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Abstract

We introduce a novel framework for modeling articu-

lated objects based on the aspects of their components.

By decomposing the object into components, we divide the

problem in smaller modeling tasks. After obtaining 3D

models for each component aspect by employing a shape

deformation paradigm, we merge them together, forming

the object components. The final model is obtained by

assembling the components using an optimization scheme

which fits the respective 3D models to the corresponding

apparent contours in a reference pose. The results suggest

that our approach can produce realistic 3D models of artic-

ulated objects in reasonable time.

1. Introduction

The problem of modeling articulated objects, like peo-

ple, animals and complex human artifacts has a long history

in computer vision. Obtaining 3D models of objects from

images is essential for many high-level vision tasks. Early

approaches suggested a hierarchical composition of the ob-

ject components, represented as generalized cylinders [4],

geons [3], or superquadrics [30, 15], just to cite a few well

known approaches to the structural descriptions theory. In

these early works, components were modeled with paramet-

ric 3D shapes of few degrees of freedom, leading to limited

resemblance to the actual geometry of the component.

With the popularization of accurate deformable models,

introduced also by the computer graphics community (see

[5] for a review), more realistic models of the components

of an object are obtained. Recent works [32, 37, 38] have

successfully shown how some types of animals can be mod-

eled from a single image, relying mainly on the symmetry

of the animal’s shape. These approaches differ from the

ones proposed in computer graphics (e.g. [25, 11, 21]),

where input from the 3D artist is essential. The single view

modeling methods, however, are not suitable for modeling

articulated objects since some of their assumptions become

not valid. In particular, the components of the object do not

Figure 1: Left: Images of an animal downloaded from the

web overlaid with segmentation masks, Center: modeled

components overlaid on the input images, Right: final 3D

model obtained with the proposed method.

share the same plane of symmetry.

In this work, we provide a solution to the problem of

modeling articulated objects by explicitly modeling their

components from various aspects. We consider a hierar-

chical decomposition of the object into components. De-

pending on the geometric complexity of the component, a

different number of views is required for the modeling. For

example, an animal’s torso typically requires three to four

representative views (left, right, front and back). Views of a

component lead to the component aspects. An example of

the decomposition in components and aspects is presented

in Figure 2. From each aspect an approximate model of

the imaged component is obtained using the deformation

paradigm. Then, these aspect models are merged together

to form a component. Components are typical of an object

class and, in turn, are assembled considering a reference

pose of the object, providing a 3D model of the whole ob-

ject. Here, we assume that the object components are seg-

mented out in the respective views. It is important to note

that the different views need not correspond to the same

physical object as far as objects belong to the same spe-

cific class. We focus our study on animals as they typically

satisfy this property. An example of a 3D model obtained

with our approach is shown in Figure 1.

The paper is organized as follows. In the next section we
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Figure 2: Left: Input images of Giraffes providing different aspects of each component, Right: representative aspects of

each component of the Giraffe model.

review related work. In Section 3 we describe how compo-

nents are modeled by their aspects. In Section 4 we show

how components are assembled to form the final model. In

Section 5 we evaluate the proposed method and Section 6

addresses conclusions and future work.

2. Related work

Geometric modeling of objects is becoming popular in

computer vision. Following the deformation methods in-

troduced in the pioneering work of Terzopoulos [36], shape

generation from images provides good results by exploiting

the contour generator. Single view modeling of objects with

predefined genus and topology was introduced in [33, 32]

using images of the same object family. Additional im-

age cues have been considered in [28, 37] to model object

classes from single views, and a similar approach has been

taken by [38], exploiting the contour generator. A recent re-

view is found in [29]. Multiple-view reconstruction of dif-

ferent object classes from few images has been successfully

obtained using networks of objects with similar viewpoints

[8], or for large scale shape reconstruction [39].

Differently from the 3D reconstruction methods we

model an object not as a single rigid structure but as an ar-

ticulated one. As opposed to SfM and factorization tech-

niques, we model the views by deformation, we merge the

obtained aspect models into components, and combine the

components by a global optimization scheme, in order to es-

timate the view direction without requiring user input. The

method allows us to join the components in several poses,

this is the main novelty of our approach. The relation be-

tween the apparent contour and the contour generator, that

we exploit here for assembling the components, has been

studied since the early days of computer vision. Koenderink

in [18] studies various properties of the contour generator

based on the results of differential geometry, establishing

in [17] a rule relating the curvature of the contour and the

curvature of the surface, which is also investigated in [14].

