
Discriminative Learning of Deep Convolutional Feature Point Descriptors

Edgar Simo-Serra∗,1,5, Eduard Trulls∗,2,5, Luis Ferraz3

Iasonas Kokkinos4, Pascal Fua2, Francesc Moreno-Noguer5

1 Waseda University, Tokyo, Japan, esimo@aoni.waseda.jp
2 CVLab, École Polytechnique Fédérale de Lausanne, Switzerland, {eduard.trulls,pascal.fua}@epfl.ch

3 Catchoom Technologies, Barcelona, Spain, luis.ferraz@catchoom.com
4 CentraleSupelec and INRIA-Saclay, Chatenay-Malabry, France, iasonas.kokkinos@ecp.fr

5 Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Barcelona, Spain, {esimo,etrulls,fmoreno}@iri.upc.edu

Abstract

Deep learning has revolutionalized image-level tasks

such as classification, but patch-level tasks, such as

correspondence, still rely on hand-crafted features, e.g.

SIFT. In this paper we use Convolutional Neural Net-

works (CNNs) to learn discriminant patch representations

and in particular train a Siamese network with pairs of

(non-)corresponding patches. We deal with the large num-

ber of potential pairs with the combination of a stochastic

sampling of the training set and an aggressive mining strat-

egy biased towards patches that are hard to classify.

By using the L2 distance during both training and test-

ing we develop 128-D descriptors whose euclidean dis-

tances reflect patch similarity, and which can be used as a

drop-in replacement for any task involving SIFT. We demon-

strate consistent performance gains over the state of the art,

and generalize well against scaling and rotation, perspec-

tive transformation, non-rigid deformation, and illumina-

tion changes. Our descriptors are efficient to compute and

amenable to modern GPUs, and are publicly available.

1. Introduction

Representing local image patches in an invariant and dis-

criminative manner is a major research topic in computer

vision. While most descriptors, such as SIFT [16], rely on

hand-crafted features [1, 13, 16, 22, 27, 28, 32], there has

recently been interest in using machine learning algorithms

to learn them from large datasets [20, 23, 29].

In this paper we draw inspiration from the recent suc-

cess of Deep CNNs in large-scale image classification prob-

∗ First two authors contributed equally.

This work was partly funded by the Spanish MINECO project RobInstruct

TIN2014-58178-R, by the ERA-Net Chistera project ViSen PCIN-2013-

047, by EU projects AEROARMS H2020-ICT-2014-1-644271, ISUP-

PORT H2020-ICT-2014-1-643666 and MOBOT FP7-ICT-2011-600796,

and by the ERC project MicroNano.

(a) Data (b) All pairs (c) “Hard” pairs

Figure 1: To train models with Siamese networks, we need

pairs of corresponding and non-corresponding samples. (a)

We use t-SNE [30] to display ∼100 64 × 64 patches of 12

3D points from different images (see Fig. 3 for examples).

Corresponding patches are drawn with the same color. (b)

We single out the red-circled patch, belonging to the blue

point cloud, and consider all of its potential pairings. The

line length encodes the closeness between this patch and the

rest: positive matches in blue, negative in red. Most pairs

are easy to discriminate and ineffectual for training. (c) We

mine the samples to obtain the closest negative (shortest red

line) and the most distant positive (longest blue line). This

simple strategy allows us to train discriminative networks

over large datasets.

lems [14, 26] to build discriminative descriptors for local

patches. In our case discriminative training does not rely

on labels of individual patches, but rather on pairs of cor-

responding, or non-corresponding patches. For this we use

a Siamese network architecture [2] that employs two CNNs

with identical parameters to compare pairs of patches; treat-

ing the CNN outputs as patch descriptors, we minimize a

loss that enforces the L2 norm of their difference to be small

for corresponding patches and large otherwise.

To train this network we rely on the multi-view stereo

dataset (MVS) [3], which contains over 1.5M grayscale

64 × 64 image patches from different views of 500K 3D

points. The difficulty with such a large dataset is that it

becomes impossible to exhaustively explore all correspond-

118



ing and non-corresponding pairs, so we must resort to some

form of random sampling. Based on the observation that

after a certain point of learning most pairs are correctly

classified, and using them no longer improves the learned

embedding, we propose a strategy of aggressive mining of

“hard” positives and negatives. During the learning stage

we enforce the back-propagation of samples with a large

loss, i.e. both corresponding pairs that match poorly and

non-corresponding pairs that are hard to discriminate. This

proves to be most useful for efficiently learning discrimina-

tive descriptors.

We perform in-depth comparisons against both tra-

ditional, hand-crafted descriptors [16, 27, 22] as well

as learned, state-of-the-art descriptors [23, 29], using

Precision-Recall (PR) and its area under the curve (AUC) as

a metric, and demonstrate consistent gains in performance.

Our descriptors also generalize very well to applications

for which they were not specifically trained, demonstrating

remarkable robustness against scaling, rotation, viewpoint

changes, non-rigid deformations, and varying illumination.

In all of our experiments we use the L2 distance to com-

pare descriptors, rather than some nonlinear, task-specific

metric, as e.g. in [10, 34]. This demonstrates that our de-

scriptors can be used as a drop-in replacement for popu-

lar representations such as SIFT, in a manner that is ag-

nostic to the application. Furthermore, as our descriptors

are primarily built from convolutions they are very efficient

to compute and can be easily parallelized, taking advan-

tage of modern GPUs to greatly speed up their extraction.

