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Abstract

A longstanding question in computer vision concerns the

representation of 3D shapes for recognition: should 3D

shapes be represented with descriptors operating on their

native 3D formats, such as voxel grid or polygon mesh, or

can they be effectively represented with view-based descrip-

tors? We address this question in the context of learning

to recognize 3D shapes from a collection of their rendered

views on 2D images. We first present a standard CNN ar-

chitecture trained to recognize the shapes’ rendered views

independently of each other, and show that a 3D shape

can be recognized even from a single view at an accuracy

far higher than using state-of-the-art 3D shape descriptors.

Recognition rates further increase when multiple views of

the shapes are provided. In addition, we present a novel

CNN architecture that combines information from multiple

views of a 3D shape into a single and compact shape de-

scriptor offering even better recognition performance. The

same architecture can be applied to accurately recognize

human hand-drawn sketches of shapes. We conclude that

a collection of 2D views can be highly informative for 3D

shape recognition and is amenable to emerging CNN archi-

tectures and their derivatives.

1. Introduction

One of the fundamental challenges of computer vision is

to draw inferences about the three-dimensional (3D) world

from two-dimensional (2D) images. Since one seldom has

access to 3D object models, one must usually learn to rec-

ognize and reason about 3D objects based upon their 2D ap-

pearances from various viewpoints. Thus, computer vision

researchers have typically developed object recognition al-

gorithms from 2D features of 2D images, and used them to

classify new 2D pictures of those objects.

But what if one does have access to 3D models of each

object of interest? In this case, one can directly train

recognition algorithms on 3D features such as voxel occu-

pancy or surface curvature. The possibility of building such

classifiers of 3D shapes directly from 3D representations

has recently emerged due to the introduction of large 3D

shape repositories, such as 3D Warehouse, TurboSquid, and

Shapeways. For example, when Wu et al. [37] introduced

the ModelNet 3D shape database, they presented a classi-

fier for 3D shapes using a deep belief network architecture

trained on voxel representations.

While intuitively, it seems logical to build 3D shape clas-

sifiers directly from 3D models, in this paper we present

a seemingly counterintuitive result – that by building clas-

sifiers of 3D shapes from 2D image renderings of those

shapes, we can actually dramatically outperform the classi-

fiers built directly on the 3D representations. In particular,

a convolutional neural network (CNN) trained on a fixed set

of rendered views of a 3D shape and only provided with a

single view at test time increases category recognition accu-

racy by a remarkable 8% (77% → 85%) over the best mod-

els [37] trained on 3D representations. With more views

provided at test time, its performance further increases.

One reason for this result is the relative efficiency of the

2D versus the 3D representations. In particular, while a full

resolution 3D representation contains all of the information

about an object, in order to use a voxel-based representa-

tion in a deep network that can be trained with available

samples and in a reasonable amount of time, it would ap-

pear that the resolution needs to be significantly reduced.

For example, 3D ShapeNets use a coarse representation of

shape, a 30×30×30 grid of binary voxels. In contrast a sin-

gle projection of the 3D model of the same input size corre-

sponds to an image of 164×164 pixels, or slightly smaller

if multiple projections are used. Indeed, there is an inherent

trade-off between increasing the amount of explicit depth

information (3D models) and increasing spatial resolution

(projected 2D models).

Another advantage of using 2D representations is that

we can leverage (i) advances in image descriptors [22, 26]

and (ii) massive image databases (such as ImageNet [9]) to

pre-train our CNN architectures. Because images are ubiq-

uitous and large labeled datasets are abundant, we can learn

a good deal about generic features for 2D image catego-

rization and then fine-tune to specifics about 3D model pro-

jections. While it is possible that some day as much 3D
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Figure 1. Multi-view CNN for 3D shape recognition (illustrated using the 1st camera setup). At test time a 3D shape is rendered from 12

different views and are passed thorough CNN1 to extract view based features. These are then pooled across views and passed through

CNN2 to obtain a compact shape descriptor.

training data will be available, for the time being this is a

significant advantage of our representation.