A comprehensive study of the contour generator of evolv-

ing implicit surfaces is found in [31]. The problem of fit-

ting 3D objects in their apparent contour has been treated in

[9] where optimization is performed to find 3D-2D corre-

spondences, considering a parametric representation of the

surface and an estimation of the view direction, initialized

by the user. The problem has been also treated in [6] for

non-rigid surface sequences.

The final visual quality exploits surface smoothing.

Level-set based methods have been widely used for this task

(for a survey see [7]), based on an implicit surface represen-

tation, and have the advantage of topological flexibility. We

follow the approach of [22], enabling Boolean graphics op-

erations, for obtaining a model with no internal faces.

3. Modeling object aspects into components

We consider an articulated object to be formed by com-

ponents, such as head, torso, limbs, where each component

can be mapped into a viewer-centered aspect. An aspect

represents a view of the component from the viewer vantage

point [15], as illustrated in Figure 2. The number of com-

ponents of an articulated object, can be freely determined,

the choice being based on common sense. The number of

views needed to model a single component depends on the

regularity of its shape. Though, we do not rely on shape

regularity because the component model is obtained from

its aspects by optimization (see Section 3.2). Therefore, if

a component is quite irregular, one would want to collect

each of its idiosyncratic aspects.

The image selection task, leading to a choice of the com-

ponents and their aspects, in the spotted views, requires

some user input. Such as, for example, the judgment of

what is needed to recover a good model. In principle few

images are needed, and in our examples we used four im-

ages, as shown in Figure 2. This said, the complex prob-

lem of automatically determining the number of compo-

nents and aspects of a natural kind is not faced in this work.
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Figure 3: Comparison of the solutions (depth maps) and re-

constructed surfaces (meshes) of a cat’s leg, Left: obtained

with (4), Center: without the load. (Best seen in colors).

Right: with load, given noise on the contour segmentation.

3.1. Aspect modeling

Assume to have available a number NI of images

I1, . . . , INI
showing different views of some articulated ob-

ject category C, which is supposed to have Nc components.

Let Ωi ⊂ R
2 be the domain of image Ii, i = 1, . . . , NI ,

and assume there is a chart of the segments of all visible

components in image Ii, as shown in Figure 2, as for ex-

ample provided in PASCAL-Part dataset [12], as well as in

[19, 20]. Each segment αic in an image Ii of the object C,

defines an aspect of the specific component c. This aspect

is mapped into a binary mask after translation and isometric

scaling, keeping the proportions of the components w.r.t the

original image. Let T :Ωi 7→ΩTc be the transformation ap-

plied to αic, then we define the mapping Aic:ΩTc 7→{0, 1},

which returns precisely the binary mask of the transformed

segment α̂ic. The projection of the binary mask back into

α̂ic, is A−1
ic ={(u, v)∈ΩTc |Aic(u, v)=1}. Let ∂Aic =

{(u, v) | |dAic

du
+ dAic

dv
| > 0}, (| · | absolute value). We

assume that ∂Aic is a closed simple (Jordan) curve dividing

the Euclidean plane in interior and exterior regions, where

the interior is defined to be int(Aic) = {Aic = 1}, and it

has a prescribed sense of rotation. We define F (u, v) the

distance field at point (u, v) ∈ int(Aic), namely:

F (u, v) = min
û,v̂

{‖(u, v)− (û, v̂)‖2 |(û, v̂) ∈ ∂Aic} (1)

Let q ∈ int(Aic) be the center of a circle bitangent to

∂Aic, having radius rq, namely q is on the medial axis of

int(Aic), we define:

h((u, v),q)=min
q

{‖q− (u, v)‖|(u, v)∈int(Aic)}+rq

(2)

To obtain the 3D model from Aic we minimize the elas-

tic energy deforming the distance between nearby points,

which is driven both by internal forces, inducing local

stretching and bending, and external forces. A surface

ϕ⊂R
3, parametrized by the function g:ΩTc 7→R, is com-

puted by minimizing the strain energy functional defined by

the first and second fundamental forms [35], plus an exter-

nal force G, or load. Energy strain linearization is attained

by considering the first and second derivatives of g [5]. The

Algorithm 1: Aspects modeling

Input: Aspects Aic, i = 1, . . . , NAc
, c = 1, . . . , Nc,

aspects parameters Qλ, Qβ

Output: Aspect models Bic, i = 1, . . . , NAc
,

c = 1, . . . , Nc

1 for c = 1 : Nc do

2 for i = 1 : NAc
do

3 Generate a triangulation for Aic;

4 Choose the set of shape functions (at least

quadratic) and the quadrature nodes;