Our implementation is based on Torch7 [5]. Our feature

extraction code and pre-trained models are available from

https://github.com/etrulls/deepdesc-release.

2. Related Work

Local features have proven very successful at matching

points across images, and are nearly ubiquitous in mod-

ern computer vision, with a broad range of applications en-

compassing stereo, structure from motion, pose estimation,

classification, detection, medical imaging, and many oth-

ers. Recent developments in the design of local image de-

scriptors are moving away from carefully-engineered fea-

tures [1, 16, 27] and towards learning features from large

volumes of data. This line of works includes unsuper-

vised techniques based on hashing as well as supervised

approaches using Linear Discriminant Analysis [3, 9, 24],

boosting [29], and convex optimization [23].

In this paper we explore solutions based on deep convo-

lutional neural networks (CNNs), which currently are the

dominant paradigm in tasks involving semantic informa-

tion, e.g. image classification [14, 26] or semantic segmen-

tation [15, 4]. Even though it may be unclear whether CNNs

are equally appropriate for patch-level applications where

semantic information may be missing, we argue that for our

particular problem this is indeed the case.

Descriptor learning using CNNs was addressed early in

[11, 19], but the experimental results in these works left

open questions regarding several practical aspects, such as

the most appropriate network architectures and application-

dependent training schemes. More recently, the use of

Siamese networks for descriptor learning was exploited

by concurrent works on joint descriptor and metric learn-

ing [10, 33, 34]. Han et al. [10] use a deep convolu-

tional network in a Siamese architecture followed by a

fully-connected network that learns a comparison function.

Zagoruyko et al. [33] rely on a similar architecture but add a

network that only focuses on the center of the image, which

they show increases performance, at a computational cost.

Zbontar & LeCun [34] trained CNNs for narrow-baseline

stereo and obtained the top results on the KITTI benchmark.

These approaches rely on larger networks and do not nec-

essarily learn compact, discriminative representations, like

ours. In contrast, we show how to exploit discriminative

training strategies to build small but powerful models.

One key distinction between [10, 33] and our work is that

we aim at using the CNN outputs of our Siamese networks

as direct counterparts to traditional descriptors—namely,

unlike [10, 33, 34] there is no non-linear ‘metric network’

following the Siamese network application, but rather we

simply use the L2 distance to compare patches. In [33] a

limited evaluation of L2-based similarity shows promising

results, which however is not entirely clearly outperform-

ing [23]—instead we show substantial gains, which can be

also attributed to using the L2 distance during training. Us-

ing descriptors that can be compared with the L2 distance

facilitates the use of efficient methods for nearest neighbor

computations, such as KD-trees, which we believe opens up

the path to large-scale retrieval applications.

Another deviation of our work from common practice is

that we observe that during descriptor training the majority

of non-corresponding patch pairs eventually become easy

to discern, which stalls the learning of discriminative mod-

els. Mining hard negatives is a well-known procedure in the

context of sliding-window detectors [8], where the number

of negative samples (windows) is virtually unlimited and

yet most negatives are easily discriminated once we have

already used a certain number of negative samples for train-

ing. In this paper we demonstrate that aggressive mining of

both “hard” positive and negative samples greatly enhances

the learning process: as we detail in the following section,

we sample a large number of matches and use the subset

with the largest loss to update the network.

3. Learning Deep Descriptors

Given an intensity patch x ∈ R
d, the descriptor of x is a

non-linear mapping D(x) that is expected to be discrimina-

tive, i.e. descriptors for image patches corresponding to the

119

https://github.com/etrulls/deepdesc-release


x2

x1

D(x1)

D(x2)

Patches Siamese network

W

CNN

CNN

L2 l(x1,x2)

Figure 2: Schematic of a Siamese network, where pairs of

input patches are processed by two copies of the same CNN.

same point should be similar, and dissimilar otherwise.

We propose to learn such descriptors with a Siamese net-

work [2], where a nonlinear mapping is represented by a

CNN that is optimized for pairs of corresponding or non-

corresponding patches, as shown in Fig. 2. We propagate

the patches through the model to extract the descriptors and

then compute their L2 norm, which is a standard similarity

measure for image descriptors. The objective is to learn a

descriptor that places non-corresponding patches far apart

and corresponding patches close together.

In the context of multiple-view geometry, descriptors are

typically computed for salient points where scale and orien-

tation can be reliably estimated, for invariance. Patches then

capture local projections of 3D scenes. Let us consider that

each image patch xi has an index pi that uniquely identi-

fies the 3D point which roughly projects onto the 2D patch,

from a specific viewpoint. Using the L2 norm as a similarity

metric between descriptors we write our objective in terms

of the hinge embedding loss [18]:

l(x1,x2)=

{

‖D(x1)−D(x2)‖2, p1=p2
max(0, C − ‖D(x1)−D(x2)‖2), p1 6=p2

where p1, p2 are the indices of the 3D points projecting to

x1,x2 respectively. This loss penalizes corresponding pairs

that are placed far apart, and non-corresponding pairs that

are less than C units apart—in particular, when ‖D(x1) −
D(x2)‖2 = 0 we pay the maximal cost, C, and as their

distance increases the loss eventually reaches zero.

