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Abstract

In this paper, we are interested in developing composi-

tional models to explicit representing pose, parts and at-

tributes and tackling the tasks of attribute recognition, pose

estimation and part localization jointly. This is different

from the recent trend of using CNN-based approaches for

training and testing on these tasks separately with a large

amount of data. Conventional attribute models typically

use a large number of region-based attribute classifiers on

parts of pre-trained pose estimator without explicitly detect-

ing the object or its parts, or considering the correlations

between attributes. In contrast, our approach jointly rep-

resents both the object parts and their semantic attributes

within a unified compositional hierarchy. We apply our at-

tributed grammar model to the task of human parsing by

simultaneously performing part localization and attribute

recognition. We show our modeling helps performance im-

provements on pose-estimation task and also outperforms

on other existing methods on attribute prediction task.

1. Introduction

In this paper, we design and propose compositional mod-

els to explicit representing pose, parts and attributes and

tacking the tasks of attribute recognition, pose estimation

and part localization jointly. It is different from the recent

trend of using Convolutional Neural Networks(CNNs) ap-

proaches with large data for training and testing on these

tasks separately. Despite the CNNs-based approaches have

been significantly improving the performance on many vi-

sion tasks, but lack explicit models. In contrast, stochas-

tic grammar models have been successfully used in explicit

representing and inferring complex compositional struc-

tures for tasks such as object detection[19, 23, 43], hierar-

chical object representation[7, 14], pose estimation[32, 38],

scene parsing [42], and event prediction[30]. However,

these models do not incorporate any notions of visual at-

tributes. Current attribute models for objects and scenes

are neither compositional nor part-based, and typically
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Figure 1. Paring and attribute prediction from an input image using

proposed attributed model. The parse tree represents human body

part appearance, geometry, and attributes for each part. Then, we

aggregate local information for attribute prediction.

employ a large number of independent classifiers to de-

cide which attribute labels to assign to a given bounding

box[3, 9, 25, 28]. Such an approach does not explicitly

capture the relationship between attribute labels, or local-

ize the part regions described by the attributes. So, our

work is now an attempt to propose an unified model that

to strengthen the strength and make up for the weakness

of both stochastic grammar model and attributed model.

Our attribute grammar model is an extension of conven-

tional grammar models: Dependency Grammar(DG), Pha-

rase Structure Grammar(PG), and And-Or Grammar(AOG)

[43]. We use PG for part representation, DG for articulated

relations, and both can be described in AOG. We, then, ex-

tend it by including attribute notating for each part as shown

in 1. Since the model output includes representations of ob-

ject itself and attributes, it allows us to use the model as

the application for attribute classification and pose estima-

tion automatically and simultaneously. This is a novel be-

cause previous approaches need n attribute classifier for n
attribute classifications[2, 25, 41], and rely on pre-trained
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Figure 2. (a) Each grammar rule decomposes a part into smaller constituent parts. (b) Each grammar rule defines adjacency relations that

connects the geometry of a part to its dependent parts. (c) It provides the framework to represent both dependency grammar (green edges)

and phrase structure grammar (black edges). (d) Each node has their own attribute graph node connected by attribute relations.

pose-estimator or part detector[4, 2, 41]. We demonstrate

our technique in human attribute prediction and pose es-

timation tasks and indeed observe an improvement in the

parsing performance from using these constraints. To see

effectiveness of our joint modeling, we use common pre-

trained CNN-based features with HOG and color feature

as our base feature models. Then, we compare the perfor-

mance with previous approaches and our attributed gram-

mar modeling to see how our modeling helps the perfor-

mance improvement without fine-tuning of features and

having additional data.

2. Related works

Our work is related to 3 research streams in the literature.

