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Abstract

In this paper, we propose to learn temporal embeddings

of video frames for complex video analysis. Large quanti-

ties of unlabeled video data can be easily obtained from the

Internet. These videos possess the implicit weak label that

they are sequences of temporally and semantically coher-

ent images. We leverage this information to learn tempo-

ral embeddings for video frames by associating frames with

the temporal context that they appear in. To do this, we

propose a scheme for incorporating temporal context based

on past and future frames in videos, and compare this to

other contextual representations. In addition, we show how

data augmentation using multi-resolution samples and hard

negatives helps to significantly improve the quality of the

learned embeddings. We evaluate various design decisions

for learning temporal embeddings, and show that our em-

beddings can improve performance for multiple video tasks

such as retrieval, classification, and temporal order recov-

ery in unconstrained Internet video.

1. Introduction

Video data is plentiful and a ready source of information

– what can we glean from watching massive quantities of

videos? At a fine granularity, consecutive video frames are

visually similar due to temporal coherence. At a coarser

level, consecutive video frames are visually distinct but se-

mantically coherent.

Learning from this semantic coherence present in video

at the coarser-level is the main focus of this paper. Purely

from unlabeled video data, we aim to learn embeddings for

video frames that capture semantic similarity by using the

temporal structure in videos. The prospect of learning a

generic embedding for video frames holds promise for a va-

riety of applications ranging from generic retrieval and sim-

ilarity measurement, video recommendation, to automatic

content creation such as summarization or collaging. In this

paper, we demonstrate the utility of our video frame embed-
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Figure 1. The temporal context of a video frame is crucial in deter-

mining its true semantic meaning. For instance, consider the above

example where the embeddings of different semantic classes are

shown in different colors. The middle frame from the two wed-

ding videos correspond to visually dissimilar classes of “church

ceremony” and “court ceremony”. However, by observing the

similarity in their temporal contexts we expect them to be seman-

tically closer. Our work leverages such powerful temporal context

to learn semantically rich embeddings.

dings for several tasks such as video retrieval, classification

and temporal order recovery.

The idea of leveraging sequential data to learn embed-

dings in an unsupervised fashion is well explored in the Nat-

ural Language Processing (NLP) community. In particular,

distributed word vector representations such as word2vec

[23] have the unique ability to encode regularities and pat-

terns surrounding words, using large amounts of unlabeled

data. In the embedding space, this brings together words

that may be very different, but which share similar contexts

in different sentences. This is a desirable property we would

like to extend to video frames as well as shown in Fig. 1.

We would like to have a representation for frames which

captures the semantic context around the frame beyond the

visual similarity obtained from temporal coherence.

However, the task of embedding frames poses multiple
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challenges specific to the video domain: 1. Unlike words,

the set of frames across all videos is not discrete and quan-

tizing the frames leads to a loss in information; 2. Tempo-

rally proximal frames within the same video are often visu-

ally similar and might not provide useful contextual infor-

mation; 3. The correct representation of context surround-

ing a frame is not obvious in videos. The main contribution

of our work is to propose a new ranking loss based embed-

ding framework, along with a contextual representation spe-

cific to videos. We also develop a well engineered data aug-

mentation strategy to promote visual diversity among the

context frames used for embedding.

We evaluate our learned embeddings on the standard

tasks of video event retrieval and classification on the

TRECVID MED 2011 [28] dataset, and compare to several

recently published spatial and temporal video representa-

tions [7, 33]. Aside from semantic similarity, the learned

embeddings capture valuable information in terms of the

temporal context shared between frames. Hence, we also

evaluate our embeddings on two related tasks: 1. tem-

poral frame retrieval, and 2. temporal order recovery in

videos. Our embeddings improve performance on all tasks,

and serves as a powerful representation for video frames.