3.1. CNN­based Descriptors

When designing the structure of the CNN we are limited

by the size of the input data: in our case 64×64 patches,

from the MVS dataset [3], while we extract descriptors of

the same size as SIFT [16], i.e. 128 dimensions. Note that

larger patches and/or output spaces would allow us to con-

sider possibly more informative descriptors, but at the same

time they would be also more susceptible to occlusions and

slower to train and compute.

We explored many configurations regarding the number

of filters, hidden units, mapping, normalization, and pool-

ing. Such architectures are detailed in the supplemental ma-

terial, but due to space constraints we use only our top per-

forming model, i.e. ‘CNN3’, for the following experiments.

The architecture of this three-layer network is detailed

in Table 1. Each convolutional layer consists of four sub-

layers: filter layer, non-linearity layer, pooling layer and

normalization layer. Since sparser connectivity has been

shown to improve performance while lowering parameters

and increasing speed [6], except for the first layer, the fil-

ters are not densely connected to the previous layers. In-

stead, they are sparsely connected at random, so that the

mean number of connections each input layer has is con-

stant. Each filter of the second and third layer are also con-

nected randomly to 8 feature maps of the previous layer so

that the mean number of connections stays roughly equal to

16 connections per filter output.

Layer 1 2 3

Input size 64 × 64 29 × 29 8 × 8

Filter size 7 × 7 6 × 6 5 × 5

Output channels 32 64 128

Pooling & Norm.tion 2 × 2 3 × 3 4 × 4

Nonlinearity Tanh Tanh Tanh

Stride 2 3 4

Table 1: Architecture of the proposed three-layer network:

a 64 × 64 input yields a 128-dimensional output in layer 3.

Regarding the non-linear layer, we use hyperbolic tan-

gent units (Tanh), as we found it to perform better than Rec-

tified Linear Units (ReLU). We use L2 pooling for the pool-

ing sublayers, which has been shown to outperfom the more

standard max pooling [21]. Normalization is also important

for deep networks [12] and paramount for descriptors [17].

We use subtractive normalization, i.e. subtract the weighted

average over a 5×5 neighbourhood with a Gaussian kernel

after the first and second layers.

3.2. Stochastic Sampling Strategy and Mining

Our goal is to optimize the network parameters from an

arbitrarily large set of training patches. Let us consider a

dataset with k patches and m ≤ k unique 3D patch indices,

each with ci corresponding image patches. Then, the num-

ber of matching image patches, P (positives) and the num-

ber of non-matching images patches, N (negatives) is:

P =
m
∑

i=1

ci(ci − 1)

2
and N =

m
∑

i=1

ci (k − ci) . (1)

Since both P and N are intractably large, we resort to

Stochastic Gradient Descent, using random subsets of our

training set to estimate the gradient of our loss function. For

positives we can randomly sample a set of sp 3D point in-

dices from the set {p1, . . . , pm}, and for each chosen 3D in-

dex pi we randomly pick two 2D patches with correspond-

ing 3D point indices.

For negatives one simple idea would be to randomly

choose sn random pairs with non-matching indices; but

120



once the network has reached a reasonable level of perfor-

mance, most non-corresponding points will already have a

distance above C, contributing nothing to the loss—and the

gradient. This can result in a very small and noisy estimate

of the gradient, effectively stalling the learning process.

Instead, we iterate over non-corresponding patch pairs

to search for “hard” negatives, i.e. pairs that are close in

descriptor space and incur a high loss. In this manner it

becomes feasible to train discriminative models faster while

also increasing performance.

In particular, at each epoch we generate a set of sn ran-

domly chosen patch pairs, and after forward-propagation

through the network and computing their loss we keep

only a subset of the sHn “hardest” negatives, which are

back-propagated through the network in order to update the

weights. Additionally, the same procedure can be used over

the positive samples, i.e. we can sample sp corresponding

patch pairs and prune them down to the sHp “hardest” posi-

tives. Our experimental results clearly show that the combi-

nation of aggressive mining for both positive and negative

patch pairs allows us to greatly improve the discriminative

capability of our learned descriptors.

4. Results

For training we use the Multi-view Stereo Corre-

spondence dataset (MVS) [3], which consists of 64×64

grayscale image patches sampled from 3D reconstructions

of the Statue of Liberty (LY), Notre Dame (ND) and Half

Dome in Yosemite (YO). Patches are extracted using the

Difference of Gaussians detector [16], and determined as

a valid correspondence if they are within 5 pixels in posi-

tion, 0.25 octaves in scale and π/8 radians in angle. Fig. 3

shows some samples from each set, which contain signif-

icant changes in position, rotation and illumination condi-

tions, and often exhibit very noticeable perspective changes.

We join the data from LY and YO to form a training

set with over a million patches. Out of these we reserve a

subset of 10,000 unique 3D points for validation (∼30,000

patches). The resulting training set contains 1,133,525 pos-

sible positive combinations and 1.117×1012 possible nega-

tive combinations. This skew is common in correspondence

problems such as stereo or structure from motion—we ad-

dress it with aggressive mining. We use this split to evaluate

different architectures and configurations, and then train the

top-performing model over the two remaining splits.

A popular metric for classification systems is the Receiv-

ing Operator Characteristic (ROC), used e.g. in [3], which

can be summarized by its Area Under the Curve (AUC).

