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Abstract

A novel efficient method for extraction of object propos-

als is introduced. Its ”objectness” function exploits deep

spatial pyramid features, a novel fast-to-compute HoG-

based edge statistic and the EdgeBoxes score [42]. The

efficiency is achieved by the use of spatial bins in a novel

combination with sparsity-inducing group normalized SVM.

State-of-the-art recall performance is achieved on Pas-

cal VOC07, significantly outperforming methods with com-

parable speed. Interestingly, when only 100 proposals per

image are considered the method attains 78% recall on

VOC07. The method improves mAP of the RCNN state-

of-the-art class-specific detector, increasing it by 10 points

when only 50 proposals are used in each image. The system

trained on twenty classes performs well on the two hundred

class ILSVRC2013 set confirming generalization capability.

1. Introduction

Object detectors have often been applied in the sliding

window fashion scoring bounding boxes in all considered

positions, scales and aspect ratios using either an inexpen-

sive classifier [13, 7] or cascades [36, 35]. The develop-

ment of sophisticated and computationally demanding deep

learning based object detectors [15, 16] stressed the need to

decrease the number of fully scored bounding boxes while

retaining high recall levels.

Similar to the first stages of the cascades, object propos-

als [3, 1, 34] are class-agnostic high-recall-low-precision

object detectors that tackle computational efficiency by re-

jecting likely background regions while retaining bound-

ing boxes covering instances of the semantic object classes

which are later classified by the final class-specific object

detector.

The authors were supported by the Czech Science Foundation project

GACR P103/12/G084 and by the Technology Agency of the Czech Repub-

lic TE01020415 V3C – Visual Computing Competence Center.

State-of-the-art proposal methods either generate can-

didate boxes from image segments, e.g. groups of super-

pixels or randomly initialized binary segmentation outputs

[34, 24, 3, 10, 2], or select proposals from a large pool of

densely sampled image regions according to a predefined

”objectness” score [1, 27, 5, 40]. The latter approaches,

also known as ”window scoring” methods [17], utilize di-

verse types of inexpensive features that most commonly

capture edge statistics along the scored region boundaries

[27, 42, 5].

In this paper we introduce a method for extraction of

object proposals using the window scoring approach. The

key novelty is the use of spatial bins [23] in combination

with group normalized SVM which enables to carry out the

superficially complex proposal score computation surpris-

ingly fast. The proposed objectness function exploits the

following sources of information: the deep spatial pyramid

features introduced in [16], a novel fast-to-compute HoG-

based edge statistic which also takes advantage of the spa-

tial bins and the EdgeBoxes score [42]. Optionally, recall of

the method can be boosted by selective search [34] but this

slows down the detection slightly.

We experimentally verified that: (1) The introduced

method gives state-of-the-art results when comparing the

overlap-recall curves. (2) The performance of the state-of-

the-art class-specific RCNN detector [15] on our object pro-

posals improves and the performance is less sensitive to the

number of used proposals in comparison with other state-

of-the-art proposal methods. (3) Despite being trained on a

dataset that contains a small set of distinct object classes, it

generalizes to previously unseen classes. These factors re-

sult in a proposal method that is as fast as standardly used

Selective Search in ”fast mode” [15, 16] while achieving

better recalls.

The rest of the paper is organized as follows. Sect. 2

gives brief information about modern proposal approaches.

A concise explanation of our method is provided in Sect. 3.

The details about the features we use are in sections 4, 5,

6. An explanation of the utilized feature selection approach
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resides in Sect. 7. Sect. 9 explains the special type of non-

maximum suppression we employ and Sect. 10 provides

results and discussions of concluded experiments. Sect. 11

presents conclusions of our work.

2. Related work

Noting that an exhaustive description and evaluation of

recent state-of-the-art is presented in Hosang et al. [18, 17]

a brief explanation of key proposal methods is given in this

section.

