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Abstract

This paper presents a new generalized (or ray-pixel,

raxel) camera calibration algorithm for camera systems

involving distortions by unknown refraction and reflection

processes. The key idea is use of intersections of calibra-

tion planes, while conventional methods utilized collinear-

ity constraints of points on the planes. We show that in-

tersections of calibration planes can realize a simple lin-

ear algorithm, and that our method can be applied to any

ray-distributions while conventional methods require know-

ing the ray-distribution class in advance. Evaluations using

synthesized and real datasets demonstrate the performance

of our method quantitatively and qualitatively.

1. Introduction

3D analysis and motion measurement of underwater ob-

jects enable various applications such as discovering the

process of fertilized egg development and kinematic anal-

ysis of fish motion, etc. Such applications are expected to

contribute for bioinformatics or other industrial fields, how-

ever, there have been no general techniques which can han-

dle complicated refraction, reflection, and attenuation of un-

derwater environments. We therefore aim at establishing a

new general technique and realizing multi-view camera sys-

tem for underwater environment.

In computer vision, real cameras do not exactly follow

ideal projection models such as perspective or orthographic

projections, and captured images always show geometric

distortions. For some special camera systems, such dis-

tortions can be modeled by displacements on the imaging

plane[4, 1] in practice. However, such distortion models
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Camera 2

Camera 1

Camera 3

Camera 4

Camera 5

object

Reference Camera

Water Tank

Figure 1. Multi-view camera system for underwater object capture

cannot fit with general cases such as distortions by catadiop-

tric systems or refractive housings of unknown geometry as

shown in Figure 1.

To handle such general cases involving unknown distor-

tions, Grossberg and Nayer[3] have proposed the concept

of generalized (or ray-pixel, raxel) camera model in which

each pixel is associated with a 3D ray outside of the system

as shown in Figure 2, and realized 3D ray modeling in the

target space without modeling the refraction and/or reflec-

tion processes explicitly.

However, conventional methods for such 3D ray model-

ing require either calibration objects whose global 3D posi-

tions are given, or prior knowledge on the ray-distribution

class (e.g. axial, central, etc.) of the system in order to

switch the algorithm to be applied.

The goal of this paper is to propose a new linear calibra-

tion algorithm that can overcome these limitations, and the

key idea on realizing such algorithm is use of intersections

of calibration planes.

Our contribution is twofold: (1) a new linear calibra-

tion of generalized camera model that utilizes intersections
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of reference planes, and (2) a practical algorithm that de-

tects intersections of reference planes from observed im-

ages. In what follows, we show that intersections of calibra-

tion planes can realize a distribution-independent formula-

tion, and evaluate its performance in comparison with the

state-of-the-art quantitatively and qualitatively with synthe-

sized and real datasets.

2. Related Works

In order to model geometric distortions without explic-

itly modeling catadioptric systems or refractive housings

of unknown geometry, Grossberg and Nayer have pro-

posed the concept of generalized (or ray-pixel, raxel) cam-

era model[3], and showed a calibration method using refer-

ence planes whose positions are given a priori. This idea is

successfully applied for underwater photography to account

for the refraction by housings or water tanks[9, 15, 2, 16].

However, these approaches require that the 3D geometry of

reference planes in the target space, e.g., water, is given in

a unified coordinate system, and they used extra markers

exposed in the air or mechanical devices such as sliders or

rotation tables.

Contrary to this approach, Ramalingam and Sturm have

showed another approach utilizing three calibration planes

of unknown postures [14, 11, 12, 10, 13]. These methods do

not require such 3D geometry of calibration planes. Instead,

they use collinearity constraints of 3D points projected to a

same pixel in order to estimate the plane poses. Considering

the distribution of rays in the target space, they showed that

generalized cameras are classified into four classes (central,

axial, crossed-slits, fully non-central), and proposed class-

specific algorithms by assuming distribution-dependent de-

generacies of the system. That is, they realized image-based

calibrations, but such methods can be applied only to known

ray-distributions.