However, ROC curves can be misleading when the num-

ber of positive and negative samples are very different [7],

and are already nearly saturated for the SIFT baseline. A

richer performance indicator is the Precision-Recall curve

(PR). We benchmark our models with PR curves and their

AUC. In particular, we simulate the ‘needle in a haystack’

setting of retrieval by having a thousandfold more negative

than positive pairs: for each of the 10,000 unique points in

our validation set we generate a single positive pair, by ran-

domly sampling two corresponding patches, and 1,000 non-

corresponding patches, chosen from the remaining points.

Results outline: We explored multiple architectures and

configurations—some of these results were omitted from

the paper due to space constraints, but they remain avail-

able in the supplemental material. We study the effect of

mining for “hard” samples in Sec. 4.2. We then evaluate

our top-performing models over the test set in Sec. 4.3. To

build a test set we follow the same procedure as for vali-

dation, evaluating 10,000 points with 1,000 negatives each,

over 10 different folds (see Sec. 4.3 for details). We con-

sider four splits: LY+YO (tested on ND), LY+ND (tested

on YO), and YO+ND (tested on LY), plus a final split with

training data from all three sets.

Finally, we apply the models learned over the MVS

dataset to different applications. In Sec. 4.4 we study the

robustness of our descriptors to patch rotation. In Sec. 4.5

we use our models to match wide-baseline images from a

different stereo dataset. In Sec. 4.6 we benchmark our de-

scriptors on a recent dataset with very challenging non-rigid

deformations and drastic changes in illumination. Our mod-

els outperform state-of-the-art baselines in every case, with-

out fine-tuning over new data, and over considerably differ-

ent application domains.

4.1. Network training

We use Stochastic Gradient Descent with a learning rate

of 0.01 that decreases by a factor of 10 every 10,000 itera-

tions, and a momentum of 0.9, to accelerate learning. Fol-

lowing common practice, we preprocess the patches using

mean and standard deviation normalization. We use a sub-

set of the data for validation and stop training when the net-

work evaluation metric converges. Apparently due to the

large pool of positives and negatives available for training

and the relatively small number of parameters of our archi-

tectures, we did not encounter overfitting problems.

4.2. Mining

We analyze the effect of both positive and negative min-

ing by training different models in which a large, initial

pool of sp positives and sn negatives are pruned down to

a smaller number of “hard” positive and negative matches,

which are used to update the parameters of the network. We

observe that increasing the batch size does not offer bene-

fits in training: see Table 2. We thus keep the batch size

fixed to sHn = 128 and sHp = 128, and increase the ratio

of both negative mining rn = sn/s
H
n and positive mining

rp = sp/s
H
p . We keep all other parameters constant. In the

following, we use the notation rp/rn, for brevity.

121



Mean St.Dev.

Figure 3: Pairs of corresponding samples from the MVS dataset. Top: ‘Liberty’ (LY). Middle: ‘Notre Dame’ (ND). Bottom:

‘Yosemite’ (YO). Right: we compute the pixel difference between corresponding patches on each set and show their mean/std.

sp sn rp rn Cost PR AUC

128 128 1 1 — 0.366
256 256 1 1 — 0.374
512 512 1 1 — 0.369
1024 1024 1 1 — 0.325

128 256 1 2 20% 0.558
256 256 2 2 35% 0.596
512 512 4 4 48% 0.703
1024 1024 8 8 67% 0.746
2048 2048 16 16 80% 0.538

Table 2: Four top rows: effect of increasing batch size, with-

out mining. Four bottom rows: with mining. Mining factors

indicate the samples considered (sp, sn), the hardest 128 of

which are used for training. Column 5 indicates the fraction

of the computational cost spent mining hard samples. These

experiments correspond to the validation set.

Large mining factors have a high computational cost, up

to 80% of the total computational cost, which includes min-

ing (i.e. forward propagation of all sp and sn samples)

and learning (i.e. backpropagating the “hard” positive and

negative samples). Note that this is only applicable to the

learning stage—once the model is deployed, we discard the

Siamese network and do not incur the computational costs

related to mining. In order to speed up the learning process

we initialize the CNN3 models with positive mining, i.e.

2/2, 4/4, 8/8 and 16/16, with an early iteration of a model

trained only with negative mining (1/2).

Results are shown in Table 2. We see that for this particu-

lar problem, aggressive “hard” mining is fundamental. This

is due to the extremely large number of both negatives and

positives in the dataset, in combination with models with a

relatively low number of parameters. We observe a drastic

increase in performance up to 8/8 mining factors.

4.3. Generalization & comparison to state of the art

In this section we consider the three splits for the MVS

dataset of [3]. We train the top-performing model (i.e.

CNN3), with different mining ratios (1/2, 2/2, 4/4 and 8/8),

on a combination of two sets, and test it on the remain-

ing set. We select the training iteration that performs best

over the corresponding validation set. The test datasets are

very large (up to 633K patches) and we use the same pro-

cedure as for validation: we consider 10,000 unique points,

each with 1,000 random non-corresponding matches. We

repeat this process over 10 folds, thus considering 100,000

sets of one corresponding patch vs 1,000 non-corresponding

patches. We show results in terms of PR AUC in Table 3,

and the corresponding PR curves are pictured in Fig. 4.