Attribute Models. The study of attributes has become a

popular topic because of its practical importance. In early

work, people focused on facial images because the face is

the most informative and distinct part of the body, and suit-

able for estimating attributes such as gender [6, 21, 29],

age[27], and more general attributes (e.g. hair style, glasses)

[26]. Later, as more diverse attributes (e.g. cloth types, ac-

tions) are explored, full body parts are used to collect more

rich and diverse information. However, as the full body has

large pose variations, input images cannot be used directly

without dealing with the variation of geometry and appear-

ance. [2] introduced a method to classify by detecting im-

portant parts of the body using Poselet[3], [4] proposed a

method to explore human clothing with a CRF using pre-

trained pose estimation[38] output. But, as these methods

use the pre-trained localization method as a pre-processing

step, performance undoubtedly relies on the localization

performance. This approach also prohibits modeling any

interaction between the locations of parts and their attribute

assignments. [25] designed a rich appearance part dictio-

nary to capture large variations of geometry and pose, but it

also does not include any part relations and cannot handle

large variation of human pose. Recently, [41] made sig-

nificant performance improvements. They used pre-trained

HOG based Poselet approach for part detection and trained

classifier with shallow CNN for each Poselet. But, this

method also relies on part-based approaches, and it is not

suitable for large variation of human pose. This model

improves the performance by having large data with fine-

tuning of feature rather than designing better model, but our

approach more focuses on modeling and representation.

Part localization Models: Localization and detection

of human and its parts has been a topic of interest for many

years. The pictorial structure model is introduced in early

stage for detection[15] and extended by [1, 8, 13, 33] which

uses a geometry-based tree model to represent the body.

Then, the deformable part model[10] has become one of

the most dominant methods in recent years for detecting

humans and other objects[19]. Later, hierarchical mixture
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Figure 3. We find part that include all visible keypoints in the ex-

amples. If P is small number, the part size is large to include many

keypoints. In contrast, if P is large number, the part size is rela-

tively small and include small number of keypoints. We found the

P = 7 is suitable number to represent human body in our model.

models [32, 38, 39, 31] made significant progress in the last

few years. Poselet used part-based template to interpolate

a pose, and k-poselets[20] improved performance by using

poselets as part templates in a DPM model with the CNN

features[18]. [5, 24, 31, 35, 36] show significant improve-

ment compared to previous methods by training keypoint

specific part detectors based on the CNN framework for hu-

man body pose estimation. However, none of these models

do not incorporate any notions of visual attributes.

Grammar Models: The grammar models have become

an increasingly popular topic in the literature, and can be

categorized into two principal variations: phrase structure

grammars(PG) and dependency grammars(DG). In the PG,

each node must geometrically contain all of its constituents,

and by extension the recursive collection of constituent

parts are summarized together into a concise coarse-to-fine

abstraction[14, 16, 17]. The PG is well suited to represent

compositional structures that do not undergo large deforma-

tions. In a DG, constituent parts do not need to be contained

within their parents, but instead are constrained by an adja-

cency relation[22]. The DG is well suited for representing

objects that exhibit large articulated deformations. The dis-

advantage of the DG is that it loses the coarse-to-fine sum-

marization. Stochastic and-or grammar(AOG) provides a

general and principled framework for representing compo-

sitional structures, and can be formulated to generalize both

PG and DG[43]. In contrast to DG and PG, the AOG defines

two types of nodes: the and-node and or-node. And-nodes

represent a composition of an entity from its constituents,

whereas the or-node defines a selection among alternative

choices that compete with one another. Our model is an

extension of these conventional grammar models to repre-

sent human body with attributes in an unified framework

and borrow and-or notation for grammar construction. We

model both PG and DG structure in the unified grammar.

3. Attributed Grammar Model

In our grammar model, each part is represented by the

state variables designating the location and attribute of part.

This state representation is common for all parts through-

out the hierarchy. Part state is represented by its geometry

state (x, y, s) for position and scale. Attribute state is repre-

sented by a set of attributes for part. The probability model

over the parse tree is formulated as a Gibbs energy model.

P (pt|I) ∝ P (I|pt)P (pt) = 1
Z
exp{−E(I|pt) − E(pt)}.

The likelihood term is used for appearance response, and

the prior term is used to describe relations in grammar.