Compared with these state-of-the-arts, our method does

not require 3D geometry of the calibration objects and the

knowledge on the ray-distribution class in advance. Simi-

larly to them, our method also utilizes three reference planes

of unknown postures, and estimates their postures from ob-

served images in order to calibrate the rays in the target

space.

The key difference is that our method utilizes not the

collinearity but intersections of planes. That is, we esti-

mate the relative postures of the planes by detecting the

3D locations on each plane where it intersects with another

one. Since our method does not require the class-specific

knowledge, our method can be applied to any unknown ray-

distributions.

Besides, the state-of-the-arts[14, 11, 12, 10, 13] almost

consist of linear steps but involve a non-linear process to

seek a solution in null spaces inevitably. On the other hand,

our method does not require such non-linear process and
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Figure 2. Generalized (or ray-pixel, raxel) camera model[3]

consists of a simple linear process.

3. Measurement Model

The generalized (or ray-pixel, raxel) camera model[3] is

defined as a set of 3D rays in the target space where an

object exists, and each of the rays is associated with a pixel

of the camera imager (Figure 2).

Let X denote the target space. We assume rays q go

straight in X , and there exists only a single ray in X cap-

tured by each pixel by assuming a pinhole camera. The

problem we address is to estimate the 3D geometry of such

rays in X associated with pixels by observing some calibra-

tion objects in X .

Suppose we capture a calibration plane under three un-

known different postures Φ0, Φ1, and Φ2 in X , and the cal-

ibration plane has feature points p whose position on the

plane local coordinate system is given.

Let p[k] = (u, v, 0)⊤ denote a point on the calibration

plane of the kth posture. By denoting the rigid motion be-

tween Φk and Φ0 by

Rk =
(

rk1 rk2 rk3
rk4 rk5 rk6
rk7 rk8 rk9

)

, tk =
(

tk1
tk2
tk3

)

, (1)

we can describe the points on Φ1 and Φ2 in the Φ0 local

coordinate system as

p[0] = R1p
[1] + t1, (2)

p[0] = R2p
[2] + t2, (3)

respectively.

4. Linear Generalized Camera Calibration us-

ing Three Intersecting Planes

Our calibration using three images of the calibration

planes consists of three steps: (1) detection of the intersec-

tions of the planes, (2) estimation of the plane postures, and

(3) ray generation using collinear points.

The last step is identical to the existing method[14]. That

is, once recovered the plane postures in a single coordinate

system, we can obtain the 3D ray corresponding to a pixel

by detecting the points on the calibration planes such that

they are projected to the pixel in question.
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Figure 3. Special cases of three planes. (a)parallel to each other,

(b)two parallel planes and the other cuts each in a line, (c)intersects

in a line, (d)form a prismatic surface
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Figure 4. Intersections of three reference planes

In this section, we first introduce the second step, the

core of our theoretical contribution, and then introduce the

first step with our practical apparatus.

4.1. Pose Estimation of Three Intersecting Planes

Suppose we can detect (1) pixels in the captured im-

ages where the calibration planes intersect, and (2) corre-

sponding 3D points on the calibration planes projected to

the pixel. The key constraint we use in this section is that

if a pixel corresponds to the intersection of two calibration

planes, then the corresponding 3D points on the different

planes are a coincident point in X .

By ignoring special cases illustrated in Figure 3, three

planes always have intersections each other, and such lines

intersect at a single point by definition (Figure 4). The goal

of this section is to estimate R1, R2, t1 and t2 by using co-

incident points on such intersections. Notice that the special

cases of Figure 3 can be detected by verifying the rank of

M of Eq (9) automatically as described later.

Given two points on each of the three intersecting lines

as shown in Figure 4, coincident points p
[k]
0 ,. . . , p

[k]
5 on

such intersections provide the following equations:

p
[0]
i = R1p

[1]
i + t1, (i = 0, 1), (4)

p
[0]
i = R2p

[2]
i + t2, (i = 2, 3), (5)

R1p
[1]
i + t1 = R2p

[2]
i + t2, (i = 4, 5), (6)

where p0 and p1 are on the intersection of Φ0 and Φ1, p2

and p3 are on that of Φ0 and Φ2, and p4 and p5 are on that

of Φ1 and Φ2.