2. Related Work

Video features. Standard tasks in video such as classifica-

tion and retrieval require a well engineered feature repre-

sentation, with many proposed in the literature [1, 8, 13, 21,

25, 26, 27, 29, 32, 39, 40]. Deep network features learned

from spatial data [10, 15, 33] and temporal flow [33] have

also shown comparable results. However, recent works in

complex event recognition [41, 44] have shown that spa-

tial Convolutional Neural Network (CNN) features learned

from ImageNet [2] without fine-tuning on video, accompa-

nied by suitable pooling and encoding strategies achieves

state-of-the-art performance. In contrast to these methods

which either propose handcrafted features or learn feature

representations with a fully supervised objective from im-

ages or videos, we try to learn an embedding in an unsu-

pervised fashion. Moreover, our learned features can be ex-

tended to other tasks beyond classification and retrieval.

There are several works which improve complex event

recognition by combining multiple feature modalities [12,

24, 36]. Another related line of work is the use of sub-

events defined manually [7], or clustered from data [20] to

improve recognition. Similarly, Yang et al. used low dimen-

sional features from deep belief nets and sparse coding [42].

While these methods are targeted towards building features

specifically for classification in limited settings, we propose

a generic video frame representation which can capture se-

mantic and temporal structure in videos.

Unsupervised learning in videos. Learning features with

unsupervised objectives has been a challenging task in the

image and video domain [9, 22, 37]. Notably, [22] devel-

ops an Independent Subspace Analysis (ISA) model for fea-

ture learning using unlabeled video. Recent work from [5]

also hints at a similar approach to exploit the slowness prior

in videos. Also, recent attempts extend such autoencoder

techniques for next frame prediction in videos [31, 35].

These methods try to capitalize on the temporal continuity

in videos to learn an LSTM [43] representation for frame

prediction. In contrast to these methods which aim to pro-

vide a unified representation for a complete temporal se-

quence, our work provides a simple yet powerful represen-

tation for independent video frames and images.

Embedding models. The idea of learning and represent-

ing temporal continuity has been discussed in pioneering

works like [3]. More recent works such as word2vec [23]

learn embeddings such that words with similar contexts are

closer to each other. Another interesting model based on

a Markovian approach was also proposed in [6]. A related

idea in computer vision is the embedding of text in the se-

mantic visual space [4, 18] based on large image datasets

labeled with captions or class names. While these methods

focus on different scenarios for embedding text, the aim of

our work is to generate an embedding for video frames.

3. Our Method

Given a large collection of unlabeled videos, our goal

is to leverage their temporal structure to learn an effective

embedding for video frames. We wish to learn an embed-

ding such that the context frames surrounding each target

frame can determine the representation of the target frame,

similar to the intuition from word2vec [23]. For example,

in Fig. 1, context such as “crowd” and “cutting the cake”

provides valuable information about the target “ceremony”

frames that occur in between. This idea is fundamental to

our embedding objective and helps in capturing semantic

and temporal interactions in video.

While the idea of representing frames by embeddings is

lucrative, the extension from language to visual data is not

straightforward. Unlike language we do not have a natural,

discrete vocabulary of words. This prevents us from using a

softmax objective as in the case of word2vec [23]. Further,

consecutive frames in videos often share visual similarity

due to temporal coherence. Hence, a naive extension of [23]

does not lead to good vector representations of frames.

To overcome the problem of lack of discrete words, we

use a ranking loss [14] which explicitly compares multiple

pairs of frames across all videos in the dataset. This ensures

that the context in a video scores the target frame higher

than others in the dataset. We also handle the problem of vi-

sually similar frames in temporally smooth videos through a

carefully designed sampling mechanism. We obtain context

frames by sampling the video at multiple temporal scales,

and choosing hard negatives from the same video.
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Figure 2. Visualizations of the temporal context of frames used in:

(a) our model (full), (b) our model (no future), and (c) our model

(no temporal). Green boxes denote target frames, magenta boxes

denote contextual frames, and red boxes denote negative frames.

3.1. Embedding objective

We are given a collection of videos V , where each

video v ∈ V is a sequence of frames {sv1, . . . , svn}. We

wish to obtain an embedding fvj for each frame svj . Let

fvj = f(svj ;We) be the temporal embedding function

which maps the frame svj to a vector. The model embed-

ding parameters are given by We, and will be learned by our

method. We embed the frames such that the context frames

around the target frame predict the target frame better than

other frames. The model is learned by minimizing the sum

of objectives across all videos. Our embedding loss objec-

tive is shown below:

J(We) =
∑

v∈V

∑

svj∈v
s
−
6=svj

max (0, 1− (fvj − f−) · hvj) , (1)

where f− is the embedding of a negative frame s−, and

the context surrounding the frame svj is represented by the

vector hvj . Note that unlike the word vector embedding

models in word2vec [23], we do not use an additional linear

layer for softmax prediction on top of the context vector.

