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Abstract

Patch-level descriptors underlie several important com-

puter vision tasks, such as stereo-matching or content-

based image retrieval. We introduce a deep convolutional

architecture that yields patch-level descriptors, as an al-

ternative to the popular SIFT descriptor for image re-

trieval. The proposed family of descriptors, called Patch-

CKN, adapt the recently introduced Convolutional Kernel

Network (CKN), an unsupervised framework to learn con-

volutional architectures. We present a comparison frame-

work to benchmark current deep convolutional approaches

along with Patch-CKN for both patch and image retrieval,

including our novel “RomePatches” dataset. Patch-CKN

descriptors yield competitive results compared to super-

vised CNN alternatives on patch and image retrieval.

1. Introduction

This paper introduces a deep kernel-based convolutional

approach for the description of image patches that does not

require supervision. The kernel-based feature representa-

tion can be effectively approximated using a simple stochas-

tic gradient optimization procedure, yielding a patch-level

descriptor that can be used for image retrieval tasks. Im-

age retrieval is a challenging problem as different images of

the same object/scene may exhibit large variations in view-

point, illumination, scaling, occlusion, etc – see Figure 1.

State-of-the-art instance-level retrieval systems involve

three steps: 1) interest point detection, 2) description and

3) matching. The goal of step 1) is to select key points that

are reproducible under scale and viewpoint changes – see

[30, 43] for a detailed comparison of detectors. The choice

of a good local representation at step 2) is crucial to ensure

robustness to viewing conditions. As an example, the popu-

lar SIFT descriptor [26] is robust to illumination variations
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Figure 1. Proposed approach: interest regions are first extracted

from images; then the neighborhood of each point is affine- and

orientation-normalized to sample a patch; finally, deep convolu-

tional nets are used to get a descriptor for each patch.

or to small rotations.1 As for step 3), the goal is to define

a suitable metric between two patch sets. To avoid the cost

of matching individual patches, scalable alternatives have

been proposed that encode and aggregate local patch statis-

tics, such as bag-of-words [41] and VLAD [19]. In this

work, we focus on step 2), i.e. the description step, while

we rely on state-of-the-art components for the detection and

matching steps.

Our inspiration comes from the expressive feature rep-

resentations output by deep convolutional neural nets

(CNNs) [23] used in image classification [22]. Features out-

put by a CNN’s intermediate layers can be used as image-

level descriptors [10] which can be transferred to a vari-

ety of tasks – see e.g. [3, 13, 31]. More recently, the ques-

tion of whether suitable patch-level descriptors could be de-

rived from such architectures has been raised. [25, 12, 39]

provide a preliminary positive answer to this question by

comparing favorably with the SIFT descriptor. While these

works exhibit significant differences, it is worth noting they

1SIFT refers only to the description part.
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all rely on supervised learning processes.

While the penultimate layer outputs a suitable image-

level descriptor [3, 13, 31], the output of previous layers,

typically the 4th one, is actually preferable to obtain expres-

sive patch-level descriptors, as noticed in [25]. As shown

in [47], earlier layers tend to encode more task-independent

information with respect to the later ones. In particular, the

filters learned by the first layer tend to be similar regardless

of the task, the objective function or the level of supervision.

This motivates the following question: is supervised learn-

ing required to make good local convolutional features for

patch matching and image retrieval?

Our contribution is the family of patch descriptors

Patch-CKN based on Convolutional Kernel Networks

(CKNs) [27]. CKNs were initially introduced for image

classification in [27]. We introduce a feature representa-

tion for patches that is based on the kernel feature map of a

convolutional match kernel, and therefore does not depend

on examples nor labels. A finite-dimensional explicit fea-

ture embedding can be computed to approximate this ker-

nel feature map [34, 44, 27]. We present a fast and simple

procedure to compute an explicit feature embedding, us-

ing random sub-sampling of the patches, suitable for large-

scale experiments. The experiments suggest that Patch-

CKN gives competitive patch-level descriptors compared to

supervised CNNs.