We report consistent improvements over SIFT, a hand-

crafted descriptor which nevertheless remains the most pop-

ular among its brethren. Performance varies significantly

from split to split; this is due to the nature of the different

sets. ‘Yosemite’ contains mostly frontoparallel translations

with illumination changes and no occlusions (Fig. 3, row

3); SIFT performs well on this type of data. Our learned de-

scriptors outperform SIFT on the high-recall regime (over

20% of the samples; see Fig. 4), and is 28% better over-

all in terms of PR AUC. The effect is much more dramatic

on ‘Notredame’ and ‘Liberty’, which contain significant

patch translation and rotation, as well as viewpoint changes

around outcropping, non-convex objects, which result in oc-

clusions (Fig. 3, rows 1-2). Our learned descriptors outper-

form SIFT by 91% and 169% over ND and LY, respectively.

Additionally, we pit our approach against the state of the

art descriptors of [29] and [23]. For [29] we consider 4

binary descriptor variants (BGM, BinBoost-64, BinBoost-

128, and BinBoost-256) and a floating-point variant (L-

BGM); for the binary descriptors we use the Hamming dis-

tance, instead of the Euclidean distance. For VGG [23] we

re-train their models over two sets at a time, to provide

a fair comparison with ours. We consider only their top-

performing variant, i.e. the largest descriptor. The VGG de-

scriptor considers multiple compression settings—we show

the results for the best model (i.e. floating point, size 80).

The results are summarized in Table 4 and shown in

Fig. 5. Due to the binary nature of the Hamming dis-

tance, the curves for the binary descriptors can be seen to

have a sawtooth shape where each tooth corresponds to a

1-bit difference. Our approach outperforms the baselines

on ‘Notredame’ and ‘Liberty’. On ‘Yosemite’ VGG ob-

tains the best results, and our approach outperforms the

122



Train Test SIFT
CNN3 CNN3 CNN3 CNN3

mine-1/2 mine-2/2 mine-4/4 mine-8/8

LY+YO ND 0.349 0.535 0.555 0.630 0.667

LY+ND YO 0.425 0.383 0.390 0.502 0.545

YO+ND LY 0.226 0.460 0.483 0.564 0.608

Table 3: PR AUC for the generalized results over the three MVS dataset splits, for different mining factors.

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PR curve, training LY+YO, test ND

SIFT
CNN3, mined 1/2
CNN3, mined 2/2
CNN3, mined 4/4
CNN3, mined 8/8

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
PR curve, training LY+ND, test YO

SIFT
CNN3, mined 1/2
CNN3, mined 2/2
CNN3, mined 4/4
CNN3, mined 8/8

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PR curve, training YO+ND, test LY

SIFT
CNN3, mined 1/2
CNN3, mined 2/2
CNN3, mined 4/4
CNN3, mined 8/8

Figure 4: PR curves for the generalized results over the three MVS dataset splits, for different mining factors.

Test
SIFT BGM L-BGM BinBoost-{64,128,256} VGG Ours

(128f) (256b) (64f) (64b) (128b) (256b) (80f) (128f)

ND 0.349 0.487 0.495 0.267 0.451 0.549 0.663 0.667

YO 0.425 0.495 0.517 0.283 0.457 0.533 0.709 0.545

LY 0.226 0.268 0.355 0.202 0.346 0.410 0.558 0.608

All 0.370 0.440 0.508 0.291 0.469 0.550 0.693 0.756

Table 4: Generalized results: PR AUC over the three MVS dataset splits, and a new split with data from all three sets, against

SIFT, BinBoost [29], and VGG [23]. We re-train VGG with data from two sets (rows 1-3) and all sets (row 4).

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PR curve, training LY+YO, test ND

SIFT (128f)
BGM (256b)
L-BGM (64f)
BinBoost-64 (64b)
BinBoost-128 (128b)
BinBoost-256 (256b)
VGG (80f)
CNN3, mined 8/8 (128f)

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PR curve, training LY+ND, test YO

SIFT (128f)
BGM (256b)
L-BGM (64f)
BinBoost-64 (64b)
BinBoost-128 (128b)
BinBoost-256 (256b)
VGG (80f)
CNN3, mined 8/8 (128f)

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PR curve, training YO+ND, test LY

SIFT (128f)
BGM (256b)
L-BGM (64f)
BinBoost-64 (64b)
BinBoost-128 (128b)
BinBoost-256 (256b)
VGG (80f)
CNN3, mined 8/8 (128f)

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PR curve, training "all"

SIFT (128f)
BGM (256b)
L-BGM (64f)
BinBoost-64 (64b)
BinBoost-128 (128b)
BinBoost-256 (256b)
VGG (80f)
CNN3, mined 8/8 (128f)

Figure 5: Generalized results: PR curves over the three MVS splits, and a new split with data from all three sets, compared

to SIFT, Binboost [29], and VGG [23]. We re-train VGG with data from two sets (columns 1-3) and all sets (column 4).

other baselines by a smaller margin. We argue that this is

due to the fact that ND/LY are not representative of YO.