Another alternative could be a regression loss. However,

as noted in [31], this can lead to low training error by simply

blurring the representation of all frames in a video. We also

experimented with multiple loss functions, and empirically

found the ranking loss to perform the best.

3.2. Context representation

As we verify later in the experiments, the choice of con-

text is crucial to learning good embeddings. A video frame

at any time instant is semantically correlated with both past

and future frames in the video. Hence, a natural choice for

context representation would involve a window of frames

centered around the target frame, similar to the skip-gram

idea used in word2vec [23]. Along these lines, we propose

a context representation given by the average of the frame

embeddings around the target frame. Our context vector

hvj for a frame svj is:

hvj =
1

2T

T∑

t=1

fvj+t + fvj−t, (2)

where T is the window size, and fvj is the embedding of

the frame svj . This embedding model is shown in Fig. 2(a).

For negatives, we use frames from other videos as well as

frames from the same video which are outside the temporal

window, as explained in Sec. 3.4.

Two important characteristics of this context representa-

tion is that it 1. makes use of the temporal order in which

frames occur and 2. considers contextual evidence from

both past and future. In order to examine their effect on

the quality of the learned embedding, we also consider two

weaker variants of the context representation below.

Our model (no future). This one-sided contextual repre-

sentation tries to predict the embedding of a frame in a video

only based on the embeddings of frames from the past as

shown in Fig. 2(b). For a frame svj , and window size T the

context h
nofuture
vj is given by:

h
nofuture
vj =

1

T

T∑

t=1

fvj−t. (3)

Our model (no temporal). An even weaker variant of con-

text representation is simple co-occurrence without tempo-

ral information. We also explore a contextual representation

which completely neglects the temporal ordering of frames

and treats a video as a bag of frames. The context h
notemp
vj

for a target frame svj is sampled from the embeddings cor-

responding to all other frames in the same video:

h
notemp
vj ∈ {fvk | k 6= j}. (4)

This contextual representation is visualized in Fig. 2(c).

3.3. Embedding function

In the previous sections, we introduced a model for rep-

resenting context, and now move on to discuss the embed-

ding function f(sij ;We). In practice, the embedding func-

tion can be a CNN built from the frame pixels, or any un-

derlying image or video representation. However, follow-

ing the recent success of ImageNet trained CNN features

for complex event videos [41, 44], we choose to learn an

embedding on top of the fully connected fc6 layer feature

representation obtained by passing the frame through a stan-

dard CNN [19] architecture. In this case, the underlying
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Figure 3. Multi-resolution sampling and hard negatives used in our

full context model (T = 1). For a target frame (green), we sample

context frames (magenta) at varying resolutions, as shown by the

rows in this figure. We take hard negatives as examples in the same

video that fall outside the context window (red).

representation is pre-trained from ImageNet domain which

is vastly different from the TRECVID domain. Note that

our method is agnostic to the choice of this underlying fea-

ture. Our learning procedure is still unsupervised, since we

do not use any labels to learn our embeddings from these

representations. We use a simple model with a fully con-

nected layer followed by a rectified linear unit (ReLU) and

local response normalization (LRN) layer, with dropout reg-

ularization. In this architecture, the learned model param-

eters We correspond to the weights and bias of our affine

layer.

3.4. Data augmentation

We found that a careful strategy for sampling context

frames and negatives is important to learning high quality

embeddings in our models. This helps both in handling the

problem of temporal smoothness and prevents the model

from overfitting to less interesting video-specific properties.

Multi-resolution sampling. Complex events progress at

different paces within different videos. Densely sampling

frames in slowly changing videos can lead to context win-

dows comprised of frames that are visually very similar to

the target frame. On the other hand, a sparse sampling of

fast videos could lead to context windows only composed of

disjoint frames from unrelated parts of the video. We over-

come these problems through multi-resolution sampling as

shown in Fig. 3. For every target frame, we sample context

frames from multiple temporal resolutions. This ensures a

good trade-off between visual variety and semantic related-

ness in the context windows.