Several works have focused on learning patch represen-

tations [7, 46], yet few have analyzed the impact of improv-

ing patch retrieval on image retrieval performance. For this

purpose, we introduce a new dataset, “RomePatches”, using

images and the 3D reconstruction of [1]. The 16K Flickr

images of “RomePatches” represent views of 66 different

locations in Rome. The 3D reconstruction provides sparse

patch matches, yielding the ground truth for our patch re-

trieval dataset. This allows relating performance improve-

ments for both patch and image retrieval tasks. In a nutshell,

our main contributions are three-fold:

1. We propose a patch descriptor based on a CKN archi-

tecture [27], using a fast and simple stochastic proce-

dure to compute an explicit feature embedding.

2. We introduce and make available a dataset, named

“Rome-Patches”, for the evaluation of patch and im-

age retrieval, enabling to systematically study the cor-

relation between patch matching and image retrieval

performance.

3. We show that, for the purpose of patch and image re-

trieval, it is possible to learn competitive patch-level

descriptors without supervision, and therefore at a

fraction of the computational and annotation cost com-

pared to previous supervised alternatives [25, 11].

Overview. We review related work in Sec. 2. In Sec. 3,

we describe our image retrieval pipeline, and devote Sec. 4

to convolutional descriptors. Our new dataset is introduced

in Sec. 5, and experimental results are presented in Sec. 6.

Our new dataset as well as the code to extract Patch-CKN

are available online2.

2. Related Work

Our literature review focuses on the works which are

closest to ours: shallow patch descriptors, deep learning for

image retrieval and deep learning for patch description.

Traditional patch descriptors. Among the variety of stan-

dard patch descriptors, SIFT [26] is the most widely used.

Interpreted as a convolutional net, SIFT is a two-layer ar-

chitecture, the first layer computing patch gradient orien-

tations, average-pooled in the second one. SIFT has been

successfully used for many tasks such as stereo match-

ing [1], content-based retrieval [16], or classification [33].

Mikolajczyk et al. [29] provide a detailed survey of local

descriptors and demonstrate the excellent performance of

SIFT. Improved local descriptors include BRIEF [8] and

LIOP [45]. All these descriptors are hand-crafted and have

been optimized by grid-search on a relatively small amount

of parameters. When the number of parameters to be set

is large, such as approach is infeasible and the optimal

parametrization needs to be learned from data.

Most works on hand-crafted descriptor learning use su-

pervision. Brown et al. [7, 46] designed a matching dataset

from reprojected 3D models of landmarks, obtained by

structure from motion, with a descriptor consisting of sev-

eral existing parts, including but not limited to SIFT, GLOH

[29] and Daisy [42]. We do not include their dataset in

our experiments, because of significant differences in early

stages of the pipeline as the Multi-view Stereo Correspon-

dence Dataset contains few images of just three locations,

with grey-scale patches extracted (while in this work we

leverage the additional color information), that were ex-

tracted with a detector that is incompatible with ours (DoG

instead of Hessian-affine). Philbin et al. [37] learn a Ma-

halanobis metric for SIFT descriptors to compensate the bi-

narization error, with excellent results in instance-based re-

trieval. Simonyan et al. [40] propose the “Pooling Regions”

descriptor and learn its parameters, as well as a linear pro-

jection using stochastic optimization. Their learning objec-

tive can be cast as a convex optimization problem, which is

not the case for classical convolutional networks.

An exception is [5] which presents a match-kernel inter-

pretation of SIFT, and a family of kernel descriptors whose

parameters are learned in an unsupervised fashion. The

Patch-CKN we introduce generalizes kernel descriptors; the

proposed procedure for computing an explicit feature em-

bedding is faster and simpler.

2lear.inrialpes.fr/people/paulin/projects/

RomePatches
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descriptor application supervision #parameters optimization method

SIFT [26] sparse features N/A 2 0 N/A

Daisy [46] patch matching class = 3D location 0 10 Powel’s conjugate direction method

AlexNet [22] image classification object classes 50 70M backpropagation, SGD

Neural codes [3] same-image recognition landmark images 50 70M fine-tuning on top of AlexNet

PhilippNet [12] patch matching artificial classes 10 10k backpropagation, SGD

Fracking [39] patch matching match/non-match 10 46k backpropagation, SGD

CKN [27] image classification no supervision 10 256k layer-wise SGD

Table 1. Levels of supervision and optimization methods used by the approaches related to this work. There are two columns for

parameters: hyper-parameters (tuned by hand) and parameters determined by the optimization method.