We illustrate this in Fig. 3 (right), where we compute the

pixel difference over every corresponding pair of patches

in each set, and plot its mean and std. deviation: YO ex-

hibits a much smoother mean and a smaller variance, which

corresponds with our observation that unlike ND/LY, it con-

tains mostly lighting changes and small displacements. This

hurts our approach more than VGG, which builds on tradi-

tional grid-based descriptors [23]. To illustrate this point,

we re-train both our models and VGG [23] over a new split

(‘All’) with data from all three sets, following the methodol-

ogy of Sec. 4. The results in Fig. 5 (right) and in the last row

of Table 4 show a 9.1% relative improvement over VGG.

Finally, we provide the computational cost in Table 5.

The CPU descriptors run on a 12-core 3.47GHz Xeon CPU,

multi-threaded. Our GPU variant runs on a Titan Black.

SIFT and VGG rely on VLFeat [31], while our approach

can still be optimized, particularly for dense computation.

4.4. Robustness to Rotation

Robustness to rotation is crucial to many applications,

as most rotation-invariant detectors can incur in significant

errors when estimating the orientation of a patch. For this

123



Ours (GPU) Ours (CPU) SIFT VGG [23]

Time (ms) 0.76 4.81 0.14 4.21

Table 5: Computational cost for one descriptor (in batch).

(a) Feature points.

−60 −40 −20 0 20 40 600

0.2

0.4

0.6

0.8

1

Angle

P
R

 A
U

C

SIFT

Ours

VGG

(b) PR AUC results under increasing rotation.

SIFT VGG [23] Ours

Area under the curve 0.223 0.507 0.564

(c) Area under the curve of (b).

Figure 6: Robustness to Rotation.

purpose we evaluate the performance of our descriptor un-

der rotation errors, in a synthetic scenario. To do this we

extract keypoints with a Difference of Gaussians detector,

and extract their correspondent descriptors. We then in-

crease the rotation of each patch in a systematic manner,

and compute descriptors for new features. We match the

descriptors and calculate the PR AUC, for increasing val-

ues of the rotation error. We evaluate SIFT and the learned,

state-of-the-art VGG descriptor [23] in addition to ours, and

show results in Fig. 6. In particular we use an image of San-

tiago de Chile and randomly extract 147 patches (shown in

Fig. 6-(a)), constrained to the center of the image to avoid

border artefacts. We observe that while all descriptors per-

form well below 10 degrees of rotation, SIFT’s performance

begins to deteriorate by that point. Our descriptor proves

the most robust in this scenario, with a 11.2% relative im-

provement over VGG, using the top-performing model in

either case. This robustness against rotation is particularly

valuable when computing dense descriptors, where rotat-

ing each patch independently would incur in a considerable

computational overhead.

4.5. Wide­baseline matching

In this section we apply our models to the wide-baseline

stereo dataset of [25], which consists of two multi-view sets

of high-resolution images with ground truth depth maps.

Descriptor Training 8×8 16×16 24×24 32×32 48×48 64×64

Ours LY+YO 0.743 0.912 0.915 0.916 0.918 0.923†

Ours LY+ND 0.627 0.910 0.917 0.916 0.912 0.919
Ours YO+ND 0.754 0.911 0.917 0.921 0.922 0.922

VGG [23] YO 0.597 0.850 0.876 0.889 0.897 0.894
VGG [23] ND 0.598 0.840 0.872 0.877 0.891 0.880
VGG [23] LY 0.586 0.839 0.875 0.874 0.887 0.879
Daisy [27] – 0.796 0.875 0.878 0.873 0.862 0.835
SIFT [16] – 0.677 0.837 0.846 0.841 0.798 0.772

Table 6: Stereo matching, baseline ‘3’ vs ‘4’.

Descriptor Training 8×8 16×16 24×24 32×32 48×48 64×64

Ours LY+YO 0.481 0.763 0.762 0.755 0.713 0.690

Ours LY+ND 0.368 0.757 0.780† 0.765 0.703 0.677
Ours YO+ND 0.504 0.759 0.770 0.777 0.716 0.685

VGG [23] YO 0.338 0.633 0.669 0.687 0.672 0.632
VGG [23] ND 0.330 0.617 0.641 0.657 0.628 0.590
VGG [23] LY 0.316 0.604 0.641 0.660 0.630 0.582
Daisy [27] – 0.526 0.719 0.735 0.714 0.660 0.594
SIFT [16] – 0.357 0.551 0.563 0.587 0.540 0.532

Table 7: Stereo matching, baseline ‘3’ vs ‘5’.

This allows us to further evaluate the generality of our mod-

els across different datasets, and to study how robust the

descriptors are against perspective transformations.

We pit our descriptor against SIFT, Daisy [27] and

VGG [23]. We consider the ‘fountain’ set, which contains

much wider baselines in terms of angular variation and pro-

vides a harder challenge. Fig. 7 (top) shows the images

used—we match ‘3’ (the rightmost view) against ‘4’-‘8’.

We sample 1000 (non-occluded) points randomly and use

the ground truth depth maps to determine their correspon-

dence over the opposite camera. We match every point in

one camera with every possible correspondence, and com-

pute PR curves. The difference in viewpoint across increas-

ing baselines creates perpective transformations, which in-

clude scaling, rotation, and partial occlusions. We explore

different patch sizes, from 8×8 up to 64×64. Note that our

models were trained with patches of size 64×64, and we

upscale the patches if required; we expect that better per-

formance can be obtained by training filters of a size com-

mensurate to the patch. The results are shown in Tables 6-

10; the top perfomer for every setting is highlighted in bold,

and the top performer for a given baseline is marked with †.