Hard negatives. The context frames, as well as the target to

be scored are chosen from the same video. This causes the

model to cluster frames from the same video based on less

interesting video-specific properties such as lighting, cam-

era characteristics and background, without learning any-

thing semantically meaningful. We avoid such problems by

choosing hard negatives from within the same video as well.

Empirically, this improves performance for all tasks. The

negatives are chosen from outside the range of the context

window within a video as depicted in Fig. 3.

3.5. Implementation details

The context window size was set to T = 2, and the em-

bedding dimension to 4096. The learning rate was set to

0.01 and gradually annealed in steps of 5000. The train-

ing is typically completed within a day on 1 GPU with

Caffe [11] for a dataset of approximately 40000 videos. All

videos were first down-sampled to 0.2 fps before training.

4. Experimental Setup

Our embeddings are aimed at capturing semantic and

temporal interactions within complex events in a video, and

thus we require a generic set of videos with a good variety

of actions and sub-events within each video. Most stan-

dard datasets such as UCF-101 [34] and Sport-1M [15] are

comprised of short video clips capturing a single sports ac-

tion, making them unsuitable for our purpose. Fortunately,

the TRECVID MED 2011 [28] dataset provides a large set

of diverse videos collected directly from YouTube. More

importantly, these videos are not simple single clip videos;

rather they are complex events with rich interactions be-

tween various sub-events within the same video [7]. Specif-

ically, we learn our embeddings on the complete MED11

DEV and TEST sets comprised of 40021 videos. A sub-

set of 256 videos from the DEV and TEST set was used

for validation. The DEV and TEST sets are typical random

assortments of YouTube videos with minimal constraints.

We compare our embeddings against different video rep-

resentations for three video tasks: video retrieval, complex

event classification, and temporal order recovery. All ex-

periments are performed on the MED11 event kit videos,

which are completely disjoint from the training and valida-

tion videos used for learning our embeddings. The event

kit is composed of 15 event classes with approximately

100− 150 videos per event, with a total of 2071 videos.

We stress that the embeddings are learned in an unsuper-

vised setting since we only use the temporal and semantic

structure of the video data, without video labels. We do not

tune them specifically to any event class.

5. Video Retrieval

In retrieval tasks, we are given a query, and the goal is

to retrieve a set of related examples from a database. We

start by evaluating our embeddings on two types of retrieval

tasks: event retrieval and temporal retrieval. The retrieval

tasks help to evaluate the ability of our embeddings to group

together videos belonging to the same semantic event class

and frames that are temporally coherent.
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Method mAP ( %)

Two-stream pre-trained [33] 20.09

fc6 20.08

fc7 21.24

Our model (no temporal) 21.92

Our model (no future) 21.30

Our model (no hard neg.) 24.22

Our model 25.07

Table 1. Event retrieval results on the MED11 event kits.

5.1. Event retrieval

In event retrieval, we are given a query video from the

MED11 event kit and our goal is to retrieve videos that con-

tain the same event from the remaining videos in the event

kit. For each video in the event kit, we sort all other videos

in the dataset based on their similarity to the query video

using the cosine similarity metric, which we found to work

best for all representations. We use Average Precision (AP)

to measure the retrieval performance of each video and pro-

vide the mean Average Precision (mAP) over all videos in

Tab. 1. For all methods, we uniformly sample 4 frames per

video and represent the video as an average of the features

extracted from them. The chance mAP is 6.53%. The dif-

ferent baselines used for comparison are explained below:

• Two-stream pre-trained: We use the two-stream CNN

from [33] pre-trained on the UCF-101 dataset. The

models were used to extract spatial and temporal fea-

tures from the video with a temporal stack size of 5.

• fc6 and fc7: Features extracted from the ReLU layers

following the corresponding fully connected layers of

a standard CNN model [19] pre-trained on ImageNet.

• Our model (no temporal): Our model trained with no

temporal context (Fig. 2(c)).