Both terms are defined for part and and attribute. Then,

we rewrite equation as P (pt|I) = 1
Z
exp{−EP

A (I|pt) −
EA

A(I|pt)−EP
R (pt)−EA

R(pt)}. EP
A (I|pt) and EA

A(I|pt) are

appearance term for part and attribute respectively. EP
R (pt)

and EA
R(pt) are relation terms for part and attribute. The

energy is expressed as a scoring function. S(pt, I) =
−EP

A (I|pt)−EA
A(I|pt)−EP

R (pt)−EA
R(pt) = SP

A (I|pt)+
SA
A(I|pt) +SP

R (pt) +SA
R(pt). We now describe each com-

ponent of the scoring function.

3.1. Part Model

Defining Part node Before we design the grammar

model, we first need to define parts. And, the part can

be defined in several ways: as one part(whole body),

three parts(head, upper body, lower body), find-grained

parts(eyes, writs, hands, and etc.), and etc. The whole

body can be detected easily, and includes large informa-

tion. But, it requires the huge number of part templates to

describe large variation of appearance under different view

and pose. In contrast, if the body is constructed with fine-

grained parts, each part includes small information and not

easy to be detected. But, it more suits for representing ob-

jects that exhibit large articulated deformations. Therefore,

we find the proper number of parts to describe a large vari-

ation of human pose with relatively large size of part for

including enough information. To find P parts from key-

points annotations in the dataset[2], we assume the part is

defined by a composition of the keypoints, and use 15 key-

points (N = 15) as shown in Figure 3 with yellow circles.

The key idea for finding P parts is to set P value and find P
window regions to cover all observable keypoints. In brief,

we find parts by following process: (1) Randomly select

the example which has all visible keypoints. (2) Draw P
bounding boxes by avoiding overlap with other bounding

boxes until each part region includes N/P keypoints ap-

proximately. (3) Visit training examples one by one and

check whether it can be described with current part design.

If we can describe most of examples with current definition,

we keep current setting. Otherwise, we go back to step (1)

and find another example to find another part design. We

repeat this process until we find suitable part definition. We

designed each part has same size of window, 196 x 196 in
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Figure 4. Examples of clustered types for two p1 and p2. Each row

is a cluster, and left columns show mean images of each cluster.

the dataset[2]. In this process, we found the part is rela-

tively small and have large variation of pose when each part

includes 2 or 3 keypoints. So, we define 7 parts (P = 7)

and show in Figure 3.

Part Relation Model We model the relations between

parts now. The root node is defined by finding mostly

shared part over the parts. Then, we expand tree structure

by adding closest parts to the nodes. We show defined tree

structure in Figure 1. The part relation is defined by the

and-rule. And-rule is for assembly of constituent parts and

enforce geometric constraints between two parts, pi and pj .

It is described by SP
R (pi, pj) = 〈λP

ij , [dx
2
ij dy2ij ds2ij ]〉

where dx2
ij , dy

2
ij is relative location, ds2ij is relative scale.

λP
ij is learned from the geometry relation in training. We

also define the articulation constrains between part pi and

its type ωi. It is defined as SP
R (pi, ωi) where ωi is one of

types of part pi and computed in same way from SP
R (pi, pj).

Each part in the grammar is defined by the or-rule which

means model selects one type over another to explain part.

SP
R over the parse tree is computed as

SP
R (pt) =

∑

pi∈pt

(

SP
R (pi, ωi) +

∑

pj∈C(pi)

SP
R (pi, pj)

)

where C(pi) is the set of child part of pi.

Part Appearance Model To have part templates, we first

crop the region of part pi by drawing the bounding box that

uses the mean point of Kpi
as its center point. Kpi

is the set

of corresponding keypoints for pi. In the dataset, however,

many images are truncated and many keypoints are invisi-

ble because of pose and occlusion, and also scale has large

variation. Therefore, cropped part images are noisy and not

aligned. To have clear part images, we first do clustering the

cropped images for each body part using k-means clustering

method. We then train detector for each types of parts by lo-

gistic regression, and do detection around initial part bound-

Table 1. Attribute prediction accuracy given part. We map the part

and attribute if the accuracy is higher than 0.5. For example, Jeans

is related with p5, p6, and p7. Figure 3 shows part index.