Deep learning for image retrieval. With a CNN learned

on a sufficiently large labeled set such as ImageNet [9],

the output of its intermediate layers can be used as image

descriptors for a wide variety of tasks including image re-

trieval [3, 38] – the focus of this work. The output of one

of the fully-connected layers is often chosen because it is

compact, usually 4,096 D. However, global CNN descrip-

tors lack geometric invariance [14], so they produce results

below the state-of-the-art in instance-level image retrieval.

Hence, improvements have been proposed.

In [38, 14], CNN responses at different scales and po-

sitions are extracted. We proceed similarly, yet we replace

the (coarse) dense grid with a patch detector. There are im-

portant differences between [38, 14] and our work. While

[14, 38] use the output of the penultimate layer as patch

descriptor, we show in our experiments that we can get im-

proved results with the output of preceding layers, that are

cheaper to compute. In [3], the authors use a single global

CNN descriptor for instance-based image retrieval and fine-

tune the descriptor on a surrogate landmark dataset. While

fine-tuning improves results, it would be difficult to repli-

cate this success beyond landmarks. Finally, [21] proposes

a Siamese architecture to train image retrieval descriptors

but does not report results on standard retrieval benchmarks.

Deep patch descriptors. Recently [25, 12, 39] reported su-

perior results to SIFT for tasks such as patch matching or

patch classification. The three works use different levels of

supervision to train a CNN: category labels in [25], surro-

gate patch labels in [12] (each class is a given patch un-

der different transformations) and matching/non-matching

pairs in [39]. There are two key differences between those

works and ours. First, they focus on patch-level metrics,

instead of actual image retrieval. Second, and more im-

portantly, while all these approaches require some kind of

supervision, we show that our Patch-CKN yields competi-

tive performance in both patch matching and image retrieval

without requiring supervision. Especially, with respect to

[25, 39] we do not need costly labels. And compared to

[12] we do not need to make arbitrary choices in the def-

inition of classes (i.e. the set of transformations). Table 1

summarizes the competing approaches.

3. Image Retrieval Pipeline

We briefly present the three-step pipeline: interest point

detection, patch description, and patch matching.

Interest point detection. Interest point detectors provide

locations invariant to certain image transformations. This

ensures that two views of the same scene even with changes

in viewpoint or illumination share similar “interest points”,

see [30] for a review of detectors. We use the popular

Hessian-Affine detector [28]. The idea is to extract points

at their characteristic scale and estimate for each point an

affine-invariant local region, see Fig. 1. Rotation invariance

is obtained by rotating patches to align the dominant gradi-

ent orientation. This results in a set of interest points asso-

ciated with locally affine-invariant regions.

Interest point description. Given a normalized patch M
obtained by mapping the affine region to a fixed-size square,

we compute its feature representation φ(M) in a Euclidean

space. The representation is expected to be robust to the

perturbations that are not covered by the detector (lighting

changes, small rotations, blur,...).

Patch matching. Because matching all possible pairs of

patches is too expensive, we follow the standard practice of

encoding the patch descriptors and aggregating them into a

fixed-length image descriptor, using the VLAD representa-

tion [18]. Given a clustering of the feature space consisting

of k centroids {c1, . . . , ck}, VLAD encodes a set of descrip-

tors as the total shift with respect to their assigned centroid.

A power normalization with exponent 0.5 is then applied to

the VLAD descriptor, as well as an L2 normalization.

4. Convolutional Descriptors

We use convolutional features to encode fixed-size image

patches (size 51×51 pixels). CNNs are normally trained

with class supervision for a classification task. This can be

extended to image retrieval by either: (i) encoding local de-

scriptors with a model that has been trained for an unrelated

image classification task, see Section 4.1; (ii) devising a sur-

rogate classification problem that is as related as possible to

image retrieval; (iii) using unsupervised learning, such as a

convolutional kernel network, see Sec. 4.2.
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Mk(z0)
patch pz

convolution Wk

+ non-linearity σk

M ′
k(z

′
0)

feature pooling γk

Mk+1(z1)

Figure 2. A typical organization for two successive layers of a

CNN. The spatial map Mk′ is obtained from Mk by convolution

and pointwise non-linearity, and the top layer Mk+1 is obtained

from M ′
k by a downsampling operation called feature pooling. By

convention the map M0 corresponds to the input image x.