• Our model (no future): Our model trained with no fu-

ture context (Fig. 2(b)) but with multi-resolution sam-

pling and hard negatives.

• Our model (no hard neg.): Our model trained without

hard negatives from the same video.

• Our model: Our full model trained with multi-

resolution sampling and hard negatives.

We observe that our full model outperforms other rep-

resentations for event retrieval. We note that in contrast to

most other representations trained on ImageNet, our model

is capable of being trained with large quantities of unlabeled

video which is easy to obtain. This confirms our hypothesis

that learning from unlabeled video data can improve feature

representations. While the two-stream model also has the

advantage of being trained specifically on a video dataset,

we observe that the learned representations do not transfer
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Figure 4. t-SNE plot of the semantic space for (a) fc7 and (b) our

embedding. The different colors correspond to different events.

favorably to the MED11 dataset in contrast to fc7 and fc6

features trained on ImageNet. A similar observation was

made in [41, 44], where simple CNN features trained from

ImageNet consistently provided the best results.

Our embeddings capture the temporal regularities and

patterns in videos without the need for expensive labels,

which allows us to more effectively represent the semantic

space of events. The performance gain of our full context

model over the representation without temporal order shows

the need for utilizing the temporal information while learn-

ing the embeddings. For the same temporal window size,

the model without future uses smaller context. This poten-

tially leads to lower visual variety in the context window,

leading to a performance drop.

Visualizing the embedding space. To gain a better qual-

itative understanding of our learned embedding space, we

use t-SNE [38] to visualize the embeddings in a 2D space.

In Fig. 4, we visualize the fc7 features and our embedded

features by sampling a random set of videos from the event

kits. The different colors in the graph correspond to each of

the 15 different event classes, as listed in the figure. Visu-

ally, we can see that certain event classes such as “Groom-

ing an animal”, “Changing a vehicle tire”, and “Making a

sandwich” enjoy better clustering in our embedded frame-

work as opposed to the fc7 representation.

Another way to visualize this space is in terms of the

actual words. Each video in the MED11 event kits is asso-

ciated with a short synopsis describing the video. We repre-

sent each word from this synopsis collection by averaging

the embeddings of videos associated with that word. The

features are then used to produce a t-SNE plot as shown

in Fig. 5. We avoid noisy clustering due to simple co-

occurrence of words by only plotting words which do not

frequently co-occur in the same synopsis. We observe many

interesting patterns. For instance, objects such as “river”,

“pond” and “ocean” which provide the same context for a

“fishing” event are clustered together. Similarly crowded

settings such as “bollywood”, “military”, and “carnival” are

clustered together.
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Figure 5. t-SNE visualization of words from synopses describing

MED11 event kit videos. Each word is represented by the average

of our embeddings corresponding to the videos associated with the

word. We show sample video frames for a subset of the words.

Retrieved by our embedding Retrieved by fc7 feature

wedding

make sandwich

board trick

birthday

feeding animal

Figure 6. The retrieval results for fc7 (last two columns) and our

embedding (middle two columns). The first column shows the

query frame and event, while the top 2 frames retrieved from the

remaining videos are shown in the middle two column for our em-

bedding, and the last two columns for fc7. The incorrect frames

are highlighted in red, and correct frames in green.

Event retrieval examples. We visualize the top frames re-

trieved for a few query frames from the event kit videos in

Fig. 6. We observe a few interesting examples where the

query appears visually distinct from our retrieved results.

The retrieved actions might co-occur in the same context as

the query, which is captured by the temporal context in our

model. For instance, the frame of a “bride near a car” re-

trieves frames of “couple kissing”. Similarly, the frame of

“kneading dough” retrieves frames of “spreading butter”.

Method mAP ( %)

Two-stream pre-trained [33] 20.11

fc6 19.27

fc7 22.99

Our model (no temporal) 22.50

Our model (no future) 21.71

Our model (no hard neg.) 24.12

Our model 26.74

Table 2. Temporal retrieval results on the MED11 event kits.

5.2. Temporal retrieval

In the temporal retrieval task, we test the ability of our

embedding to capture the temporal structure in videos. We

sample four frames from different time instants in a video

and try to retrieve the frames in between the middle two

frames. This is an interesting task which has potential for

commercial applications such as ad placements in video

search engines. For instance, the context at any time in-

stant in a video can be used to retrieve the most suited video

ad from a pool of video ads, to blend into the original video.