Although the simple strategy of classifying views inde-

pendently works remarkably well (Sect. 3.2), we present

new ideas for how to “compile” the information in multi-

ple 2D views of an object into a compact object descrip-

tor using a new architecture called multi-view CNN (Fig. 1

and Sect. 3.3). This descriptor is at least as informative for

classification (and for retrieval is slightly more informative)

than the full collection of view-based descriptors of the ob-

ject. Moreover it facilitates efficient retrieval using either

a similar 3D object or a simple hand-drawn sketch, without

resorting to slower methods that are based on pairwise com-

parisons of image descriptors. We present state-of-the-art

results on 3D object classification, 3D object retrieval using

3D objects, and 3D object retrieval using sketches (Sect. 4).

Our multi-view CNN is related to “jittering” where trans-

formed copies of the data are added during training to learn

invariances to transformations such as rotation or transla-

tion. In the context of 3D recognition the views can be

seen as jittered copies. The multi-view CNN learns to com-

bine the views instead of averaging, and thus can use the

more informative views of the object for prediction while

ignoring others. Our experiments show that this improves

performance (Sect. 4.1) and also lets us visualize informa-

tive views of the object by back-propagating the gradients

of the network to the views (Fig. 3). Even on traditional

image classification tasks multi-view CNN can be a better

alternative to jittering. For example, on the sketch recogni-

tion benchmark [11] a multi-view CNN trained on jittered

copies performs better than a standard CNN trained with the

same jittered copies (Sect. 4.2).

Pre-trained CNN models, data, and the complete source

code to reproduce the results in the paper are available at

http://vis-www.cs.umass.edu/mvcnn.

2. Related Work

Our method is related to prior work on shape descriptors

for 3D objects and image-based CNNs. Next we discuss

representative work in these areas.

Shape descriptors. A large corpus of shape descriptors

has been developed for drawing inferences about 3D objects

in both the computer vision and graphics literature. Shape

descriptors can be classified into two broad categories: 3D

shape descriptors that directly work on the native 3D repre-

sentations of objects, such as polygon meshes, voxel-based

discretizations, point clouds, or implicit surfaces, and view-

based descriptors that describe the shape of a 3D object by

“how it looks” in a collection of 2D projections.

With the exception of the recent work of Wu et al. [37]

which learns shape descriptors from the voxel-based repre-

sentation of an object through 3D convolutional nets, pre-

vious 3D shape descriptors were largely “hand-designed”

according to a particular geometric property of the shape

surface or volume. For example, shapes can be represented

with histograms or bag-of-features models constructed out

of surface normals and curvatures [15], distances, angles,

triangle areas or tetrahedra volumes gathered at sampled

surface points [25], properties of spherical functions defined

in volumetric grids [16], local shape diameters measured at

densely sampled surface points [4], heat kernel signatures

on polygon meshes [2, 19], or extensions of the SIFT and

SURF feature descriptors to 3D voxel grids [17]. Develop-

ing classifiers and other supervised machine learning algo-

rithms on top of such 3D shape descriptors poses a number

of challenges. First, the size of organized databases with

annotated 3D models is rather limited compared to image

datasets, e.g., ModelNet contains about 150K shapes (its 40

category benchmark contains about 4K shapes). In contrast,

the ImageNet database [9] already includes tens of millions

of annotated images. Second, 3D shape descriptors tend to
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be very high-dimensional, making classifiers prone to over-

fitting due to the so-called ‘curse of dimensionality’.

On the other hand view-based descriptors have a number

of desirable properties: they are relatively low-dimensional,

efficient to evaluate, and robust to 3D shape representation

artifacts, such as holes, imperfect polygon mesh tessela-

tions, noisy surfaces. The rendered shape views can also be

directly compared with other 2D images, silhouettes or even

hand-drawn sketches. An early example of a view-based

approach is the work by Murase and Nayar [24] that rec-

ognizes objects by matching their appearance in parametric

eigenspaces formed by large sets of 2D renderings of 3D

models under varying poses and illuminations. Another ex-

ample, which is particularly popular in computer graphics

setups, is the LightField descriptor [5] that extracts a set of

geometric and Fourier descriptors from object silhouettes

rendered from several different viewpoints. Alternatively,

the silhouette of an object can be decomposed into parts and

then represented by a directed acyclic graph (shock graph)

[23]. Cyr and Kimia [8] defined similarity metrics based

on curve matching and grouped similar views, called aspect

graphs of 3D models [18]. Eitz et al. [12] compared human

sketches with line drawings of 3D models produced from

several different views based on local Gabor filters, while

Schneider et al. [30] proposed using Fisher vectors [26]

on SIFT features [22] for representing human sketches of

shapes. These descriptors are largely “hand-engineered”

and some do not generalize well across different domains.