This provides 18 linear constraints on 18 parameters

which consist of R1, R2, t1, t2 to be estimated except

rk3, rk6, rk9 (k = 1, 2) corresponding to the z-axis. Here,

other corresponding points observed on the intersection

lines do not provide additional constraints mathematically.

However they can contribute to make the system robust to

noise.

The above constraints do not enforce the rotation matri-

ces be SO(3). Consequently, Eq (4) . . . Eq (6) do not give

a unique solution and the rank of the above system always

becomes 15. We therefore introduce additional constraints

based on inner products as follows.

p
[1]
0 p

[1]
1 · p[1]

4 p
[1]
5 = p

[0]
0 p

[0]
1 ·R1p

[1]
4 p

[1]
5 , (7)

p
[2]
2 p

[2]
3 · p[2]

4 p
[2]
5 = p

[0]
2 p

[0]
3 ·R2p

[2]
4 p

[2]
5 , (8)

where p
[k]
i p

[k]
j = p

[k]
j − p

[k]
i . The key point is that these

are defined as linear constraints by utilizing inner products

given in different local coordinates of the planes. By adding

these two constraints, we have 20 linear equations that form

a linear system Mx = b of rank 17 for 18 parameters,

where

M =























p̃
[1]
0

⊤
⊗

I3×3 03×9

p̃
[1]
1

⊤
⊗

I3×3 03×9

03×9 p̃
[2]
2

⊤
⊗

I3×3

03×9 p̃
[2]
3

⊤
⊗

I3×3

p̃
[1]
4

⊤
⊗

I3×3 −p̃
[2]
4

⊤
⊗

I3×3

p̃
[1]
5

⊤
⊗

I3×3 −p̃
[2]
5

⊤
⊗

I3×3

p
[1]
4 p

[1]
5

⊤
⊗

p
[0]
0 p

[0]
1

⊤
01×9

01×9 p
[2]
4 p

[2]
5

⊤
⊗

p
[0]
2 p

[0]
3

⊤























, (9)

and

x =





























r11
r14
r17
r12
r15
r18
t11
t12
t13
r21
r24
r27
r22
r25
r28
t21
t22
t23





























⊤

, b =

















p
[0]
0

p
[0]
1

p
[0]
2

p
[0]
3

06×1

p
[1]
0 p

[1]
1 ·p

[1]
4 p

[1]
5

p
[2]
2 p

[2]
3 ·p

[2]
4 p

[2]
5

















. (10)

Here In×n, I2×3, and 0n×m denote the n × n iden-

tity matrix, ( 1 0 0
0 1 0 ), and the n × m zero matrix respec-

tively. p
[k]
i (ui, vi, 0)

⊤ denotes the point on Φk, and p̃
[k]
i =

(ui, vi, 1)
⊤.

⊗

denotes Kronecker product. Besides the

rank of M indicates if the planes are in a special configu-

ration (Figure 3) or not, since such special configurations

introduces linearly-dependent equations.

This linear system Mx = b can be further decomposed
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into two linear systems M1x1 = b1 and M2x2 = b2, where

M1 =























p̃
[1]
0

⊗
I2×2 02×6

p̃
[1]
1

⊗
I2×2 02×6

02×6 p̃
[2]
2

⊗
I2×2

02×6 p̃
[2]
3

⊗
I2×2

p̃
[1]
4

⊤
⊗

I2×2 −p̃
[2]
4

⊤
⊗

I2×2

p̃
[1]
5

⊤
⊗

I2×2 −p̃
[2]
5

⊤
⊗

I2×2

p
[1]
4 p

[1]
5

⊤
⊗

I2×3p
[0]
0 p

[0]
1

⊤
01×6

01×6 p
[2]
4 p

[2]
5

⊤
⊗

I2×3p
[0]
2 p

[0]
3

⊤























,

(11)