4.1. Convolutional Neural Networks

Convolutional neural nets transform an input image

by a sequence of simple operations or layers. Each layer

performs a linear operation followed by a pointwise non-

linearity. Formally, the output f(x) of a CNN for some

image x represented as a vector is

f(x) = γK(σK(WK . . . γ2(σ2(W2γ1(σ1(W1x)) . . .)), (1)

where the terms Wk are matrices corresponding to linear

operations, the functions σk are pointwise non-linear func-

tions, e.g., sigmoids or rectified linear units, and the func-

tions γk perform a downsampling operation (feature pool-

ing). For a convolutional layer, the matrices Wk have a par-

ticular structure and correspond to convolutions of spatial

maps, as illustrated in Fig. 2. When they are dense and un-

structured, the layer is called “fully connected”.

Learning from category labels. The most popular off-the-

shelf CNN is AlexNet [22], which won the ImageNet 2012

challenge. AlexNet has 7 layers: the first five are convolu-

tional and the last ones are fully connected. The network is

designed to process images of size 224× 224, but convolu-

tional layers may be fed with smaller inputs to produce 1x1

maps that we can use as low-dimensional patch descriptors

– see the “coverage” column in Table 3. To ensure a fair

comparison between all approaches, we rescale patches to

always produce a 1× 1 map.

Learning from surrogate labels. Most CNNs such as

AlexNet augment the dataset with perturbed versions of

training patches to learn the filters Wk in (1). The authors of

[11, 12] use “virtual patches”, obtained as transformations

of randomly extracted ones to fall back to a classification

problem. For a set of patches P , and a set a transforma-

tions T , the dataset consists of all τ(p), (τ, p) ∈ T × P .

Transformed versions of the same patch share the same la-

bel, thus defining surrogate classes. In this paper, we eval-

uate this strategy by using the same architecture and filter

values, called PhilippNet, as in [12]. The network has three

convolutional and one fully connected layers, takes as input

64x64 patches, and produces a 512-dimensional output.

4.2. Convolutional Kernels Networks

CKNs have the same architecture as classical CNNs

presented in Eq. (1) and in Fig. 2. The feature represen-

tation of CNNs relies on filters that are learned and hence

defined in a data-dependent manner. We define here a fea-

ture representation that is based on a kernel (feature) map.

The exact version of this feature representation is therefore

data-independent. An explicit kernel (feature) map can be

computed [34, 44, 27] to approximate it for computational

efficiency. We present here a fast and simple procedure for

this purpose, using sub-sampling of patches and stochastic

gradient optimization, yielding a CKN that outputs patch

descriptors.

Let M and M ′ be two patches of size m ×m (m = 51
in this paper), and Ω = {1, . . . ,m}2 be the set of pixel

locations. Let us also consider a fixed sub-patch size and

denote by pz the sub-patch from M (resp. p′z the sub-patch

from M ′) centered at location z ∈ Ω.3

Single-layer kernel definition. We consider the following

kernel [27]:

K1(M,M ′) =
∑

z,z′∈Ω

e−‖z−z′‖2/2β2

1k1(pz, p
′
z′), (2)

where

k1(pz, p
′
z′) = ‖pz‖‖p′z′‖e−‖p̃z−p̃′

z′
‖2/2α2

1 , (3)

α1 and β1 are two kernel hyperparameters, ‖ · ‖ denotes the

usual L2 norm, and p̃z and p̃′z′ are L2-normalized versions

of the sub-patches pz and p′z′ .

The corresponding kernel (feature) map defines a fea-

ture representation for patches and images. Furthermore,

the kernel is a match kernel. Therefore, the kernel offers

a tunable level of invariance through the choice of hyperpa-

rameters, and produces hierarchical convolutional represen-

tations that are well-suited for natural images.

Kernel embedding approximation. Since the exact com-

putation of (2-3) is overwhelming, Mairal et al. propose an

explicit finite-dimensional embedding [34, 44] to approxi-

mate it. The embedding of [27] keeps the 2-D spatial struc-

ture, similar to CNN feature maps. For the one-layer CKN,

the approximation of [27] is:

K1(M,M ′) ≈
∑

u∈Ω1

g1(u;M)T g1(u;M
′)