As expected, large patches are more informative across nar-

row baselines, whereas small patches perform better across

wide baselines. Our descriptors outperform the baselines in

just about every scenario, proving that they generalize well

across datasets. Note that both our models and VGG are

trained with the MVS dataset [3].

4.6. Deformation and Varying Illumination Dataset

Lastly, we evaluate our descriptors on a recent, publicly

available dataset featuring challenging non-rigid deforma-

tions and very severe illumination changes [22]. The dataset

consists of a series of photographs of 12 deformable ob-

124



‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’

Figure 7: Samples from the experiments of Sec. 4.5 (top, dataset from [25]) and Sec. 4.6 (bottom, dataset from [22]).

Descriptor Training 8×8 16×16 24×24 32×32 48×48 64×64

Ours LY+YO 0.283 0.575† 0.564 0.540 0.478 0.456
Ours LY+ND 0.181 0.543 0.561 0.543 0.468 0.424
Ours YO+ND 0.271 0.547 0.561 0.556 0.490 0.439

VGG [23] YO 0.232 0.414 0.466 0.456 0.420 0.400
VGG [23] ND 0.234 0.402 0.441 0.440 0.381 0.372
VGG [23] LY 0.223 0.389 0.424 0.423 0.388 0.365
Daisy [27] – 0.278 0.482 0.510 0.500 0.440 0.363
SIFT [16] – 0.143 0.340 0.328 0.333 0.300 0.308

Table 8: Stereo matching, baseline ‘3’ vs ‘6’.

Descriptor Training 8×8 16×16 24×24 32×32 48×48 64×64

Ours LY+YO 0.138 0.337 0.331 0.301 0.240 0.218
Ours LY+ND 0.088 0.319 0.336 0.339 0.253 0.197

Ours YO+ND 0.121 0.341† 0.333 0.340 0.275 0.228

VGG [23] YO 0.109 0.226 0.250 0.239 0.220 0.174
VGG [23] ND 0.115 0.229 0.242 0.228 0.198 0.182
VGG [23] LY 0.107 0.215 0.233 0.220 0.192 0.166
Daisy [27] – 0.131 0.283 0.323 0.315 0.252 0.172
SIFT [16] – 0.066 0.158 0.149 0.152 0.125 0.138

Table 9: Stereo matching, baseline ‘3’ vs ‘7’.

Descriptor Training 8×8 16×16 24×24 32×32 48×48 64×64

Ours LY+YO 0.080 0.188† 0.180 0.156 0.110 0.088
Ours LY+ND 0.058 0.173 0.158 0.153 0.087 0.058
Ours YO+ND 0.078 0.178 0.183 0.159 0.107 0.082

VGG [23] YO 0.062 0.125 0.107 0.086 0.080 0.067
VGG [23] ND 0.062 0.121 0.100 0.075 0.083 0.068
VGG [23] LY 0.062 0.107 0.094 0.076 0.083 0.064
Daisy [27] – 0.049 0.098 0.113 0.104 0.060 0.032
SIFT [16] – 0.028 0.051 0.049 0.045 0.044 0.053

Table 10: Stereo matching, baseline ‘3’ vs ‘8’.

jects, such as clothes and newspapers, which are subjected

to four different deformation levels and four different illu-

mination levels, i.e. 16 images per object, for a total of 192

grayscale 640×480 images. Feature points, extracted with

Difference-of-Gaussians detectors, are provided for each

image. Some examples of the kind of transformations fea-

tured in this dataset are shown in Fig. 7 (bottom).

We pit our descriptor against DaLI, SIFT, Daisy and the

VGG descriptor, and show the results in Table 11. We

evaluate our model trained on three different splits of the

MVS dataset, and observe that they all obtain similar per-

formance. We outperform the current state of the art in

the deformation (Def.) and deformation with illumination

Descriptor Training Def. Ill. Def.+Ill.

Ours LY+YO 76.568 88.434 75.933
Ours LY+ND 75.702 87.521 75.606
Ours YO+ND 76.731 88.898 76.591

VGG [23] YO 74.120 87.342 74.765
VGG [23] ND 72.629 84.690 72.599
VGG [23] LY 72.602 84.848 72.565
DaLI [22] - 70.577 89.895 72.912
Daisy [27] - 67.373 75.402 66.197
SIFT [16] - 55.822 60.760 53.431

Table 11: Results on the dataset of [22]. We evaluate

over three different settings, corresponding to deformation

changes only (Def.), illumination changes only (Ill.), and

both simultaneously (Def.+Ill.). We show the mean accu-

racy of descriptor matches and highlight the top-performing

descriptor for each of setting, in bold.

(Def.+Ill.) settings. This is despite having to upscale the

image patches from 41×41 pixels to 64×64 pixels, the fact

that the image patches are cropped to be circular while our

descriptor relies on square patches, and that we trained our

descriptors on datasets of rigid, non-deformable objects. In

the case of only illumination changes (Ill.), we obtain a per-

formance very close to the DaLI descriptor [22], explicitly

designed to deal with these kind of transformations. We

also compare favorably to the VGG descriptor [23], which

we outperform in every scenario.

5. Conclusions

We use Siamese networks to train deep convolutional

models for the extraction of image descriptors. Training

such models involves small patches, which constraints the

network size and discriminative power, and large datasets,

which makes exhaustive computations intractable.