x1 =

















r11
r14
r12
r15
t11
t12
r21
r24
r22
r25
t21
t22

















, b1 =

















I2×3p
[0]
0

I2×3p
[0]
1

I2×3p
[0]
2

I2×3p
[0]
3

04×1

p
[1]
0 p

[1]
1 ·p

[1]
4 p

[1]
5

p
[2]
2 p

[2]
3 ·p

[2]
4 p

[2]
5

















, (12)

and

M2 =













p̃
[1]
0

⊤
01×3

p̃
[1]
1

⊤
01×3

01×3 p̃
[2]
2

⊤

01×3 p̃
[2]
3

⊤

p̃
[1]
4

⊤
−p̃

[2]
4

⊤

p̃
[1]
5

⊤
−p̃

[2]
5

⊤













,x2 =





r17
r18
t13
r27
r28
t23



 , b2 = 06×1.

(13)

The solution x1 is given as x1 = (M⊤
1 M1)

−1M⊤
1 b1, and

x2 is given up to a scale factor α using the 6th right singular

vector v6 of M2 corresponding to the null space of M2:

x2 = αv6. (14)

This α can be trivially determined by using the orthogonal-

ity constraints on R1 and R2:

r⊤k,1rk,2 = 0, |rk,1| = 1, |rk,2| = 1. (15)

Up to this point, we obtain the first and the second column

vectors of R1 and R2 as well as t1 and t2.

Finally, by recovering the third columns of R1 and R2 as

the cross products of each of the first and the second column

vectors, we obtain the complete R1, R2, t1 and t2 up to

scale.

Notice that the above linear system allows a mirrored

solution such that Rk =
(

rk1 rk2 −rk3
rk4 rk5 −rk6
−rk7 −rk8 −rk9

)

and tk =
(

tk1
tk2
−tk3

)

. Selecting the correct solution can be done by ver-

ifying the direction of the z-axis.

4.2. Intersection Detection from Distorted Images

The crucial point to realize our method is (1) how to ob-

tain the 2D position on the calibration plane only from the

captured images under unknown distortions, and (2) how to

detect intersections of the calibration planes under different

postures from their images.

Camera

Unknownrefractive media

Display Vertical patterns

Horizontal patterns

Frame t Frame t+1

Figure 5. Gray code technique[3]

To this end, we employ a flat panel display as the calibra-

tion plane Φ, and utilize the gray code technique proposed

in [3] (Figure 5). That is, we fix the display, and capture

gray code patterns shown by it for each pose.

With this gray code technique, the first point is simply

achieved by decoding the gray code representing the display

pixel location as done by [3]. To achieve the second point,

we propose a new method based on the difference of display

pixel densities between captured images.

Suppose we have established display pixel to camera

pixel correspondences for Φk by decoding the gray code

images, and the correspondence is a one-to-many mapping

where each display pixel is captured by multiple camera

pixels. This assumption can be realized by making the cam-

era to have effectively a higher resolution than the display

by binning each n× n display pixels into a block.

Let fk(q) denote the display pixel on Φk corresponding

to a camera pixel q. Once obtained such one-to-many cor-

respondences between display and camera pixels, we can

obtain a display density dk(q) of each camera pixel q by

counting the camera pixels sharing the same display pixel

fk(q) (Figure 10).

The key idea on detecting the intersection is to use the

difference of dk(q) and dk′(q) of Φk and Φk′ . Obviously

dk(q) and dk′(q) are not equal or proportional to the real

depth since it is affected by both the depth and the refrac-

tion/reflection process. However, if the values dk(q) and

dk′(q) are the same, it is guaranteed that the corresponding

3D points are at a same depth as long as the refraction / re-

flection process is kept static. That is, if dk(q) = dk′(q),
then the corresponding 3D points fk(q) and fk′(q) on dif-

ferent planes Φk and Φk′ are a coincident point and hence

are on the intersection of the planes.