3In practice, sub-patches near the border of M which have values out-

side of the domain Ω are discarded from the sum (2).
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with for all u ∈ Ω1,

g1(u;M) :=
∑

z∈Ω

e−‖u−z‖2/2β2

1h1(z;M),

and, for all z ∈ Ω,

h1(z;M) := ‖pz‖
[√

ηje
−‖wj−p̃z‖

2/α2

1

]n1

j=1
,

where Ω1 is a subset of Ω as in [27] and w and η are

learned parameters. There are two distinct approximations,

one in the subsampling defined by |Ω1| ≤ |Ω| that corre-

sponds to the stride of a CNN pooling operation, and one

in the embedding of the Gaussian kernel of the subpatches:

k1(pz, p
′
z′) ≈ h1(z;M)h1(z

′;M ′).
Since K1(M,M ′) is a sum of the match-kernel terms,

we can approximate it at sub-patch level by solving an opti-

mization problem. In contrast to the original formulation in

Eq. 4 of [27], we introduce the change of variables

bj = log(ηj)/2− (1 + ‖wj‖2)/α2
1

ωj = 2wj/α
2
1

and, considering a sample of n pairs of sub-patches

{(pi, p′i)}i=1,...,n, we solve:

min
wj ,ηj

n
∑

i=1



e
−

‖p̃i−p̃′
i
‖2

2α2
1 −

n1
∑

j=1

ηje
−

‖wj−p̃i‖
2

α2
1 e

−
‖wj−p̃′

i
‖2

α2
1





2

We use stochastic gradient optimization to find a stationary

point of this (non-convex) objective. This is much faster

than the original L-BFGS optimizer [27]; see Sec. 6.

Multi-layer CKN kernel. A kernel can be overlaid on

top of the single kernel for a “deeper” and potentially bet-

ter feature representation [4]. Given an input patch M ,

the single-layer CKN defines an approximation f1(M) that

can be interpreted as a spatial map. It is possible to de-

fine a kernel K2 on this map in the same way as we have

done for input patches. For that, we simply define a patch

size, new hyper-parameters β2 and α2, and replace M,M ′

by f1(M), f1(M
′) in all equations of the previous section.

Figure 3 gives an illustration of the corresponding two-layer

convolutional kernel. Training a multi-layer CKN is natu-

rally sequential, one layer after another.

Input types. We investigate three possible inputs for our

CKNs. The first, CKN-raw, directly feeds the raw RGB

patch to the network. This scheme captures the hue infor-

mation, which can prove a drawback in certain situations.

CKN-white consists in pre-processing each sub-patch

of the CKN’s first layer, by subtracting their mean color,

and using PCA-whitening, with a PCA learned on all sub-

patches of the initial patch. This responds only to local vari-

ations inside the sub-patch, and makes the network more

invariant to color.

zz sub-patch pz

yy

sub-patch qy z
′z
′

sub-patch p′z′

y
′y
′

sub-patch q′y′

K2(qy, q
′
y′) = ‖qy‖‖q′y′‖×

exp(−‖q̃y − q̃′y′‖2/2α2
2)

Figure 3. The two-layer convolutional kernel architecture. Each

layer is a weighted match kernel between all patches of the previ-

ous one; qz (resp q′z′ ) is a sub-patch of pz (resp p′z′ ), which is a

itself a sub-patch of M (resp M ′). The two-layer CKN provides

an approximate explicit feature map of this kernel. See [27] for

details.

CKN-grad is fully invariant to color. It is the gradi-

ent along each spatial dimension with 1 × 1 sub-patches

– that is, the sub-patch p̃z for this first layer is simply two-

dimensional and can be written pz = (Gx, Gy). Because

the features are normalized, the inner part of the match ker-

nel ‖p̃z − p̃′z′‖ is directly linked to the cosine of the angle

between the two gradients, see [5, 27]. Indeed, an explicit

approximation of the kernel K1 with n1 evenly distributed

orientations θj = 2jπ/n1, j ∈ {1, . . . , n1} writes:

e−‖p̃z−p̃′
z′
‖2/2α2

1 ≈
n1
∑

j=1

ϕ1(j; pz)ϕ1(j; p
′
z′),

where for all j,

ϕ1(j, pz) = e−((cos θj−Gx/ρ)
2+(sin θj−Gy/ρ)

2)/α2

1

and ρ =
√

Gx +Gy . This formulation can be interpreted

as a soft-binning of gradient orientations in a “histogram”

of size n1. To ensure an adequate distribution in each bin,

we set α1 =
(

(1− cos (2π/n1))
2 + sin (2π/n1)

2 )1/2
.