Part p1 p2 p3 p4 p5 p6 p7

Gender 0.87 0.79 0.43 0.41 0.34 0.27 0.28

Long Hair 0.82 0.34 0.24 0.25 0.12 0.10 0.14

Glasses 0.74 0.24 0.11 0.12 0.11 0.08 0.09

Hat 0.83 0.18 0.14 0.13 0.07 0.08 0.12

T-shirt 0.42 0.82 0.57 0.54 0.28 0.19 0.24

Long Sleeve 0.23 0.47 0.72 0.74 0.22 0.24 0.27

Shorts 0.31 0.21 0.24 0.22 0.49 0.78 0.77

Jeans 0.17 0.18 0.21 0.19 0.69 0.90 0.89

Long Pants 0.21 0.19 0.20 0.21 0.38 0.91 0.92

ing box. We apply it onto the entire training set and itera-

tively and update location and scales to find best part bound-

ing box. We define 10 appearance types for each part and

show examples of first five types for p1 and p2 in Figure 4.

We denote appearance score function of part p and type ω as

SP
A (I|p) and SP

A (I|ω) respectively. To describe appearance

template, we use four appearance features: CNN-based fea-

tures, gradient based feature, and two color features. For

CNN-based feature extraction, our model generalizes R-

CNN method[18] by applying it to part and its type with

pre-trained ImageNet weights of CNN which is publicly

available. We then extract fully connected layer features for

fc7 for part region. For gradient based feature, we used His-

togram of gradient(HOG) method. The first color feature

is color histogram and second color feature is RGB pixel

value. Both color features are in RGB color space. The ap-

pearance score for part is now inner product of long vector

of all appearance feature vector and feature weight of part p
and type ω. It is written as SP

A (I|p) = 〈λPa
p , φPa(I, p)〉,

SP
A (I|ω) = 〈λPa

ω , φPa(I, ω)〉. φPa(I, p) and φPa(I, ω)
are the template response vector and, λPa

p and λPa
ω are the

trained appearance feature weight of part p and type ω re-

spectively. Then, SP
A over pt is computed as

SP
A (I|pt) =

∑

pi∈pt

SP
A (I|pi) + SP

A (I|ωi)

3.2. Attribute Model

We now combine attribute in the grammar model by

defining relations between part and attributes. Previous at-

tribute approaches [2, 4, 25, 40, 41] use all defined parts

(or poselets) for attribute classifications, however, we can

simply know some parts may not be related with such at-

tributes, and it could hurt attribute prediction if we make

attribute relation with unrelated part. For examples, glasses

is not related with lower body parts and t-shirt is not re-

lated with head and lower body parts. In contrast, long-hair

attribute will be highly related with head part. Therefore,

we need to learn how attributes and parts are related. We
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define the set of attributes for each part p and denote by

A(p). A(p) includes related attributes for part p. To obtain

the A(p) for each part p, (1) we map the attributes with all

parts in the structure by assuming each part is related with

all attributes. (2) Train binary attribute classifier with lo-

gistic regression for each part type and compute prediction

accuracy by cross validation. (3) Discard relations between

attribute and part, if the average prediction score is lower

than threshold (= 0.5). We show attribute prediction ac-

curacy in Table 1. In this step, gender is mapped with p1
and p2. Long Pants is related with p6 and p7. We show

part index in Figure 3. A(p) can be treated as a two layered

simple tree. The root node A(p) is described by and-rule, it

includes corresponding attributes as its child nodes. Then,

each attribute follows or-rule. It could be written into pro-

duction rules as below.

attribute production rule example

A(p2) → {A1, A2}

A1 → A11|A12

A2 → A21|A22

A(p2) → {Gender,T-shirt}

Gender → Female|Male

T-shirt → Yes|No

Attribute Relation Model Each attribute node A(pi) is

linked with a part pi through a relation as shown by the

blue edges in Figure 2 (d). This relation reflects the co-

occurrence frequency of the attribute given the part type.