5 Assemble the stiffness matrix and loads vector

using the quadrature rule;

6 Find the weights of the shape functions

solving the equation KX = H;

7 Find the displacements gic using eq. (5);

8 Compute mesh Bic based on the triangulation,

and closure by reflection, of ϕic.

energy functional is:

E(g) =

∫

ΩTc

g⊤λQλgλ + g⊤βQβgβ − 2Gg dudv (3)

Here gλ=(gu, gv)
⊤, gβ=(guu, gvv, guv)

⊤, Qλ is a 2×2 ma-

trix of stretching parameters, Qβ is a diagonal 3×3 matrix

of bending parameters, assumed known, and G is the load:

G(u, v)=
F (u, v)

h(u, v)
(δ1(u, v)γ1+(1− δ1(u, v))γ2) (4)

Here F and h are defined in eq.(1,2), δ1(u, v) is the in-

dicator of ∂Aic convexity at (u, v) and γ1, γ2 ∈ R+ are

weights. This external force is applied to make the final

surface growing steeper both near the boundary and where

the initial mask is thinner and convex (see Figure 3). The

scheme for finding the solution g(·) of the energy functional

(3) is based on the Finite Element method, as described

in [10], applied to the associated Euler-Lagrange equation.

The approximation of the displacement g(u, v), which min-

imizes the energy functional (3) is obtained as:

g(u, v) = X⊤Φ(u, v), (5)

Here Φ is the coefficient matrix of the continuous shape

functions, X is the matrix of the unknown weights, obtained

by solving the following quadratic minimization problem:

min
X

{

X⊤KX−H⊤X
}

, (6)

with K the stiffness matrix and H the vector of the loads. To

constrain the solution at the boundary ∂Aic, homogeneous

Dirichlet conditions are applied into the PDE problem for-

mulation. A smooth closed surface Bic for each aspect (seg-

ment α̂ic) of component c of object C, as viewed in image
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Ii, is obtained by joining ϕic with its reflection along the

z=0 plane, see Figure 3. Algorithm 1 describes the main

steps involved.

3.2. Component building

Let Bc be the set of closed surfaces, obtained as de-

scribed above, which we denote the aspect models of the

component c = 1, . . . , Nc. For each component there are

NAc
aspect models, namely, Bc = {B1c, . . . , Bsc}, with

s ≤ NAc
. To obtain a consistent model for c, the aspect

models in Bc need to be combined. To achieve this we chose

a reference model Brc ∈ Bc and estimate the 3D transfor-

mation between each aspect model Bic ∈ Bc and the refer-

ence model Brc, as illustrated in Algorithm 2. Each aspect

model Bic is labeled with respect to the image Ii, it was

obtained from, and with respect to the component c it is a

view point of, hence we use feature points extracted from

the image Ii (see Figure 2), to compute the relative trans-

formation T
(0)
ri between Brc and Bic. A refined solutions is

then obtained by 2.5D registration.

Algorithm 2: Aspect registration

Input: Indexes of reference aspect models rc, Bc, α̂ic,

i = 1, . . . , NAc
, c = 1, . . . , Nc

Output: Transformation Tri between reference Brc

and aspect models Bic ∈ Bc, i = 1, . . . , NAc

1 for c = 1 : Nc do

2 for Bic ∈ Bc do

3 Detect a set of feature points Fic in the

segment α̂ic, (e.g. by keypoints, SURF [2]

features or similar);

4 Project Fic on Bic to obtain the 3D feature

points Xic;

5 Find feature matches Fic ↔ Frc;

6 if #matches > 3 then

7 Estimate 3D transformation T
(0)
ri based on

Xic ↔ Xrc up to an affine transformation

8 else

9 Ask user for manual initialization

10 Apply T
(0)
ri on Bic;

11 Compute depth image d̄ic;

12 Dense 2.5D registration of d̄ic w.r.t. drc.

The last step of Algorithm 2 (line 12) is a dense 2.5D regis-

tration between the depth image drc of the reference aspect

and the depth image d̄ic corresponding to the transformed

i-th aspect of component c. In the following we drop the

subscript c as reference is intended to the component c. The

registration is obtained via the minimization problem

min
ξi∈a(3)