Many proposal methods build on the seminal Selective

Search (SS) of Van de Sande et al. [34] which progressively

aggregates superpixels obtained by the Felzenszwalb and

Huttenlocher method [14] into larger groups based on their

similarity. The SS approach still is one of the best in terms

of recall and quality of the proposal localization when a

large number of candidate windows is requested (more than

1000 per image). Its disadvantage is the inability to select

a smaller convenient subset of candidates since it lacks a

suitable way of evaluating proposal importance. The rela-

tively slow extraction speed of 10 seconds per image is im-

proved in the ”fast mode”, accelerating to ∼2.5sec/image.

However, the accelerated mode looses the high recalls when

larger proposal pools are requested. Modifications of Selec-

tive Search include Randomized Prim’s [24] which learns

superpixel similarity measures and employs an order of

magnitude faster grouping algorithm. However this comes

at the cost of lower attained recalls.

In Constrained parametric min-cuts [3] (CPMC), every

proposal is a solution of a min-cut segmentation problem

initialized with a random seed. The proposals are ranked

on the basis of various types of features. While this ap-

proach is able to deliver state-of-the-art recall and local-

ization performance, its speed of a few minutes per image

is a significant disadvantage. The approach of Endres and

Hoiem [10] bears resemblance to CPMC in the sense that

a foreground / background regressor initialized by differ-

ent seeds is learned for obtaining a set of proposals that

are subsequently ranked. The method is slow, about two

times faster than CPMC. Multiscale Combinatorial Group-

ing [2] (MCG) introduced a fast hierarchical segmentation

algorithm. On top of that, an efficient exploration of the

large combinatorial space of the produced segments is em-

ployed in the grouping stage. While the method achieves

state-of-the-art performance in terms of recalls it is slow at

approx. 30 sec per image.

Rigor [19] address the speed problem of CPMC by

reusing max-flow computations. Similarly, Geodesic object

proposals [21] replace the min-cut algorithm with a much

faster geodesic distance transform seeded by a learned fore-

ground/background regressor. While Rigor has the same

speed as Selective Search it has slightly lower recalls.

Geodesic proposals run at 1 image/sec and their recall is

comparable to Selective Search. However, due to its inabil-

ity to assign scores to proposals, it is it is not obvious how

to limit the number of output candidates.

Rantalankila et al. [28] combine the superpixel merging

approach [34] with CPMC [3]. The results in [17] indicate

that the method is inferior to state-of-the-art both in terms

of speed and attained recalls.

Methods based on the sliding window paradigm extract

features lying inside predefined bounding boxes and score

them using a learned classifier. The work of Alexe et al.

[1] was the first of this kind. Later Rahtu et al. [27] im-

proved [1] by adding more powerful features and by learn-

ing a more convenient cascade of structured output SVM

classifiers [33]. Additionally, Zhang et al. [40] proposed

cascade of ranking SVMs that score inexpensive edge-based

features. Despite the high speed of these approaches their

recall performance is inferior to state-of-the-art [17].

EdgeBoxes (EB) is a fast proposal algorithm, running at

0.3 sec per image, with compelling performance [42]. EB

scores proposals using a single feature - the number of con-

tours that are fully enclosed by a bounding box minus those

that overlap its boundary. After scoring each region, non-

maximum suppression (NMS) takes place. Different over-

lap thresholds of NMS provide a compromise between ac-

curacy and recall.

BING ([5]) is also based on edge features and provides

fairly high recall at low IoU1 thresholds at the speed of 300

frames per second. However, its performance is signifi-

cantly inferior to other methods at higher IoU thresholds.

This leads to poor performance when used in combination

with class-specific object detectors [18]. Moreover, its high

recall is more a result of the careful placement of initial

bounding boxes than of the discriminative power of the used

features and classifier [41].

Deep learning methods have recently entered the field of

generic object detectors. DeepMultiBox [11] directly re-

gresses the locations of proposals from an image using a

deep convolutional network. Szegedy et al. [32] builds on

top of [11] and achieves state-of-the-art detection perfor-

mance on ILSVRC2012 [29]. Although both [11] and [32]

evaluate the performance of a class-specific detector that

uses their proposals, neither paper presents overlap-recall

curves of their generic object detectors preventing compar-

ison with other state-of-the-art proposal methods.