For example, let the specific part type ω of node v, upper

body, has an appearance that is blouse-like. This will occur

more frequently with female than male, and therefore the

model should favor selecting this part type when there is

strong evidence for the female attribute. This score is com-

puted as SA
R(ω,A(p)) = 〈λatt

ω , φatt(A(p))〉 where φatt is a

vector to indicate selected attribute types on the A(p). λatt
ω

is a learned compatibility weight vector for between part

types and attributes. The SA over pt is computed as

SA
R(pt) =

∑

pi∈pt
SA
R(ωi, A(pi))

Attribute Appearance Model We define attribute ap-

pearance template for each part type and show examples

by mean of example in Figure 5. In this figure, we show

examples for first 5 types for p1 with four correspond-

ing attributes from Table 1. We use same features with

part template. Appearance score for attribute is written as

SA
A(I|a) = 〈λAa

a , φAa(I, a)〉. a is selected attribute type.

φAa(I, a) is the template response vector and λAa
a is the

trained appearance feature weight of attribute type a. The

SA
A over pt is computed as

SA
A(I|pt) =

∑

pi∈pt

SA
A(I|A(pi)) =

∑

pi∈pt

∑

a∈A(pi)

SA
A(I|a)

P11

P12

P13

P14

P15

Is male? Has long hair? Has Glasses? Has Hat?

Yes No Yes No Yes No Yes No

Figure 5. Appearance template of attribute of part 1 (p1). We show

first five types of part 1 with four attributes using mean images of

examples.

4. Parsing and Inference

The inference task is equivalent to the finding most prob-

able parse tree pt for given image, and calculated by maxi-

mizing the score functions described in previous sections.

pt∗ = argmax
pt

P (I|pt)P (pt)

= argmax
pt

[SP
A (I|pt) + SA

A(I|pt) + SP
R (pt) + SA

R(pt)]

The pt also can be formulated recursively given node pi,
and the score function is written as,

S(pi, I) = SP
A (I|pi) + SP

A (I|ωi) + SA
A(I|pi)

+ SP
R (pi, ωi) + SA

R(ωi, A(pi))

+
∑

pj∈C(pi)
[SP

R (pi, pj) + S(pj , I)] (1)

For an image I , parsing is now defined as finding

the parse tree that maximizes the score function pt∗ =
argmaxpt S(p0, I) where po is the root part. This maxi-

mization problem can be computed reasonably efficiently

using the dynamic programming. We first compute two

score maps, appearance map and relation map, for each part,

part type and attributes. As for the appearance score map,

we compute the appearance responses for each part, part

types, and attributes. As for the relation map, we compute

the maximization of their parent compositions, and store the

optimal composition scores for all possible geometries and

attributes. The child parts are conditionally independent

given the parent part, and can be maximized individually.

Although the part pi is fixed, we must maximize over the

full state of the pj , including its attributes. The maximiza-

tion over positions (xj , yj) can be computed very efficiently

using distance transforms [12] that have linear complexity

in the number of positions. The maximization over scales

requires quadratic time to compute. But, the state space is
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still quite small and the computation is tractable. In equa-

tion (1), ωi is the selected part type for part pi that maximize

the score. However, selecting a part type could be a risky

with several reasons. It affects on the result significantly in

a negative way when the model selects incorrect type. To

minimize the risk we include all part types for each part

rather than selecting only one part type. Then, S(pi, I) can

be rewritten as

S(pi, I) = SP
A (I|pi) + SA

A(I|pi)

+
∑

ω∈pi

[SP
A (I|ω) + SP

R (pi, ω) + SA
R(ω,A(pi))]

+
∑

pj∈C(pi)
[SP

R (pi, pj) + S(pj , I)] (2)

The inference algorithm starts from the leaves of the

grammar, and works toward the root part by computing rela-

tion score maps of the optimal scores. The state in the score

map of the root part with maximal score will be the globally

optimal solution and can recover the parse tree by using the

backtracking method. During the parsing, the model selects

the attribute types that maximizes score for each part, and

attributes could be different over the hierarchy as the pars-

ing uses dynamic programming method. To have attribute

prediction, we can select the attribute which maximize the

attribute score over the parse tree. The final attribute pre-

diction is decide by aggregating the all scores over the parse

tree.