5. Datasets

We conduct experiments for two tasks, patch and image

retrieval. We introduce a new dataset for both, which we

describe in this section, together with the standard bench-

marks.

5.1. Patch retrieval

The Mikolajczyk Dataset. Designed to benchmark in-

terest points detectors and descriptors, the Mikolajczyk

dataset [29] contains a set of 8 scenes with 6 images for

each. Images of a scene are linked by a homography.

We extract regions with the Hessian-Affine detector, and

match the corresponding descriptors using Euclidean near-

est neighbor. The match between a pair of ellipses is

counted correct if the projection of the region with the
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ground-truth homography to the second image overlaps by

at least 50%. Mean average precision (mAP) is used as per-

formance measure.

RomePatches. Since the existing patch retrieval datasets

we are aware of do not contain color information and are not

extracted with our detector (Hessian-Affine), we introduce a

new dataset4. Similar to [46], we use the 3D-reconstruction

of landmarks to get different views of the same location. We

use the Rome16K dataset [24], which consists of 16,179 im-

ages of locations in Rome, downloaded from photo sharing

sites. Images are partitioned in 66 “bundles”, each one con-

taining a set of viewpoints of a given location in Rome (e.g.

“Trevi Fountain”). Within a bundle, consistent camera pa-

rameters are available for all images5. We match the SIFT

descriptors of all images using product quantization [17].

Then we keep only matches that verify the epipolar con-

straint within a tolerance of 3 pixels. Pairwise point matches

are then aggregated greedily to form larger groups of 2D

points viewed from several cameras. Groups are merged

while the reproduction error from the estimated 3D posi-

tion is below the 3 pixel threshold. Fig. 4 shows matching

patches extracted with this algorithm. We split the dataset

into two sets of bundles, the train set with 44 bundles on

which we are allowed to learn parameters and tune hyper-

parameters. The remaining 22 bundles form the test set.

From the train as well as the test set, we select 1,000 3D

points that are viewed in at least 10 different images and

use one as a query and nine randomly sampled as the tar-

gets. Our dataset therefore contains 9,000 target points, and

1,000 queries for the train as well as the test set, i.e., a to-

tal of 20,000 patches. We report mean average precision

(mAP).

5.2. Image Retrieval

RomePatches-Image. Using the aforementioned bundle

split, we select 1,000 query images and 1,000 target images

evenly distributed over all bundles for both train and test

splits. Two images are considered to match if they come

from the same bundle, as illustrated in Fig. 4.

Oxford. The Oxford dataset [35] involves 5,000 images of

Oxford landmarks. 11 locations in the city are selected as

queries. Each location is represented by 5 bounding boxes

each extracted from a different image. Given one of the 55

bounding boxes, the task is to find all images of the same

location.

UKbench and Holidays. The University of Kentucky

benchmark is a set of 10,200 photos. Each group of 4 im-

ages represents the same object. Each image is used as a

query in turn. The Holidays dataset contains 1,491 photos

4Available online at http://lear.inrialpes.fr/people/

paulin/projects/RomePatches/
5http://www.cs.cornell.edu/projects/p2f/

Figure 4. Patch and image retrieval on the Rome dataset. Top: ex-

amples of matching patches. Bottom: Images of the same bundle,

that therefore share the same class for image retrieval.

of scenes and objects. 500 images are used as queries and

the queries are excluded from the datasets.

The standard metrics are mAP for Oxford, Paris and Hol-

idays and 4×recall@4 for UKB.

6. Experimental Results

After describing implementation details, we report re-

sults for patch and image retrieval.

6.1. Implementation details

As our goal is to optimize local descriptors, all methods

are given the same patch information as input (computed at

Hessian-affine interest points), and are evaluated with the

same global descriptor (VLAD with 256 centroids). We be-

lieve that improvements in feature detection and aggrega-

tion would benefit all architectures equally, without chang-

ing the relative performance of patch descriptors.

Patch extraction. As input for all methods, we use 51 ×
51 pixel patches, which was found to be optimal on SIFT

descriptors for the Oxford dataset.

CNN implementation. For CNNs, we use the popular

Caffe framework [20], and the provided AlexNet (learned

on ImageNet 2012). For the PhilippNet [12], we used the

model provided by the authors. As explained in section 4,

we rescale the 51x51 input patches to the size that, when fed

to the CNN, produces 1x1 output maps. Rescaling artifacts

do not have a noticeable impact compared to re-extracting

patches.