A very recent work of Karianakis et al. [20] uses in-

tegral channel features detector [8]. The individual chan-

nels are filters from the convolutional layers of a deep neu-

ral network. This work is perhaps the most similar to our

approach. The differences include: (1) the way our deep

features are extracted and how the feature selection is car-

ried out. (2) Besides deep features, we use a novel edge-

based statistic. (3) We use SVM classifier instead of Ad-

1IoU: Intersection Over Union Pascal bounding box overlap metric.
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aBoost. (4) Our results are superior in terms of overlap-

recall curves.

3. Method overview

We selected a window scoring approach since the seg-

mentation based ones are, apart from Selective Search in

”fast mode”, very slow due to their reliance on superpixel

generation or min-cut segmentation algorithms. Since most

of the large pool of tested image windows contains back-

ground, we employ a well-known paradigm consisting of a

cascade of progressively more complex classifiers [36, 35]

to introduce an early rejection mechanism. While there are

many possible choices for the types of classifiers in the cas-

cade, we utilize binary linear SVM due to its high speed2.

The first stage of the cascade reduces the initial number

of ∼100k of all considered windows roughly by a factor of

10. During the second stage a linear SVM classifier pro-

duces final window scores on the basis of computationally

more expensive features. The last step consists of a special

type of non-maximum suppression (NMS) termed ARNMS

that optimizes average recall (AR)3. Details about ARNMS

are provided in Section 9. The features that describe each

bounding box are:

CNN-SPP: We follow up on the success of convolu-

tional neural networks on the both object detection and im-

age categorization [22, 15, 31, 16] and use them as our pri-

mary bounding box descriptor. To maintain computation ef-

ficiency and thus high speed, we employ the fast deep fea-

ture extraction technique from [16] that is able to process

several thousand bounding boxes per second.

BEV: (stage 2 only) Since various edge statistics are

a useful objectness cue [27, 1, 42] we introduce a novel

Boundary Edge Vector feature (BEV) inspired by the

Boundary Edge distribution introduced in [27].

EB: Due to an immense speed of the extraction of the

EdgeBoxes score [42], we include it as another type of an

edge statistic feature.

Additionally, we speed up extraction of BEV and CNN-

SPP features by employing a group-normalized SVM based

feature selection algorithm that automatically collects the

set of spatial bins which are the most important for the final

classification decision; details are provided in Section 7.

A schematic illustration of our method is presented in

Figure 1. In what follows, both classifier stages are dis-

cussed in detail. An in-depth explanation of the aforemen-

tioned features is provided in sections 4, 5, 6.

3.1. Classifier cascade: Stage one

We propose two ways of producing an initial set of re-

gions during the first stage either of which can be used.

2Test showed that the usual choice of AdaBoost [30] is inferior.
3The area under the recall-overlap curve evaluated for IoU thresholds

ranging from 0.5 to 1 [17]

Selective Search + EdgeBoxes70: Selective Search (SS)

[34] regions (using its ”fast mode”) merged with Edge-

Boxes70 (EB70) [42] bounding boxes.

EdgeBoxes only: Due to the relative slowness of the

Selective Search proposals in comparison with other parts

of our pipeline, the second initialization type employs only

EdgeBoxes. We set its α parameter controlling the den-

sity of the bounding box sampling to a relatively high value

of 0.75 to force the generation of an overcomplete pool of

regions. EdgeBoxes β parameter was set to 1 effectively

removing the non-maximum suppression step. This set-

ting produces around 50k regions in 0.5 seconds per image.

Subsequently, we take only 30k highest scoring regions ac-

cording to the EB score. On this set, CNN-SPP descriptors

are extracted and appended to the EB scores to form a final

stage-1 descriptor which is later scored by an SVM. The

ARNMS based on the SVM scores reduces the output to

the desired number of 10k boxes.

The second stage is common to both types of stage-one

initialization. Two independent versions of our approach

can be considered depending only on the chosen initializa-

tion type. We term the pipeline that is initialized by EB70 in

combination with SS proposals SSPB+SS and the pipeline

that utilizes EdgeBoxes only SSPB.