‖dr − d̄i(ξi)‖L1 , (7)

with a(3) the Lie algebra of the 3D affine transformation

group and ξi a twist belonging to this Lie algebra. The ob-

jective function involved is non-smooth and non-linear in

ξi. We consider a local convex approximation of the ob-

jective function by iterative linearization with respect to ξi
and we then apply the Legendre-Fenchel transform, trans-

forming the original minimization problem to a sequence

of saddle-point problems. Optimization is performed in

a coarse-to-fine framework to avoid local-minima. Let q

be the dual variable, Q the union of pointwise L1 balls,

δξ
(k)
i = ξi − ξ

(k)
i , dr the vectorized reference depth im-

age, and d̄i(ξ
(k)
i ) the vectorized depth image of aspect i

transformed according to T (k) = exp(δξ
(k)
i )T (k−1). Let

dp
dξi

∣

∣

ξ
(k)
i

be the directional derivative of p(ξi) = dr− d̄i(ξi)

with respect to ξi evaluated at ξ
(k)
i . The saddle-point prob-

lem at the k-th iteration is

max
q∈Q

min
δξ

(k)
i

∈a(3)

q⊤

(

p(ξ
(k)
i ) +

dp

dξi

∣

∣

∣

∣

ξ
(k)
i

δξ
(k)
i

)

. (8)

A solution is computed by applying primal-dual optimiza-

tion to estimate the saddle-point at each level.

The optimization significantly improves the registration

provided that the initialization d̄i is situated in the convex

basin of the optimal solution. The final solution depends on

the choice of the reference aspect and the order in which the

remaining aspects are considered, however, given that Nc is

a small number, the solutions are virtually equivalent.

Given the transformations, leading to a consistent reg-

istration of the aspect models, we merge them into a sin-

gle component model. To achieve this, we first compute a

volumetric representation of each model surface. We use

the definition of Inner Product Field (IPF), as described

in [22]. The IPFs grants an implicit representation of the

aspect models Bic and we can exploit the following re-

sult: given n ≥ 2 implicit surfaces φ1(x), . . . , φn(x), then

φ∪(x) = min (φ1(x), . . . , φn(x)) is the union of their inte-

rior regions and corresponds to the envelope of the surfaces.

As a final step, the component model is slightly smoothed to

attenuate possible irregularities and artifacts. The smooth-

ing is applied on the volumetric representation of the aspect

model using the Level Set method according to the mean

curvature flow [27]

φt + Vn‖▽φ‖ = 0, (9)

where Vn = −bκ is the velocity field in the normal direc-

tion generated from the surface curvature κ, and b ∈ R.

A mesh is then generated by standard meshing techniques

(e.g. [23]).

4. Assembling of the articulated object

Components are assembled in order to obtain a model of

the entire object in a reference pose. In particular, we use
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Figure 4: Aspects modeling and component building of the

giraffe head. Left: side aspect, Center: front aspect, Right:

component model.

Figure 5: Two views of a giraffe in a reference pose with

the overlaid component masks.

the apparent contours of the components in two or more

views of the object in a reference pose, as the ones dis-

played in Figure 5. We assume here that all components

are partially visible in the chosen views, that segments are

available in each view and obtained by an orthographic pro-

jection. The visibility requirement can be relaxed as the

number of views increases.

First, we recover the optimal transformation for each

component, which makes its projection comply with the ap-

parent contour. We treat this as a 3D-2D registration prob-

lem (see [24] for a review). We consider each component

as a sufficiently smooth surface S (e.g. of class C2) and the

apparent contour is a planar contour γ. These two entities

are related by the contour generator (CG), which is a space

curve Γ, defined by the set of visible points on S, where

the view direction v is locally tangent. The projection of

Γ according to v produces γ up to a 2D similarity trans-

formation. To register each 3D component, in its apparent

contour, we find a view direction and the corresponding CG,

which projects to a contour γ̂ as similar as possible to γ.