For this experiment, we use a subset of 1396 videos from

the MED11 event kits which are at least 90 seconds long.

From each video, we uniformly sample 4 context frames,

3 positive frames from in between the middle two context

frames, and 12 negative distractors from the remaining seg-

ments of the video. In addition to the 12 negative distractors

from the same video, all frames from other videos are also

treated as negative distractors. For each video, given the 4
context frames we evaluate our ability to retrieve the 3 pos-

itive frames from this large pool of distractors.

We retrieve frames based on their cosine similarity to the

average of the features extracted from the context frames.

We use mean Average Precision (mAP) and the same base-

lines as event retrieval. The results are shown in Tab. 2. Our

embedding representation is seen to outperform the other

representations. This shows their ability to capture long-

term interactions between events at different time-instants.

Temporal retrieval examples. We visualize the top exam-

ples retrieved for a few temporal queries in Fig. 7. We can

see just how difficult this task is, as often frames that seem

to be viable options for temporal retrieval are not part of

the ground truth. For instance, in the “sandwich” example,

our embedding wrongly retrieves frames of human hands to

keep up with the temporal flow of the video.

6. Complex Event Classification

The complex event classification task on the MED11

event kits is one of the more challenging classification tasks.

We follow the protocol of [7, 30] and use the same train/test

splits. Since the goal of our work is to evaluate the effective-

ness of video frame representations, we use a simple linear

Support Vector Machine classifier for all methods.
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Missing frame at (t3) retrieved by our embedding(t1) (t2) (t4) (t5)

Figure 7. The retrieval results for our embedding model on the temporal retrieval task. The first and last 2 columns show the 4 context

frames sampled from each video, and the middle 3 columns show the top 3 frames retrieved by our embedding. The correctly retrieved

frames are highlighted in green, and incorrect frames highlighted in red.

Method mAP ( %)

Two-stream fine-tuned [33] 62.99

ISA [22] 55.87

Izadinia et al. [7] linear 62.63

Izadinia et al. [7] full 66.10

Raman. et al. [30] 66.39

fc6 68.56

fc7 69.17

Our model (no temporal) 69.57

Our model (no future) 69.22

Our model (no hard neg.) 69.81

Our model 71.17

Table 3. Event classification results on the MED11 event kits.

Unlike retrieval settings, we are provided labeled train-

ing instances in the event classification task. Thus, we fine-

tune the last two layers of the two-stream model (pre-trained

on UCF-101) on the training split of the event kits, and

found this to perform better than the pre-trained model.

In addition to baselines from previous tasks, we also

compare with [7], [22] and [30], with results shown in

Tab. 3. Note that [7, 30] use a combination of multiple im-

age and video features including SIFT, MFCC, ISA, and

HOG3D. Further, they also use additional labels such as

low-level events within each video. In Tab. 3, Izadinia et

al. linear refers to the results without low-level event labels.

We observe that our method outperforms ISA [22], an

unsupervised neural network feature. Additionally, the Ima-

genet pre-trained CNN features seem to perform better than

most previous representations, which is also consistent with

previous work [41, 44]. Our performance gain could be at-

tributed to the use large amounts of unlabeled data to learn

a better representations.

7. Temporal Order Recovery

An effective representation for video frames should be

able to not only capture visual similarities, but also preserve

the structure between temporally coherent frames. This fa-

(a) order recovered by fc7

(b) order recovered by our embedding

1 2 3 4 56

4 5 6 1 23

Figure 9. An example of the temporal ordering retrieved by fc7 and

our method for a “Making a sandwich” video. The frame indexes

already in the correct order are shown in green, and others in red.