3.2. Classifier cascade: Stage 2

A fixed length descriptor, consisting of the three types of

features (EB, BEV, CNN-SPP - described in sections 4, 5, 6)

concatenated into a single vector is extracted from each of

the 10k bounding boxes and scored using a fast linear binary

SVM. The maximum number of 10k input bounding boxes

was experimentally found to give good trade-off between

the speed and recall. ARNMS which is specifically tuned

for the amount of requested proposals is the final step of

our method.

4. EdgeBoxes feature (EB)

The fastest feature type is the contour score that Edge-

Boxes assign to its proposals. Note that in the case of

SSPB+SS, besides retaining the score of the extracted Edge-

Boxes70, we further use the publicly available EdgeBoxes

code to obtain the EB score of the additional Selective

Search proposals (without performing the region refine-

ment).

5. CNN-SPP feature

The max-pooled activations of the rectified CNN filters

coming from the last convolutional layer of the ZF-5 CNN

network [39] are another utilized proposal descriptor. This

method, originally proposed by He et al. [16], rapidly ex-

tracts features from spatial bins of several thousand bound-

ing boxes per second. We ℓ2 normalize the CNN-SPP fea-
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Figure 1. An overview of our method. The first stage of the cascaded approach consists of either extracting EdgeBoxes70 together with

Selective Search (fast mode) proposals (SSPB+SS) or filtering a large input set of dense EdgeBoxes proposals using SVM that utilizes fast

CNN-SPP features (SSPB). During the second stage three descriptor types are extracted from each window and scored by a linear SVM to

obtain the final objectness score.

tures to facilitate the convergence of the later used SVM

classifier.

The layout of bounding box subdivisions is the same as

in [16], i.e. the bounding box is split to D2 equally sized

divisions that cover a box uniformly without overlap (Figure

2). We set multiple D parameters such that 10 different split

layouts are created corresponding to D = {1, 2, 3, ..., 10},

giving 385 bins in total. However, in practice we pool conv5

features only from the bins selected by the feature selection

approach which is thoroughly described in Section 7.

6. Boundary Edge Vector feature (BEV)

Boundary Edge Vector exploits the EdgeBoxes edge map

(i.e. the output of the Structured Edge Detector [9]) for

pooling edge statistics inside individual bounding box spa-

tial bins. More precisely, all edgels residing inside a spatial

bin are quantized to 4 equally wide orientation bins. After

that a 4-dimensional bin descriptor is formed by utilizing

integral images to accumulate the edgel intensities that cor-

respond to each of the orientation bins. All these bin de-

scriptors are then concatenated into a single vector which is

later ℓ2 normalized to form the final BEV descriptor.

The layout of BEV spatial bins is depicted in Fig-

ure 2. First, in order to include information about the

edges that cross the bounding box boundary, the bounding

box dimensions are both enlarged by 10% prior to creat-

ing the spatial subdivisions. Then, eight stripes collinear

with each of the bounding box sides are all divided across

to five divisions to form 40 spatial bins per bounding

box side in total. The stripe octet’s width is set, such

that it covers P% of the bounding box side. Several

different layouts each corresponding to different values

of P (P = {0.16, 0.18, 0.22, 0.24, 0.28, 0.32, 0.36}) are

used. Additionally, feature selection (explained in Section

7) is again used to pick the most informative spatial bins and

thus only the selected ones are again chosen for extraction

of the bin descriptors.

The Boundary Edge Vector resembles the Boundary

(a) BEV layout

(b) CNN-SPP layout

Figure 2. The layout of spatial bins used for pooling descrip-

tors. (a) BEV is pooled in 40 bins arranged along each of the

bounding box sides. (b) CNN-SPP descriptor spatial bins cover

the bounding box uniformly without overlap.

Edge distribution (BE) proposed by Rahtu et al. in [27].