5. Learning

We aim at finding a prediction function f : I → pt dur-

ing the learning procedure. The parse tree score can be ex-

pressed as an inner product of model parameters λ and a

corresponding vector of feature responses φ(pt, I) for the

parse tree pt and input image I: s(pt, I) = 〈λ, φ(pt, I)〉.
Unlike we use equation 2 for s(pt, I) for parsing, we

use equation 1 during the learning process. The learn-

ing task now can be defined as finding model parame-

ters λ that minimizes the empirical risk Remp(λ) which

is defined as the expected loss over the training examples.

The optimal parameters are λ∗ = argminλ Remp(λ) =
E(p̂t,I)∼D[L(pt, p̂t)] where L(pt, p̂t) is the loss function.

We define two loss functions: part localization loss and

part type selection loss. As for the localization loss, we

use the conventional Intersection Over Union (IOU) met-

ric, which is bounded between 0 and 1. Ll(pt, p̂t) =
1
n

∑n

i=1 IOU(ti, t̂i) where n is the number of parts in the

grammar. We use the zero-one loss for the part type se-

lection. Lc(pt, p̂t) = 1
n

∑n

i=1 I · (ti 6= t̂i) where I is

the indicator notation. We now sum up two loss scores:

L(pt, p̂ti) =
1
2 (Ll(pt, p̂ti) + Lc(pt, p̂ti)). We then use the

so-called margin-rescaled structural hinge loss [34]. It is

written in the following max-margin structural SVM objec-

tive function which optimizes a quadratic objective function

of the parameters ω given a set of training examples |D|.

minλ
1
2 ||ω||

2 + C
|D|

∑|D|
i=1 ξi

s.t.λ⊤[φ(p̂ti, Ii)− φ(pt, Ii)] ≥ L(pt, p̂ti)− ξi, ∀pt ∈ ΩG , ∀i

Since the total number of constraints grows exponen-

tially, they cannot be enumerated exhaustively making it in-

tractable to minimize this expression directly. To solve this

efficiently, we find and add the most violated constraints at

each iteration with the following maximization as the so-

called separation oracle,

p̂ti = argmax
pt

λ⊤φ(pt, Ii) + L(pt, p̂ti)

This objective function can be minimized by a multi-

ple will-tuned solvers. The cutting plane solver [37], the

stochastic gradient descent solver [11], the conventional QP

solver, and the dual coordinate descent solver[38] is also

commonly used. For our implementation, we used the dual

coordinate descent solver.

6. Experiments

We tested our model on attribute prediction task as de-

fined by [2] on two dataset: Attributes of People Dataset[2]

and our new dataset, Pedestrian attribute dataset. We also

evaluate on pose-estimation task on PARSE dataset[38].

Attributes of People dataset. In this dataset, each

image is centered at each person and manually annotated a

visible bounding box of each person. This dataset defines

9 binary attributes, as well as keypoint annotations that can

be used for training. The goal is predicting attributes given

ground truth bounding box of target person.

Pedestrian attribute dataset. For testing on various

datasets for better evaluation, we design new dataset. There

are many pedestrian and attribute datasets, however, none

provides part and attribute annotations together. In addi-

tion, most of the images in other datasets include multiple

pedestrians in a single image. Therefore, the evaluation

provides the bounding box of each target person, making

the problem easier by not requiring the method to detect

the human. Our new dataset includes 2257 high resolution

images(1257 for training, 1000 for testing), each including

a single pedestrian. It consists of many kinds of variation

in margin, size, attribute, pose, appearance, geometry and

environment. We annotated 10 body parts and 9 attribute

classes as listed in table 2. Most of attributes are not binary,

and it makes task much harder. For testing on this dataset,

we skip the part designing process as dataset includes part

bounding box annotation.
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Table 2. Attribute list in human attribute dataset
Attribute Class Attribute Type

gender male, female

age youth, adult, elderly

hair-style long-hair, short-hair, bald

upper cloth type t-shirt, jumper, suit, no-cloth, swimwear

upper cloth length long-sleeve, short-sleeve, no-sleeve

lower cloth type long-pants, short-pants, skirt, jeans

accessory backpack, glasses, hat

6.1. Experiment variations

During the attribute prediction test, we designed four

different experiment cases to illustrate the impact of our

model design on performance.

