ini-

tialization was presented.
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Figure 10. Examples of OTTP shape regression on the HELEN dataset.

Figure 11. Examples of OTTP shape regression on the COFW dataset.
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