However, in BE [27], edgels corresponding to only one

predefined edgel orientation bin are accumulated inside ev-

ery spatial bin. Furthermore the accumulated orientation

intensities are projected using a predefined set of weights

whereas we ”unfold” the descriptor into a much higher di-

mensional vector where all spatial orientations are taken

into account. The SVM classifier determines the best

weights for each orientation and spatial bin. Finally, we im-

prove the pooling stage, by increasing the number of pool-

ing bins and subsequently learning their optimal layout in-

side the spatial bin selection algorithm. In the light of these

changes our newly introduced feature could be seen as a

generalization of the Boundary Edge distribution measure.

7. Spatial bin selection

In the case of BEV and CNN-SPP features a large num-

ber of spatial bins has to be used in order to obtain state-of-

the-art performance. However, this substantially increases
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the computational demands. We therefore perform a fea-

ture selection step which automatically picks relevant spa-

tial bins that will form the final descriptor.

Our descriptors are created by pooling information from

spatial bins, they are formed by groups of values that corre-

spond to spatial subdivisions. To perform selection of bins

we use a sparsity-inducing SVM solver [37], that employs

the group lasso term as a regularizer Ω(w) [38]. More pre-

cisely Ω(w) =
∑B

b=1
‖wb‖ where w stands for the set of

SVM weights, wb is the group of weights corresponding to

the bin b and B is the overall number of used subdivisions.

The value of the C parameter controls the number of zeroed

groups wb.

Each spatial bin that corresponds to a group of zeroed

SVM weights then plays no role in the final bounding box

score and thus could be omitted during the feature extrac-

tion step. For BEV and CNN-SPP descriptors the groups

of dimensions have size 4 (number of orientation bins) and

256 (number of convolutional filters) respectively.

Our choice of group normalized SVM, instead of e.g. ℓ1
regularized SVM which would remove individual descrip-

tor dimensions, is motivated by the computational over-

heads associated with visiting a single spatial bin: for conv5

features, the spatial bin max-pooling is implemented using

SSE instructions thus it is faster to access one continuous

block of memory, represented by all convolutional features

inside a spatial bin. For BEV, memory addresses to the in-

tegral image have to be computed. Thus, by using group

normalization, we not only avoid computation of many fea-

tures but we also decrease the number of costly visits of

spatial bins.

Note that the approach consisting of inducing block spar-

sity to image features was first used in [25] to discover rel-

evant gaussians in the context of Fisher Vector detection

pipeline [6, 26].

8. SVM and group normalized SVM learning

The standard SVM that combines BEV, CNN-SPP and

EB features as well as the group lasso SVM classifiers are

learned on the same set of training bounding boxes. The

positive examples are all the ground truth regions that con-

tain any of the object classes present in the ”train”+”val”

sets of the Pascal VOC 2007 detection dataset [12].

The set of negative bounding boxes is composed of two

equally sized subsets. While all regions are required to

have at most 30% overlap (Pascal intersection-over-union

metric) with any of the ground truth objects the first half

is sampled from the immediate vicinity of the ground truth

regions, while boxes from the second can reside at any loca-

tion in any training image. The number of negative samples

is roughly equal to half of the positive samples.

After the three aforementioned descriptors are obtained

from each training region, the sparsity-inducing learning

follows. Since the sizes of groups of dimensions that we

want to remove are distinct for each of the two feature types

(BEV and CNN-SPP), we train two different sparse SVM

classifiers separately for each descriptor design. In prac-

tice, for the second stage of the detection cascade we select

the SVM’s regularization parameter such that 43 and 311

spatial regions are selected for CNN-SPP and BEV features

respectively. In the case of the first stage of the SSPB clas-

sifier, which utilizes CNN-SPP feature, only 3 spatial bins

were selected.

After the feature selection step, following [25], training

descriptors are stripped of the unused dimensions and ℓ2
re-normalized. Additionally, the survivors of the feature se-

lection process are concatenated and the corresponding EB

feature is appended to form the final set of training descrip-

tors for the standard ℓ2 regularized SVM learning. The C
regularization parameter of the ℓ2 regularized SVM was set

to 1. Hard negative mining tends to worsen the detector per-

formance. We thus stop the pipeline training after the initial

mining of random negative samples.