Mapped parts: This is for using mapped part for

each attribute as we described in previous sections.

All parts: This setting is for using all parts for each

attribute. Most of previous approaches [2, 4, 25, 40, 41]

use this setting to extract information from all defined parts

or poselet.

Classifier: This is for using classifier for each at-

tribute. By following the method in [2, 25], we train part

type detector and attribute classifier using linear SVM

with same features that used for our model. We train body

model using our model without attributes. It works as

pose-estimator. In testing, we first detect parts, and then

detect its types around detected part. The final prediction

is made by summing up the score from attribute classifiers

with the weights given by part type detection scores.

Joint model: This approach is our proposed model

structure. We do inference and prediction with part and

attribute jointly with our unified model.

To evaluate the pose estimation, we selected the popular

PARSE dataset as we can minimize the additional attribute

annotation for evaluation because training set includes only

100 images. For joint training, we annotate one attribute,

gender. The evaluation protocol for pose estimation uses

the standard PCP criteria of [8].

6.2. Results

Table 3 shows comparison of our proposed model with

existing approaches [2, 25, 40, 41] on Attributes of Peo-

ple Dataset. Our model leads to state of arts[41] on 5 of 9

attributes and also on mean average precision(mAP). Note

that [41] model is trained on an different training dataset

with 25k images which is much larger than original set. But,

we were not able to train on this dataset because it is not

publicly available. If we compare our model to method in

[25] which is using original training images from dataset,

we outperform on all attributes, and show 10% higher mean

average precision. We show the result on our new dataset

on Table 4. In the experiment, we use average accuracy

for attribute evaluation as it is a multi-class classification

problem. We observe similar result from experiment on At-

tributes of People dataset. From both of results, we can see

mapping parts with attribute helps performance improve-

ments on most of attribute predictions, especially attribute

that related with small part of body. In addition, our unified

joint model assists to have better performance on overall

on both dataset. We show output examples in Figure 6 and

Figure 7. In Figure 6, we show three most positive and two

most negative examples for each attribute. We also predict

part as shown in Figure 7. We did not show part localiza-

tion result in Figure 6 for better visualization. We show

the pose-estimation performance on Table 5. Although we

have slightly lower performance for four parts than [36], we

are showing competitive performance and get best perfor-

mance for head compared to existing methods. In addition,

this output is obtained from our joint model without design-

ing addition pose-estimator. It also can generate attribute

prediction output with pose-estimation simultaneously. We

evaluate our model with and without attributes. Our model

works as pure pose-estimator when we do not combine at-

tribute. It shows including attributes helps the model to ob-

tain better performance on all parts. It means our joint mod-

eling has high potential impact to improve many of other

tasks.

7. Conclusion

We have presented a attributed grammar model that can

represent fine-grained part, pose, and attribute reasoning.