Details of CKN learning. AlexNet and PhilippNet are pro-

vided with their parameters, we only learn CKNs. To do so,

we randomly select a set of 100K patches in the train split

of RomePatches. For each layer, 1 million sub-patches cor-

responding to convolution areas are extracted and all pairs

of patches are fed to the objective function (4.2). The SGD

optimization is run for 300K iterations with a batchsize of
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1000. Because the objective is nonconvex, several tricks

were used, such as random initialization, preconditioning

(optimization is conducted in a space where the patch en-

tries are decorrelated), selecting an initial learning rate in

the range {1, 2−1/2, 2−1, . . . , 2−20} by performing 1K it-

erations and choosing the one giving the lowest objective

evaluated on a validation set [6]; after choosing the learning

rate, we keep monitoring the objective on a validation set

every 1K iteration, and perform backtracking in case of di-

vergence. The learning rate is also divided by
√
2 every 50K

iterations. These heuristics are fixed over all experiments.

Training a CKN takes roughly 10 min on a GPU compared

to 2-3 days for the L-BFGS implementation of [27]. As

CKN and CNN share the same architecture, the descriptor

extraction time is similar for all convolutional methods.

6.2. Patch retrieval

Because the evaluation is computationally cheaper for

the patch retrieval task than for image retrieval (10K patches

to encode for RomePatches, against more than 4M for Hol-

idays), we optimize the hyperparameters of our CKNs on

the RomePatches dataset. We select the best parameters on

the train split, without accessing the test data.

Parametric exploration of CKNs. We explore the three

input types separately. For each layer, four hyperparame-

ters have to be determined: the size of the convolutional

mask (sub-patch size), the coefficient αk, the pooling fac-

tor and the number of outputs (nk). The spatial comparison

coefficient βk is related to the pooling factor and is set as

in [27]—that is, to the pooling factor divided by
√
2. We

determine αk as a quantile σk of the distribution of pair-

wise distances between sub-patches. This value was found

optimal at 10−3 for all architectures, a much smaller value

than reported in [27], which suggests that image classifica-

tion requires more invariance than patch matching.

As mentioned before, we optimize these parameters over

the train split of RomePatches. We try the values 2, 3, 4

and 5 for the sub-patch sizes and pooling factors with 128,

256, 512 or 1024 outputs. The α parameter was selected

in the {0.1, 0.01, 0.001} quantiles. The retained parameters

are given in Table 2. To the notable exception of color, ar-

chitectures perform better with two layers. In general, the

higher the number of features, the better performance.

Input Layer 1 Layer 2 dim.

CKN-raw 5x5, 5, 512 —- 41472

CKN-white 3x3, 3, 512 2x2, 2, 512 32768

CKN-grad 1x1, 3, 16 4x4,2,1024 50176

Table 2. For each layer we indicate the sub-patch size, the subsam-

pling factor and the number of filters. For the gradient network, the

value 16 corresponds to the number of orientations.

In the following, we use the best architectures given in

CKN-grad CKN-raw CKN-white

 90

 91

 92

 93

 64  256  1024

 50

 60

 70

 80

 90

 64  256  1024

 90

 91

 92

 93

 64  256  1024

no PCA
PCA

PCA+whitening

PCA+semi-whitening

Figure 5. Influence of dimensionality reduction on patch retrieval

performance. Results reported in mAP (%) on the train split of

RomePatches as a function of the PCA dimension. As a compari-

son, SIFT reports 91.6%.

Architecture coverage Dim RomePatches Miko.

train test

SIFT 51x51 128 91.6 87.9 57.8

AlexNet-conv1 11x11 96 66.4 65.0 40.9

AlexNet-conv2 51x51 256 73.8 69.9 46.4

AlexNet-conv3 99x99 384 81.6 79.2 53.7

AlexNet-conv4 131x131 384 78.4 75.7 43.4

AlexNet-conv5 163x163 256 53.9 49.6 24.4

PhilippNet 64x64 512 86.1 81.4 59.7

CKN-grad 51x51 1024 92.5 88.1 59.5

CKN-raw 51x51 1024 79.3 76.3 50.9

CKN-white 51x51 1024 91.9 87.7 62.5

Table 3. Results of convolutional architectures for patch retrieval.