Based on this idea, we design our intersection detection

as follows: (1) establish the display-camera pixel corre-

spondences by decoding the gray code[3], (2) compute the

density map dk(q), (3) find the pixels such that dk(q) =
dk′(q) for each pair of planes Φk and Φk′ and return the

corresponding fk(q) and fk′(q) as 3D points on the inter-

section. Section 5.3.2 shows how this process works in our

real underwater environment.

2357



5. Evaluations

In order to evaluate the performance of our method, this

section first evaluates the performance quantitatively using

synthesized datasets. Then we introduce our apparatus for

an underwater environment and show a qualitative evalu-

ation using real images with a 3D shape reconstruction in

water.

5.1. Error Metrics

Rotation and Translation Errors In case that the ground

truth is available, we evaluate the quality of the calibration

by estimation errors of R and t w.r.t the ground truth since

the ray directions are defined by the plane poses.

The estimation error of R is defined as the Riemmanian

distance[8]. Let Rg , tg be the ground truth of R, t, and

θ = cos−1( trR
′
−1

2 ). The rotation matrix error ER is defined

as

ER =
1√
2
||log(R⊤Rg)||F , (16)

logR′ =

{

0 (θ = 0),
θ

2 sin θ
(R−R′⊤) (θ 6= 0),

(17)

where || · ||F denotes the Frobenius norm.

The translation vector error ET is defined by the root

mean square error (RMSE)

ET =
√

||t− tg||2/3. (18)

Re-Intersection Error Similarly to the reprojection error

widely used in the perspective multi-view calibration, we

can consider the re-intersection error that measures the dis-

tance between the observed and the synthesized points on

the calibration planes.

By denoting the observed point on kth plane for camera

pixel i by pk,i, and the intersection of the calibration plane

and the corresponding ray by p̂k,i, we can define the re-

intersection error as

Ep =
1

|I| |K|
∑

i∈I

∑

k∈K

|p̂k,i − pk,i|2, (19)

where I and K are the set of the pixels and the calibration

planes, and |I| and |K| denotes the number of their elements

respectively.

5.2. Evaluation using Synthesized Data

To evaluate the performance quantitatively, we used syn-

thesized datasets which simulate our real setup shown in

Figure 8. We set the camera and the display resolutions as

1280× 960 and 1024× 2048 respectively. The first display

defines the world coordinate system, and the sizes of the
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Figure 6. Plots of ER, ET , and Ep. Magenta: Ramalingam et

al. [11] (60 points). Red: proposed (12 points). Blue: proposed

(60 points). The cross, circle and triangle markers indicate the

errors of the parameters of Φ0,Φ1 (i.e.R1, t1) and Φ2 (i.e.R2, t2)

respectively.

other devices are described in the display pixel. The camera

is placed at 2662.4 pixels from the center of the water cylin-

der of radius 2048 pixels. Notice that the refractive index of

water is set to 1.3, and this virtual cylinder has no housings

so that the rays coming from the air directly refracted at the

boundary between water and the air.

For each trial, we synthesized 3 different display pos-

tures Φ0,Φ1,Φ2, and applied our calibration. Here the ro-

tation matrices are generated using uniformly sampled ran-

dom three Euler angles within [−π/3 : π/3]. The ele-

ments of the translation vectors are generated using uni-

formly sampled random values within [−50 : 50] pixels.

Linear Calibration using Intersecting Reference Planes

On each plane Φ, estimated intersections contain errors due

to (a) zero-cross detection errors in the difference of pixel

density maps, and (b) decoding errors on establishing the

display to camera pixel correspondences. In this evaluation

we focus on (b) since that also affects (a).

Suppose that we have the points on intersections calcu-

lated from synthesized posture data. To simulate the de-

coding errors in points on intersections, we added uniform

random noise ranging between [−σ : σ] (σ = 0, . . . , 2.0)
pixels.