Method 1.4k Videos 1k Videos

Random chance 50.00 50.00

Two-stream [33] 42.05 44.18

fc6 42.43 43.33

fc7 41.67 43.15

Our model (pairwise) 42.03 43.72

Our model (no future) 40.91 42.98

Our model (no hard neg.) 41.02 41.95

Our model 40.41 41.13

Table 4. Video temporal order recovery results evaluated using the

Kendell tau distance (normalized to 0-100). Smaller distance in-

dicates better performance. The 1.4k Videos refers to the set of

videos used in the temporal retrieval task, and the 1k Videos refers

to a further subset with the most visually dissimilar frames.

cilitates holistic video understanding tasks beyond classifi-

cation and retrieval. With this in mind, we explore the video

temporal order recovery task, which seeks to show how the

temporal interaction between different parts of a complex

event are inherently captured by our embedding.

In this task, we are given as input a jumbled sequence

of frames belonging to a video, and our goal is to order the

frames into the correct sequence. This has been previously

explored in the context of photostreams [17], and has po-

tential for use in applications such as album generation.

Solving the order recovery problem. Since our goal is to
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officiant’s address exchanging vows exchanging rings 

couple kissing cutting wedding cake wedding dance 

Figure 8. After querying the Internet for images of the “wedding” event, we cluster them into sub-events and temporally organize the

clusters using our model. On the left, we show sample images crawled for the “wedding” event, and on the right the temporal order

recovered by our model is visualized along with manual captions for the clusters.

evaluate the effectiveness of various feature representations

for this task, we use a simple greedy technique to recover

the temporal order. We assume that we are provided the

first two frames in the video and proceed to retrieve the next

frame (third frame) from all other frames in the video. This

is done by averaging the first two frames and retrieving the

closest frame in cosine similarity. We go on to greedily

retrieve the fourth frame using the average of the second

and third frames, and continue until all frames are retrieved.

In order to enable easy comparison across all videos, we

sample the same number of frames (12) from each video

before scrambling them for the order recovery problem. An

example comparing our embeddings to fc7 is show in Fig. 9.

Evaluation. We evaluate the performance for solving the

order recovery problem using the Kendall tau [16] distance

between the groundtruth sequence of frames and the se-

quence returned by the greedy method. The Kendall tau

distance is a metric that counts the number of pairwise dis-

agreements between two ranked lists; the larger the distance

the more dissimilar the lists. The performance of different

features for this task is shown in Tab. 4, where the Kendall

tau distance is normalized to be in the range 0− 100.

Similar to the temporal retrieval setting, we use the sub-

set of 1396 videos which are at least 90 seconds long. These

results are reported in the first column of the table. We ob-

served that our performance was quite comparable to that

of fc7 features for videos with visually similar frames like

those from the “parade” event, as they lack interesting tem-

poral structure. Hence, we also report results on the subset

of 1000 videos which had the most visually distinct frames.

These results are shown in the second column of the table.

We also evaluated the human performance of this task on a

random subset of 100 videos, and found the Kendell tau to

be around 42. This is on par with the performance of the

automatic temporal order produced by our methods, and il-

lustrates the difficulty of this task for humans as well.

We observe that our full context model trained with a

temporal objective achieves the best Kendall tau distance.

This improvement is more marked in the case of the 1k

Videos with more visually distinct frames. This shows the

ability of our model to bring together sequences of frames

that should be temporally and semantically coherent.

Ordering actions on the Internet. Image search on the In-

ternet has improved to the point where we can find relevant

images with textual queries. Here, we wanted to investigate

whether we could also temporally order images returned

for complex event textual queries. As a toy example, we

used query expansion on the “wedding” query, and crawled

Google for a large set of images. We clustered the result-

ing images semantically, and for each cluster, averaged our

embeddings to obtain a representation. We then used our

method to recover the temporal ordering of these clusters of

images. In Fig. 8, we show the recovered temporal ordering,

and some example images from each cluster. Interestingly,

the recovered order seems consistent with typical weddings.

8. Conclusion

In this paper, we presented a model to embed video

frames. We treated videos as sequences of frames and em-

bedded them in a way which captures the temporal context

surrounding them. Our embeddings were learned from a

large collection of more than 40000 unlabeled videos, and

have shown to be more effective for multiple video tasks.

The learned embeddings performed better than other video

frame representations for all tasks. The main thrust of our

work is to push a framework for learning frame-level rep-

resentations from large sets of unlabeled video, which can

then be used for a wide range of generic video tasks.
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