Table 2 for each input type.

Comparative results. We compare the convolutional ar-

chitectures on our three patch datasets: RomePatches-train,

RomePatches-test and Mikolajczyk. Results are given in

Table 3. For AlexNet CNNs, we report results for all out-

puts of the 5 convolutional layers (after ReLU). We note that

SIFT is an excellent baseline for these methods, and that

CNN architectures that were designed for local invariances

perform better than the ones used in AlexNet, as observed

in [12]. The results of the PhilippNet on the Mikolajczyk

dataset are different from the ones reported in [12], for sev-

eral reasons. First, we evaluate on Hessian-Affine descrip-

tors while they use MSER. To have a comparable setting,

we use their network with an input of 64x64, while they

slide it on 91x91 patches. Such an additional layer results in

a small increase of performance (2% for patch retrieval and

1% for image retrieval). We observe that PhilippNet outper-

forms both SIFT and AlexNet, which was the conclusion of

[12]; CKN trained on whitened patches do however yield

better results.

6.3. Image Retrieval

Settings. We learn a vocabulary of 256 centroids on a

related database: for Holidays and UKB we use 5000

Flickr images and for Oxford, we train on Paris [36]. For
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Holidays UKB Oxford Rome

train test

SIFT 64.0 3.44 43.7 52.9 62.7

AlexNet-conv1 59.0 3.33 18.8 28.9 36.8

AlexNet-conv2 62.7 3.19 12.5 36.1 21.0

AlexNet-conv3 79.3 3.74 33.3 47.1 54.7

AlexNet-conv4 77.1 3.73 34.3 47.9 55.4

AlexNet-conv5 75.3 3.69 33.4 45.7 53.1

PhilippNet 74.1 3.66 38.3 50.2 60.4

CKN-grad 66.5 3.42 49.8 57.0 66.2

CKN-raw 69.9 3.54 23.0 33.0 43.8

CKN-white 78.7 3.74 41.8 51.9 62.4

CKN-mix 79.3 3.76 43.4 54.5 65.3

Table 4. Image retrieval results. CKN-mix is the result of the con-

catenation of the VLAD descriptors for the three channels.

RomePatches-Train and RomePatches-Test the vocabulary

is learned the other one. The final VLAD descriptor size is

256 times the local descriptor dimension.

Comparative results. We compare all convolutional ap-

proaches as well as the SIFT baseline in the image retrieval

settings. Results are summarized in Table 4.

On datasets for which color is dominant (e.g. Holidays

or UKB), the best individual CKN results are attained by

CKN-white, improved by combining the three channels. On

images of buildings, gradients still perform best and the ad-

dition of color channels is harmful, which also explains the

poor performance of AlexNet. On the other hand, Philipp-

Net was trained to be invariant to colorimetric transforma-

tions, and therefore yields better results than its CNN coun-

terpart.

Comparison with the state of the art. Table 5 compares

our approach to recently published results. Approaches

based on VLAD with SIFT [2, 19] can be improved signif-

icantly by CKN local descriptors (+15% on Holidays). To

compare to the state of the art with SIFT on Oxford [2], we

use the same Hessian-Affine patches extracted with gravity

assumption [32]. Note that this alone results in a 7% gain.

We also compare with global CNNs [3]. Our approach

outperforms it on Oxford and UKB and is on par on Holi-

days. On Holidays, our approach is slightly below the one

of [14], that uses AlexNet descriptors and VLAD pooling

on large, densely extracted patches. Note that they perform

dimensionality reduction and whitening, which results in a

2% improvement. We plan to investigate dimensionality re-

duction methods [3, 15] as well as quantization [17] in fu-

ture work.

7. Conclusion

We propose a new descriptor Patch-CKN for patch and

image retrieval, that performs on par or better than super-

vised CNNs on standard patch and image retrieval bench-

Method \ Dataset Holidays UKB Oxford

VLAD [19] 63.4 3.47 -

VLAD++ [2] 64.6 - 55.5*

Global-CNN [3] 79.3 3.56 54.5

MOP-CNN [14] 80.2 - -

Ours 79.3 3.76 49.8 (56.5*)

Table 5. Comparison with state-of-the-art image retrieval results.

Results with * use a Hessian-Affine detector with gravity assump-

tion [32].

mark datasets and on the proposed RomePatches bench-

mark dataset.
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