Figure 6 shows the results. Each point is the mean value

of 100 trials at each noise level. The red and blue plots

indicate the errors estimated with 12 and 60 points (2 and

10 points per intersection per plane, respectively). The ma-

genta indicates the state-of-the-art[11] with 60 points (20

points per plane Φ). In this evaluation, [11] sampled points

regularly on the image and ours sampled 2 or 5 points on

each intersection as done in Figure 61.

1Our implementation is available at http://vision.kuee.

kyoto-u.ac.jp/˜nob/proj/iccv2015/.
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Figure 7. Plots of ER, ET , and Ep. The cross, circle and triangle

markers indicate the errors of the parameters of Φ0,Φ1 and Φ2

respectively.

From these results, we can observe that our method

shows more robust performance than the state-of-the-art,

while both methods return the exact results ER = Et = 0
at σ = 0.

Bundle Adjustment using Collinearity Constraints Us-

ing the linear calibration result as inputs, we applied the

bundle adjustment using the collinearity constraint as done

in the conventional methods[14]. That is, our method

first utilizes the intersections to obtain the linear solution,

and then the solution can be refined non-linearly using the

collinearity constraint on other points, while the collinearity

constraint itself do not provide a linear solution due to the

ray-distribution dependent unknown degeneracy[12].

Figure 7 shows the average errors of 100 trials under dif-

ferent noise levels, where the red plots data in Figure 6 are

used as initial inputs. From these results, we can conclude

that our method can provide a reasonable initial values for

the bundle adjustment, and the calibration errors are within

a reasonable range in comparison with the injected noise.

5.3. Evaluation using Real Images

5.3.1 Apparatus for Underwater Environment

Figure 8 shows our setup. We used 4K cameras (Pointgrey

FL3-U3-88S2C-C) to capture an object in an acrylic cylin-

der water tank of 300mm diameter and 5mm thick. The

distance from the camera to the cylinder center was approx-

imately 350mm. To calibrate the mapping between the cam-

era pixels and corresponding rays in water, the cameras cap-

ture a waterproof tablet of 1366 × 768 resolution showing

the gray code[3] as shown in Figure 5.

In this experiment, we exposed approximately the upper-

half of the display in the air in order to obtain the refer-

ence calibration parameters using a baseline method[17] as

shown as the green-boxed areas in Figure 9 (left). Notice

Reference camera
Camera 1

Camera 2

Camera 1

Camera 2

Reference camera

in water

in the air

Figure 8. Experimental setup

input images for proposed methodinput images for baseline method

Figure 9. Examples of input images. Left: images for the baseline

method captured by the reference camera. Right: images for the

proposed method.
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Figure 10. Pixel density estimation from images. Left: a captured

image. Right: pixel density map.

that our calibration used only the lower-half of the display in

water as shown as the cyan-boxed areas in Figure 9 (right).

5.3.2 Intersection Estimation

As described in Section 4.2, we performed intersection de-

tection by creating the pixel density map. By computing

camera pixels corresponding to 8 × 8 display pixel bins in

the tablet from the captured images, we obtained pixel den-

sity maps as shown in Figure 10 (right).

To evaluate the quality of our intersection estimation, we

compare our result with intersections calculated from the

baseline method. Figure 11 shows the estimated intersec-

tions decoded onto each tablet of different postures. Blue to

red color plots (*) indicate pixel-depth maps decoded to the

display coordinate system, and Red and blue plots (o) indi-

cate estimated intersections on each display, Φ0 (left) and

Φ1 (right). Black lines (-) indicate the intersections of each
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Figure 11. Estimated intersections on Φ0 (left) and Φ1 (right)
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Figure 12. Intersection estimation results
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Figure 13. Results by the baseline method (left) and the proposed

method (right)

display estimated by the baseline method. While the esti-

mated intersections are not exactly coincident with the ones

from the baseline method, and parallel to each other (Fig-

ure 11 left), or intersects each other (Figure 11 right), these

could serve as a good enough estimation of intersections as

shown in the next result.