In this paper we introduce a novel training scheme, based

on mining of both positive and negative correspondences,

and obtain large performance gains in patch retrieval. Our

models generalize well across different datasets and appli-

cations, including wide-baseline matching, non-rigid defor-

mations and extreme illumination changes. They can be

used as drop-in replacement for traditional descriptors, e.g.

SIFT, and are publicly available.

125



References

[1] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded Up

Robust Features. In ECCV, 2006. 1, 2

[2] J. Bromley, I. Guyon, Y. Lecun, E. Sckinger, and R. Shah.

Signature verification using a ”siamese” time delay neural

network. In NIPS, 1994. 1, 3

[3] M. Brown, G. Hua, and S. Winder. Discriminative learning

of local image descriptors. PAMI, 33(1):43–57, 2011. 1, 2,

3, 4, 5, 7

[4] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Semantic image segmentation with deep con-

volutional nets and fully connected CRFs. In ICLR, 2015.

2

[5] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A

Matlab-like environment for machine learning. In BigLearn,

NIPS Workshop, 2011. 2

[6] E. Culurciello, J. Jin, A. Dundar, and J. Bates. An analysis

of the connections between layers of deep neural networks.

CoRR, abs/1306.0152, 2013. 3

[7] J. Davis and M. Goadrich. The relationship between PR and

ROC curves. In ICML, 2006. 4

[8] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part-

based models. PAMI, 32(9):1627–1645, 2010. 2

[9] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Itera-

tive quantization: A Procrustean approach to learning binary

codes for large-scale image retrieval. In PAMI, 2012. 2

[10] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg.

MatchNet: Unifying feature and metric learning for patch-

based matching. In CVPR, 2015. 2

[11] M. Jahrer, M. Grabner, and H. Bischof. Learned local de-

scriptors for recognition and matching. In Computer Vision

Winter Workshop, 2008. 2

[12] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun.

What is the best multi-stage architecture for object recog-

nition? In ICCV, 2009. 3

[13] I. Kokkinos, M. Bronstein, and A. Yuille. Dense scale-

invariant descriptors for images and surfaces. In INRIA Re-

search Report 7914, 2012. 1

[14] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet clas-

sification with deep convolutional neural networks. In NIPS,

2012. 1, 2

[15] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, 2015. 2

[16] D. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60:91–110, 2004. 1, 2, 3, 4, 7, 8

[17] K. Mikolajczyk and C. Schmid. A performance evaluation

of local descriptors. PAMI, 27(10):1615–1630, 2005. 3

[18] H. Mobahi, R. Collobert, and J. Weston. Deep learning from

temporal coherence in video. In ICML, 2009. 3

[19] C. Osendorfer, J. Bayer, S. Urban, and P. van der Smagt.

Convolutional neural networks learn compact local image

descriptors. In ICONIP, volume 8228. 2013. 2

[20] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB:

an efficient alternative to SIFT or SURF. In ICCV, 2011. 1

[21] P. Sermanet, S. Chintala, and Y. LeCun. Convolutional neu-

ral networks applied to house numbers digit classification. In

ICPR, 2012. 3

[22] E. Simo-Serra, C. Torras, and F. Moreno-Noguer. DaLI: De-

formation and Light Invariant Descriptor. IJCV, 2015. 1, 2,

7, 8

[23] K. Simonyan, A. Vedaldi, and A. Zisserman. Learning local

feature descriptors using convex optimisation. PAMI, 2014.

1, 2, 5, 6, 7, 8

[24] C. Strecha, A. Bronstein, M. Bronstein, and P. Fua. Lda-

hash: Improved matching with smaller descriptors. In PAMI,

volume 34, 2012. 2

[25] C. Strecha, W. von Hansen, L. V. Gool, P. Fua, and U. Thoen-

nessen. On benchmarking camera calibration and multi-view

stereo for high resolution imagery. In CVPR, 2008. 7, 8

[26] C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks

for object detection. In NIPS, 2013. 1, 2

[27] E. Tola, V. Lepetit, and P. Fua. DAISY: An efficient dense

descriptor applied to wide baseline stereo. PAMI, 32(5):815–

830, May 2010. 1, 2, 7, 8

[28] E. Trulls, I. Kokkinos, A. Sanfeliu, and F. Moreno-Noguer.

Dense segmentation-aware descriptors. CVPR, 2013. 1

[29] T. Trzcinski, M. Christoudias, P. Fua, and V. Lepetit. Boost-

ing binary keypoint descriptors. In CVPR, 2013. 1, 2, 5,

6

[30] L. van der Maaten and G. Hinton. Visualizing data using

t-SNE. In JMLR, 2008. 1

[31] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable

library of computer vision algorithms. http://www.

vlfeat.org, 2008. 6

[32] Z. Wang, B. Fan, and F. Wu. Local intensity order pattern

for feature description. In ICCV, 2011. 1

[33] S. Zagoruyko and N. Komodakis. Learning to compare im-

age patches via convolutional neural networks. In CVPR,

2015. 2

[34] J. Zbontar and Y. LeCun. Computing the stereo matching

cost with a convolutional neural network. In CVPR, 2015. 2

126

http://www.vlfeat.org
http://www.vlfeat.org