9. Non-maximum suppression for optimizing

average recall

We discovered that it is suboptimal to perform the stan-

dard greedy NMS for discarding redundant high scoring

regions, since it tends to either remove many well-located

proposals, when its threshold is set to a low value, or com-

pletely miss a large portion of regions that are not finely

aligned with an object (when the NMS threshold is set to a

high value).

To reach a compromise between these two situations, we

employ a special type of NMS which we term ARNMS. The

goal of ARNMS is to extract a set of candidates that have

the best possible average recall given the desired number of

output object detections N . More accurately, ARNMS runs

in S subsequent stages. During stage s the standard greedy

NMS is performed with overlap threshold os followed by

the extraction of N/S highest scoring not suppressed re-

gions. In practice we use S = 3 with o1 = 1 (i.e. no NMS

employed), o2 = 0.7 and o3 = 0.5.

Note that [17] have employed a similar strategy for im-

proving the AR of EdgeBoxes proposals. However their

approach is not tuned for specific amounts of outputted pro-

posals thus, when for instance using a very dense sampling

of EdgeBoxes during the first stage of our SSPB cascade,

the method of [17] would be comparable to running sim-

ple greedy NMS with threshold set to 0.9 resulting in low

recalls at decreased IoU thresholds.

10. Experiments

We test our object proposal methods on two standard ob-

ject detection benchmarks:
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Figure 4. Average recalls achieved by our (solid lines) and state-

of-the-art proposal approaches on VOC07-TEST as a function

of the number of proposals per image.

VOC07 [12]: The ”test” and in some cases ”val” sets of

the Pascal VOC2007 dataset were used for evaluation of our

methods. The ”test” set (VOC07-TEST) consists of 4952

images containing 20 distinct visual object classes together

with their bounding box annotations. 2510 images are in-

cluded in the ”val” set (VOC07-VAL) and a similar number

of 2501 pictures resides in the ”train” set (VOC07-TRAIN).

ILSVRC2013 [29]: To check the ability of our

method to generalize to unseen data the more challenging

ILSVRC2013 DET task’s ”validation” set was utilized. The

amount of images is roughly 20k while there are annotations

for 200 object classes.

Note that abbreviations of all competing proposal meth-

ods are matched to their original papers in the References

section.

Overlap-recall experiments In this section, overlap-recall

curves obtained using the publicly available benchmark

code made by Hosang et al. [18], are provided. In case

of overlap-recall curves an ”oracle” detector that for each

ground truth bounding box reports the most overlapping

proposal is run. The curve then consists of achieved recalls

as a function of minimal required IoU overlaps at which a

proposal is regarded as a true positive.

We tested 4 variants of our algorithm. SSPB and

SSPB+SS (described in detail in the preceding sections),

SSPB60 and SSPB+SS60. SSPB60 differs from SSPB in

the final step where ARNMS is replaced by the standard

greedy NMS with the overlap threshold set to 0.6. The

same applies to SSPB+SS60, which replaces the ARNMS

step of SSPB+SS. The two additional methods were intro-

duced because they give compelling performance when a

small amount of candidates is requested.

Figure 3 shows the overlap-recall curves of our methods

on VOC07-TEST in comparison with state-of-the-art algo-

rithms. Additionally, in Figure 4 we provide average recall

measures that have been shown to conveniently quantify the

performance of generic object detectors [17].

# candidates

method 10 50 100 500 1000 10000

SSFast 23.7 37.2 42.8 52.5 54.2 54.8

EB 32.3 43.0 46.1 52.1 53.3 53.1

SSPS (ours) 36.0 46.7 50.0 53.1 56.4 56.3

SSPB+SS (ours) 35.7 47.8 50.2 56.1 56.6 56.3

DMultiBox [11] 29.0 - - - - -

Table 1. RCNN detector mAP as a function numbers of pro-

posals per image for different proposal methods.