5.3.3 Linear Calibration from Estimated Intersections

Figure 13 (left) shows the pose estimation result by the

baseline method, and Figure 13 (right) shows the result by

our proposed method. In Figure 12, black lines (-) indi-

cate intersections calculated by the baseline method. Red,

green, and blue markers (×) indicate detected intersections

from pixel density maps, and magenta lines (-) are inter-

sections calculated by our proposed method. In our experi-

ment, pixel density map-based intersection detection on the

image plane did not perform perfectly in some images as

shown in Φ2 case in Figure 12 (right). This intersection-

detection errors appeared as z-axial posture errors in (Fig-

ure 13 right).

Even so, these estimated pose parameters can be used

as an initial values, and refined in the following multi-view

calibration step with a global bundle adjustment.
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Figure 14. Calibration results compared to the baseline method.

Top: the 3 cameras case. Bottom: the 5 cameras case.
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Figure 15. Re-intersection error distributions on the first plane.

Top: the baseline method. Left: the 3 cameras case. Right: the

5 cameras case.

5.3.4 Multi-view Calibration and Underwater 3D

Shape Capture

Figure 14 shows the calibration results of one of the cam-

eras after the nonlinear refinement using 3 or 5 cameras,

where 5 cameras form a closed loop around the cylinder

tank while 3 cameras do not. Figures 15 and 16 show distri-

butions of Ep at each display point on the first plane and the

estimated rays in the cases of the 3 and 5 cameras together

with the baseline result. In Figure 16, the dots illustrate the

intersections with the planes and their color indicate the re-

intersection error Ep. The average re-intersection error over
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Figure 16. Estimated rays in the 3 cameras case (left) and the 5

cameras case (right). The position of the dots indicate the inter-

section with the planes, and their colors indicate the re-intersection

errors.

Figure 17. The input images (left) and the reconstructed 3D shape

(right)

the all points of the all planes were 0.21 and 1.59 pixels for

the 3 cameras and the 5 cameras setups while the average

reprojection error for the baseline method as 0.88 pixels on

the camera screen.

From these results, we can observe that the 5 camera case

shows a comparable result to the baseline method while the

3 camera case results in a smaller re-intersection error but

much different 3D plane postures. This fact indicates that

the ray-pixel modeling can produce an overfitted result to

the observation because of its flexibility, and multi-view

generalized (or ray-pixel, raxel) camera calibration with a

close loop can balance such flexibility and the robustness.

3D Shape Reconstruction To evaluate the calibration ac-

curacy qualitatively, we captured a goldfish in the tank as

shown in Figure 1, and applied the shape-from-silhouette

method[5] to reconstruct the 3D shape. Figure 17 shows

the input images taken by the camera 1 to 5 and the recon-

structed 3D shape. This result demonstrates that our cali-

bration can serve as a practical technique to realize a multi-

view generalized (or ray-pixel, raxel) camera system for 3D

measurement under unknown refractions.

6. Conclusion

In this paper, we proposed a new linear generalized (or

ray-pixel or raxel) camera calibration algorithm. The key

idea was to use intersections of the reference planes and to

build a linear system utilizing coincident points on the inter-

sections. Our method first utilizes the ray-independent in-

tersections found where the collinearity constraint degener-

ates, and then our linear solution can be refined non-linearly

using the collinearity constraint found other points on the

plane as done in the conventional studies. Also we proposed

a new practical method to detect such intersections from im-

ages with unknown distortions by exploiting the difference

of pixel-density maps.

Compared with the state-of-the-arts[14, 11, 12, 10, 13]

that involve non-linear solution finding processes in null

spaces of their systems, our method requires only solving

a simple linear system and can be applied without know-

ing the ray-distribution class in advance, since our method

does not require adding class-specific constraints to solve

the problem.

Limitations Our model does not require any regulariz-

ers such as continuities between 3D rays associated with

neighboring pixels. This design maximizes its ability to

model complex refraction / reflection processes, but such

flexibility can also introduce unstable or erroneous results

in the bundle adjustment utilizing the collinearity constraint

as discussed in the evaluation. Hence integrating smooth-

ness constraints between rays and/or pixels[7, 6] remains to

be investigated.
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