Let Y(S) be a set of points sampled on S. Under

the given assumptions, it suffices to identify two points

Y1, Y2 ∈ Y(S) lying on Γ, to compute the view direc-

tion. Indeed, observe that Γ depends only on v, and two

points with non parallel normals n(Y1) and n(Y2) define

the view direction up to a sign, as v = n(Y1) × n(Y2).
Given two points y1,y2 ∈ γ we seek the corresponding

points Y1, Y2 ∈ Y(S). We identify the best matches by

minimizing the energy function

E(Y1, Y2;y1,y2) =
∑

l={1,2}

(Ecg(Yl;yl) + Ecurv(Yl;yl))

+Eang(Y1, Y2;y1,y2) + Edist(Y1, Y2;y1,y2). (10)

The term Ecg specifies that the points must lie on the CG

corresponding to the estimated viewpoint. The last three

terms take into account local geometric properties that the

contour and CG have to satisfy. All these terms are invari-

ant with respect to 2D similarity transformation, which is

a computational bottleneck when considered. We examine

now in detail each term.

Ecurv is based on the relation between the curvature of

the surface and the curvature of the apparent contour. First,

the sign of the curvature of γ at point y, κγ(y) should match

the sign of the Gaussian curvature of S at the corresponding

point Y [18]. Additionally, κγ(y), and the curvature of Γ at

the corresponding point κΓ(Y ), satisfy the relation

κΓ(Y ) = sin2 θ κγ(y), (11)

with θ the angle between v and the CG at Y [18, 13]. Based

on this result, suitable bounds regarding the curvature of γ,

Γ and S are provided by the following proposition:

Proposition. Let S be a smooth surface and π(·) the pro-

jection operation. The curvature of the contour γ at a non-

cusp point y, the curvature of Γ at the corresponding point

Y and the principal curvatures of the surface κS
1 (minimum)

and κS
2 (maximum) at Y satisfy the inequality

κS
1 (Y ) ≤ κΓ(Y ) ≤ κγ(y) ≤ κS

2 (Y ), (12)

with: y ∈ γ, Y ∈ Γ,y = π(Y ).

Proof. Consider a generic point Y ∈ Γ. We assume first

that Y is not umbilical. The leftmost inequality is trivial as

the curvature of Γ at Y , cannot be smaller than the mini-

mum curvature of the surface at Y . The second inequality

follows from (11). To show the last inequality we consider

the osculating sphere OY of the surface at Y which has cur-

vature κOY = κS
2 (Y ). Regardless of the view direction, γ

at y can at most locally lie on the projected contour of OY

which is a circle with curvature κOY . Hence, the curvature

of γ at y = π(Y ) is locally bounded by the curvature κOY

which is equal to κS
2 (Y ). If the point is umbilical then all

equalities trivially hold.

Corollary. Considering a point y ∈ γ, a region R ⊆ S is

an admissible region of the corresponding point Y ∈ Γ iff

κS
1 (Z) ≤ κγ(y) ≤ κS

2 (Z), ∀Z ∈ R and the sign of κγ(y)
matches the sign of the Gaussian curvature GS in R.

In the following for brevity we omit the explicit relation

with the surface/curve points. Based on the previous result
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the curvature term can be expressed as

Ecurv = ωκ D[κS

1 ,κS

2 ] (κ
γ)+

ωG max(− sgn(GSκγ), 0), (13)

with DJ (v) = min
w∈J

(‖v − w‖) and ωκ, ωG > 0 weights

relating the terms.

The term Eang expresses the fact that the angle between

the normals n(Y1), n(Y2) matches the corresponding an-

gle on the apparent contour. The same holds for the angle

between each of the normals and the connecting segment

(Y2 − Y1) projected on the plane spanned by the normals.

Let c the cost function that penalizes differences between

the corresponding angles (e.g. c(θ, φ) = tan(|θ − φ|)), we

define

Eang = ωnc(θn, θη) + ωbc(θB , θb), (14)

with θn, θη the angles between the 3D and 2D normals

respectively, θB , θb the angles between the base segment

and one of the normals in 3D and 2D respectively, and

ωn, ωb > 0 the relative weights. The term Edist is defined

as

Edist = ωd

(

‖Y1 − Y2‖

d(S)
−

‖y1 − y2‖

d(γ)

)2

, (15)

with d(·) the diagonal length of the corresponding entity’s

bounding box, and ωd > 0 the relative weight.

Finally, the term Ecg is taken equal to the maximum pen-

etration depth of the view ray passing through Y with re-

spect to S and specifies the constraint that Y is on Γ.