It is apparent that our approach performs better or on

par with state-of-the-art both in terms of average recall and

the individual recalls achieved at most IoU thresholds. It

is rivaled only by the Selective Search (”quality mode”)

when 10000 candidate windows per image are considered.

As noted earlier SSPB and SSPB+SS do not give that im-

pressive performance when a small number of candidates is

requested, however the decrease of the non-maximum sup-

pression threshold (SSPB+SS60 and SSPB60) puts our ap-

proaches again in the leading position. The comparison be-

tween SSPB and SSPB+SS is slightly in favor of SSPB+SS,

however we note that SSPB is faster due to the skipping of

the Selective Search extraction step. Another positive point

is that although SSPB is categorized as one of window scor-

ing methods that tend to attain lower recalls at higher IoU

thresholds, it is able to produce bounding boxes compara-

ble to those of e.g. MCG or Selective Search in terms of

localization quality.

Combination with a class-specific detector. To check the

applicability of our method, we designed an experiment

where the state-of-the-art RCNN [15] class-specific object

detector utilizes the output of a proposal generation algo-

rithm. The four proposal algorithms that were tested were

SSPB, SSPB+SS, EdgeBoxes70 and Selective Search in its

”fast mode” (originally used for RCNN). We recorded the

achieved RCNN mAPs on the VOC07-TEST set while vary-

ing the number of used candidates per window.

Since we empirically discovered that using a proper IoU

threshold when executing the non-maximum suppression

of SSPB, SSPB+SS and EdgeBox70 candidate windows is

crucial for obtaining the best possible final RCNN perfor-

mance, we validated these optimal NMS thresholds on the

VOC07-VAL set for each number of requested proposals

separately. Table 1 shows achieved mAP values.

The results indicate that in case of SSPB and SSPB+SS

the RCNN mAP decreases the least as the number of can-

didates is reduced. Also note that RCNN was originally

trained using the Selective Seach ”fast” proposals, which

typically sways the results in favor of this method [17].Yet,

SSPB+SS and SSPB is still able to outperform Selective

Search ”fast”; additionally our methods improve the results

of the original RCNN pipeline when 1000 and more pro-

posals are produced per image.
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Figure 3. Overlap-recall curves of our (solid lines) and state-of-the-art proposal methods on the VOC07-TEST set when 10 (left), 100 (cen-

ter) and 1000 (right) candidate windows are considered per image. The legends are sorted by the average recalls (in brackets).

Recently DeepMultiBox [11] attained 29.0 mAP on

VOC07-TEST with their proposals and using a class-

specific detector with CNN architecture from [22] while

considering just 10 candidate regions per image. Our result

is substantially higher, achieving 36.0 mAP when the same

number of SSPB regions is proposed in each image while

noting that the architecture of RCNN differs from Deep-

MultiBox only in the type of classifier in the topmost layer.

Generalization experiments Since our method is trained

on VOC07-TRAIN+VOC07-VAL, which contains only 20

distinct classes, we verified its performance in a more chal-

lenging setting with previously unseen classes. We thus

tested the proposed method on the ILSVRC2013 validation

set of the detection task.

A potential caveat is that the used ZF-5 network was

trained on the ILSVRC2013 training set of the classifi-

cation task which contains some of the images from the

ILSVRC2013 validation set of the detection task used for

testing our detector. To overcome this problem we removed

the 311 images that are located in both sets and tested our

detector on this very slightly reduced set (we refer to it as

ILSVRC2013-DET-VALR). Overlap-recall curves of our

and state-of-the-art proposal techniques are plotted in Fig-

ure 5, again with the help of the software of [17].

Recently, [4] have shown that the object proposal eval-

uation protocol could be gamed by training a class specific

object detector and use its scores as an objectness measure.

We trained an objectness SVM classifier on the 20 class

Pascal scores produced by the original CNN-SPP detector

[16] according to the training protocol from Section 8. We

then apply this classifier to ILSVRC2013-DET-VALR. The

method is labeled ”Overfit” in Figure 5.