The advantage of our representation is the ability to perform

simultaneous attribute reasoning and part detection, unlike

previous attribute models that use and rely on large num-

bers of region-based attribute classifiers without explicitly

localizing parts. We also show that mapping part with at-

tribute helps to have better representation of attribute and

better performance than exiting methods that make connec-

tion of attribute with all defined parts. We demonstrate our

model with benchmarks, and achieve better attribute classi-

fication performance against recent methods. We also show

our joint modeling for part and attribute model helps the

pose-estimation task. We believe that evidence of the at-

tributes as well as their consistency constraints can help lead

to performance improvements on both tasks.
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Table 3. The attribute classification performance (average precision) on the Poselet Attributes of People Dataset[2].
Method Male Long hair Glasses Hat T-shirt Long sleeve Shorts Jeans Long pants mAP
Poselet [2] 82.4 72.5 55.6 60.1 51.2 74.2 45.5 54.7 90.3 65.18
Joo et al.[25] 88.0 80.1 56.0 75.4 53.5 75.2 47.6 69.3 91.1 70.7
DPD [40] 83.7 70.0 38.1 73.4 49.8 78.1 64.1 78.1 93.5 69.88
PANDA* [41] 91.7 82.7 70.0 74.2 68.8 86.0 79.1 81.0 96.4 78.98
Ours (All parts + Classifier) 90.3 80.0 61.7 73.0 63.2 76.6 62.9 79.4 90.7 75.41
Ours (Mapped parts + Classifier) 89.8 82.2 62.4 74.3 64.4 78.4 64.2 80.4 91.7 76.42
Ours (All parts + Joint model) 91.8 82.2 65.6 75.2 68.1 82.8 63.4 81.1 92.7 77.20
Ours (Mapped parts + Joint model) 92.1 85.2 69.4 76.2 69.1 84.4 68.2 82.4 94.9 80.20

Is Male

Has Long Hair

Has Glasses

Has Hat

Has Tshirt

Has Long Sleeves

Has Shorts

Has Jeans

Has Long Pants

Figure 6. Attribute prediction on Attributes of People Dataset[2]. First three examples for most positive examples, and last two examples

show most negative examples for each attribute. We cropped the image around the ground truth bounding box for display purpose.

Table 4. Results for attribute classification on the proposed Human Attribute Dataset. We use average accuracy for evaluation.
Method Gender Age Hair-style Upper cloth type Upper cloth length Lower cloth type Backpack Glasses Hat

Ours (All parts + Classifier) 76.11 84.31 65.78 72.11 73.14 67.58 62.65 56.78 69.20

Ours (Mapped parts + Classifier) 76.54 84.08 66.99 74.32 75.89 68.80 69.55 58.11 75.22

Ours (All parts + Joint model) 78.92 86.41 70.71 74.27 73.11 67.89 62.78 57.89 74.11

Ours (Mapped parts + Joint model) 79.77 88.17 71.71 74.97 77.19 69.89 70.78 61.11 78.11

male
adult
short-hair
t-shirt
long-sleeve
jeans
no backpack
no glasses
no hat

male
adult
short-hair
t-shirt
long-sleeve
long-pants
no backpack
no glasses
no hat

male
adult
short-hair
t-shirt
long-sleeve
jeans
no backpack
no glasses
hat

male
adult
short-hair
t-shirt
short-sleeve
long-pants
no backpack
no glasses
no hat

female
adult
short-hair
t-shirt
short-sleeve
long-pants
no backpack
no glasses
hat

male
adult
short-hair
t-shirt
short-sleeve
long-pants
no backpack
no glasses
hat

male
elderly
short-hair
t-shirt
long-sleeve
long-pants
no backpack
no glasses
no hat

female
adult
long-hair
jumper
long-sleeve
long-pants
no backpack
no glasses
hat

Figure 7. Output examples on Human Attribute dataset. Attribute predicted correctly are shown in blue, and incorrectly in red. Unknown

ground truths are in Black. We also show detected parts with blue rectangles.

Table 5. Results for Pose estimation on the PARSE dataset [38]. We define gender for this model for training joint model. Therefore, this

output is generated with attribute (gender) prediction together.
Method Torso Upper Leg Lower Leg Upper Arm Lower Arm Head Avg
YR [39] 85.9 74.9 68.3 63.4 42.7 86.8 67.1
Johnson et al., [24] 87.6 74.7 67.1 67.3 45.8 76.8 67.4
Rothrock et al. [32] 87.5 77.4 69.6 65.1 46.5 87.1 69.1
Pishchulin et al., [31] 93.2 76.4 68.0 63.4 48.8 86.3 69.4
DeepPose [36] - 80.0 75.0 71.0 50.0 - -
Ours (No Attr) 86.8 76.5 68.0 64.9 44.8 86.8 68.2
Ours (Mapped parts + Joint model) 88.4 77.0 68.9 66.3 46.5 88.4 69.4
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