We find the global minimum of the energy function with

a branch-and-bound search strategy [34, 26]. First, we find

the two points on γ which result into the most restricted re-

gion on S based on the previous corollary, and use them as

initial points for the search. The pair of points which corre-

sponded to the lowest energy value returns the view direc-

tion v. The remaining 2D similarity transformation is then

recovered by applying a shape matching technique between

the resulting contour and the measured one (see [16]). This

procedure gives the relative pose of each component with

respect to the view. Not depending on all the points of the

apparent contour, it is robust with respect to the visible por-

tion of the contour and the shape of the 3D component. The

solution can be refined by performing an iterative LSE min-

imization. We should note that the assembling step is ro-

bust with respect to noise as the components are smoothed

before it is applied. An example is shown in Figure 3.

By registering each component in the given view we re-

cover their relative position with the only exception of the

translation in the viewing direction. We solve this ambi-

guity by using the other views. In particular since the ob-

ject is imaged in the same pose from two or more known

views, the depth ambiguity is resolved. A single model is

computed from the assembled components by following the

steps presented at the end of Section 3.2.

5. Evaluation

Modeling time The implementation of the proposed

method consists of a mixture of Matlab and CUDA code.

In particular, 2.5D registration of the modeled aspects, IPF

computation and surface smoothing of the models are im-

plemented in CUDA, while aspect modeling and component

assembling are implemented in Matlab. A report of the time

required for computing the models shown in this section is

presented in Table 1.

Model AM [sec] CB [sec] CA [sec] Sm [sec] Total [sec]

Cat 532 1.8 1942 0.09 2521

Dog 514 2.1 1026 0.08 1855

Cow 598 2.2 1311 0.10 1919

Sheep 426 1.9 1417 0.07 1826

Hippo 577 1.8 1514 0.07 2008

Giraffe 479 2.2 1410 0.06 1901

Kangaroo 441 2.0 1396 0.09 1723

Standing Horse 484 1.9 1613 0.05 2017

Landing Horse 505 2.1 1855 0.07 2090

Rearing Horse 494 1.9 1951 0.06 2034

Table 1: Modeling time report (AM-aspect modeling,

CB-component building, CA-component assembling, Sm-

smoothing).

The experiments were performed on a PC equipped with

an Intel i7 3.6GHz CPU, 16GB RAM and an NVIDIA

GTX970 graphics card. All models presented in the sec-

tion have been modeled from four input images. Further

results are presented in the accompanying video.

Model comparison We performed an extensive compari-

son of models obtained with our method using images taken

from the web, with respect to models downloaded from the

web. All images were taken from Flickr, while most of the

downloaded models were obtained from the 3D warehouse

of SketchUp, the rest have been taken from other reposito-

ries. We evaluated the similarity of our models with respect

to the downloaded ones using two different similarity mea-

sures, the Hausdorff distance [1] and the normalized sym-

metric difference. We considered our model as reference

and preprocessed the models taken from web to make the

results comparable. Preprocessing consisted of the follow-

ing steps: (a) model clean-up; remove internal faces, re-

cover manifoldness and close holes; (b) manual orientation

w.r.t. reference model; (c) automatic non-isotropic scaling

for matching the bounding box with the reference model.

The Hausdorff distance was computed directly on the

meshes of the models. For the symmetric difference we

used the volumetric representation obtained via IPF. The

distance is computed as the difference between the number
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of voxels in the union and the number of those in the inter-

section of the two volumes, normalized by the total number

of voxels. The results of the comparison are presented in

Figure 6, where numbers correspond to the average values

of the distances w.r.t. all the downloaded models of each

class (3-4 models). These results show that the models com-

puted with our method actually represent the modeled class.

Indeed, the average distance with respect to the downloaded

models of the same class is consistently smaller in compar-

ison to the distances with respect to the other classes.
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Figure 6: Model comparison (smallest values are high-

lighted); normalized symmetric differences (left) and nor-

malized Hausdorff distances (right) between the models.

For a more objective evaluation, we applied the proposed

approach to images of 3D models downloaded from the

web. In particular, we generated images of the rendered 3D

models from four vantage points, on which the segmented

aspects were extracted. In this way, the downloaded models

acted as ground truth with respect to which our models were

compared using the normalized Hausdorff distance. The re-

sults of this comparison are presented in Figure 8 and in

Table 2, where the mean values are given. We should note

here that as this procedure allowed us to easily obtain two

images of the object in more “unstable” poses, we were able

to model the objects in different poses, as seen for example

for the horse (standing, landing and rearing poses).