Results show that our approaches outperform other

methods in terms of AR as well as in achieved recalls evalu-

ated between 0.5 and 0.83 overlap thresholds, once a larger

amount of candidate windows is considered (more than

500). For the lower proposal amounts SSPB and SSPB+SS

stay on par with the competition. Our methods also outper-

form the Overfit proposals.

Feature selection experiments demonstrate the ability of

the employed feature selection algorithm to decrease the

number of spatial bins while maintaining comparable per-

formance of our approach. We trained two different varia-

tions of SSPB+SS on VOC07-TRAIN set and tested them

on VOC07-VAL. The first solely utilized the CNN-SPP de-

scriptors, whilst the second used only BEV descriptors. Av-

erage recalls as a function of the number of used proposals

for various numbers of selected spatial bins are reported.

Figure 6 shows that for CNN-SPP as well as for BEV

features, the resulting average recall decreases very slowly

as the number of effective spatial bins is reduced. This way

it is possible to limit the amount of utilized spatial subdivi-

sions to 25 % and 85 % of the original number in the case

of BEV and CNN-SPP features respectively, without hurt-

ing the quality of the produced proposals. Figure 6 contains

performance of the BE feature [27] to show the improve-

ment of the BEV feature over BE.

Run-time analysis. The speed of our methods is com-

pared with the algorithms that attained the best average re-

calls in experiments. Table 2 shows mean processing times

on a fixed subset of 200 images sampled randomly from

VOC07-TEST. We report both GPU (GeForce GTX TITAN

BLACK) and CPU (Intel Xeon E5-2630 v3) times.

The speed of our approach is comparable to the Selective

Search ”fast mode” and roughly 4× faster than its ”quality

mode”, while performing better than the ”quality mode”.

Most of the segmentation methods that perform on par with

SSPB and SSPB+SS on ILSVRC2013 and are inferior on

VOC07-TEST such as MCG, Endres or CPMC are slower

by more than an order of magnitude.

Ablation analysis. Figure 7 presents average recall curves

achieved on VOC07-TEST with each stage of SSPB while
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Figure 5. Overlap-recall curves of our (solid lines) and state-of-the-art proposal methods on ILSVRC2013-DET-VALR set when 10 (left),

100 (center) and 1000 (right) candidate windows are considered per image. The legends are sorted by average recalls (in brackets).
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varying the combination of proposed features. Results show

beneficial effects of each added feature/stage.

11. Conclusions

We have introduced a novel window scoring method for

extraction of object proposals, named SSPB. SSPB uses

Method time [s] Method time [s]

SSFast [34] 2.52 MCG† [2] 30

SSQuality [34] 11.85 CPMC† [3] 250

EdgeBoxes70 [42] 0.39 Endres† [10] 100

SSPB (ours) 3.16 (11.51) Rigor† [19] 10

SSPB+SS (ours) 4.09 (12.45) Geodesic† [21] 1
†results taken from [17]

Table 2. Per image processing times of our methods and the best

performing competition. For SSPB and SSPB+SS, GPU was used

for extraction of conv5 features. Full-CPU times are in brackets.

several fast-to-compute features: deep CNN-SPP features,

the EdgeBoxes score and the newly proposed BEV descrip-

tor that accumulates information about edges near bounding

box boundaries. We substantially speed up the extraction of

these objectness cues by a group normalized SVM based

feature selection which does not hurt the final generic ob-

ject detector performance. The improvement decreased the

SSPB processing times below the level of the majority of

state-of-the-art proposal approaches.

Results on the Pascal VOC2007 dataset indicate that our

method delivers state-of-the-art in average recalls and at re-

call levels at many IoU thresholds for various numbers of

candidate windows per image. We obtained similar results

on ILSVRC2013. Since SSPB was trained on Pascal, the

positive results prove that our method generalizes to previ-

ously unseen data.

Our proposals work very well in combination with the

current state-of-the-art class-specific object detector RCNN

[15]. Besides significantly improving RCNN mAP when

the number of considered candidates is limited, higher num-

bers of SSPB proposals also slightly increase class-specific

detection above the level of Selective Search.
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