Cat Dog Cow Sheep Hippo

0.012 0.012 0.030 0.040 0.013

Giraffe Kangaroo Standing Horse Landing Horse Rearing Horse

0.018 0.023 0.016 0.028 0.020

Table 2: Mean normalized Hausdorff distance between the

models reconstructed with our approach and ground truth.

Perceptual study Because of the nature of the problem,

similarity distances may not always be representative. To

further evaluate the quality of our models we performed a

perceptual study with the help of volunteers.

Ten volunteers who did not know the purpose of the

study participated in the experiment. Six participants were

male and four female, 60% had from 22 to 25 years and

10
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9 1

10
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9
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Figure 7: Left: Animal models used in the perceptual study.

Top group: models computed with our method; Bottom

group: models downloaded from the web. Right: Confu-

sion matrix from the perceptual study.

40% from 25 to 29 years. Finally, three subjects reported

corrected-to-normal vision and the rest normal vision.

The models presented in Figure 7 (left) were used for

conducting the study. Participants were invited to ask ques-

tions before the experiment. After providing the necessary

information and consent the task was presented to the par-

ticipants:

“Various 3D models will be shown on the screen during

the experiment. For each model, you need to identify the

corresponding animal and give a mark for its quality. You

can interact with the model for as long as you prefer before

answering.”

The models were presented on the screen with a uni-

form green shaded material on blue background, as shown

in Figure 7. The participants marked the answers on a spe-

cial form, where the animal class could be specified freely

and a scale of discrete values from 0 to 5 was used for eval-

uating the quality of the model. The models were presented

in a random order to avoid bias caused by repeated ordering.

We consider the null-hypothesis H0 that participants ran-

domly selected the animal class, while the alternative hy-

pothesis H1 is that users correctly recognized the animal.

Cross-tabulation was performed on the answers provided

by the participants regarding the class of animal represented

by our models and the resulting confusion matrix is shown

in Figure 7 (right). One can observe that the participants

almost always identified successfully the animal class. In

fact, the null hypothesis is rejected as the chi-square value is

χ2 = 247, corresponding to a practically vanishing p-value.

It is important to note that the participants did not know in

advance the classes of animals involved. This justifies also

the last row of the confusion matrix, as one participant rec-

ognized the hippo as a pig.

The distribution of votes given by the participants for

the model quality is presented in Figure 9. The models
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Figure 8: Comparison between animals modeled with our approach (odd rows) from images of models downloaded from the

web (even rows) which were used as ground truth. The images of the bottom group show the distribution of the normalized

Hausdorff distance on the ground truth model. (Best seen in color and on-screen)
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Figure 9: Vote distribution for the models produced with

our approach (left) and models taken from the web (right).

Cow Horse Dog Cat Sheep Hippo

70% 50% 70% 30% 50% 50%

100% 60% 100% 100% 100% 80%

Table 3: Per-class percentage of votes above 3 (good) given

to the models reconstructed by our method (first row), and

the models downloaded from the web (second row).

downloaded from the web received higher votes in average,

with a difference of 1.9 scale units with respect to the aver-

age vote that our models received. This is understandable

considering that our models correspond to more abstract

class models, lacking particular details like eyes, nose and

tail. Nevertheless, the percentage of the participants, which

gave a vote above 3 (good) for the quality of our models

(Table 3), indicates that the models are of satisfying quality.

6. Conclusions and future work

We propose a method for computing 3D models of artic-

ulated objects, by decomposing them into components. Re-

alistic models of the object components are built by merging

together 3D models obtained from different aspects, consid-

ering a kind of aspect graph [15], which indicates the essen-

tial aspects. Aspects are extracted from images downloaded

from the web. The entire object is obtained by reassembling

the components using two or more images of the object in a

reference pose. Our experiments suggest that our method is

able to provide realistic models of the objects, both in terms

of a perceptual analysis, and by a quantitative analysis of

their similarity with respect to human created 3D models.

An important extension of this work is the possibility to

model the object in different configurations by using a sin-

gle image. This can be made possible by learning spatial

relations between the components (joints, joint range etc.)

and possibly also a distribution of the object poses, which

would allow to compute realistic models even when some

of the components are occluded. Finally, another useful ex-

tension would be the automatic selection of the most repre-

sentative aspects for each component from a set of images.
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