Convolutional neural networks. Our work is also related

to recent advances in image recognition using CNNs [20].

In particular CNNs trained on the large datasets such as

ImageNet have been shown to learn general purpose im-

age descriptors for a number of vision tasks such as object

detection, scene recognition, texture recognition and fine-

grained classification [10, 13, 28, 7]. We show that these

deep architectures can be adapted to specific domains in-

cluding shaded illustrations of 3D objects, line drawings,

and human sketches to produce descriptors that have supe-

rior performance compared to other view-based or 3D shape

descriptors in a variety of setups. Furthermore, they are

compact and efficient to compute. There has been existing

work on recognizing 3D objects with CNNs [21] using two

concatenated views (binocular images) as input. Our net-

work instead learns a shape representation that aggregates

information from any number of input views without any

specific ordering, and always outputs a compact shape de-

scriptor of the same size. Furthermore, we leverage both

image and shape datasets to train our network.

Although there is significant work on 3D and 2D shape

descriptors, and estimating informative views of the objects

(or, aspect graphs), there is relatively little work on learning

to combine the view-based descriptors for 3D shape recog-

nition. Most methods resort to simple strategies such as per-

forming exhaustive pairwise comparisons of descriptors ex-

tracted from different views of each shape, or concatenating

descriptors from ordered, consistent views. In contrast our

multi-view CNN architecture learns to recognize 3D shapes

from views of the shapes using image-based CNNs but in

the context of other views via a view-pooling layer. As a

result, information from multiple views is effectively accu-

mulated into a single, compact shape descriptor.

3. Method

As discussed above, our focus in this paper is on devel-

oping view-based descriptors for 3D shapes that are train-

able, produce informative representations for recognition

and retrieval tasks, and are efficient to compute.

Our view-based representations start from multiple

views of a 3D shape, generated by a rendering engine. A

simple way to use multiple views is to generate a 2D image

descriptor per each view, and then use the individual de-

scriptors directly for recognition tasks based on some vot-

ing or alignment scheme. For example, a naı̈ve approach

would be to average the individual descriptors, treating all

the views as equally important. Alternatively, if the views

are rendered in a reproducible order, one could also con-

catenate the 2D descriptors of all the views. Unfortunately,

aligning a 3D shape to a canonical orientation is hard and

sometimes ill-defined. In contrast to the above simple ap-

proaches, an aggregated representation combining features

from multiple views is more desirable since it yields a sin-

gle, compact descriptor representing the 3D shape.

Our approach is to learn to combine information from

multiple views using a unified CNN architecture that in-

cludes a view-pooling layer (Fig. 1). All the parameters of

our CNN architecture are learned discriminatively to pro-

duce a single compact descriptor for the 3D shape. Com-

pared to exhaustive pairwise comparisons between single-

view representations of 3D shapes, our resulting descriptors

can be directly used to compare 3D shapes leading to sig-

nificantly higher computational efficiency.

3.1. Input: A Multi­view Representation

3D models in online databases are typically stored as

polygon meshes, which are collections of points connected

with edges forming faces. To generate rendered views of

polygon meshes, we use the Phong reflection model [27].

The mesh polygons are rendered under a perspective pro-

jection and the pixel color is determined by interpolating

the reflected intensity of the polygon vertices. Shapes are

uniformly scaled to fit into the viewing volume.

To create a multi-view shape representation, we need to

setup viewpoints (virtual cameras) for rendering each mesh.
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We experimented with two camera setups. For the 1st cam-

era setup, we assume that the input shapes are upright ori-

ented along a consistent axis (e.g., z-axis). Most models in

modern online repositories, such as the 3D Warehouse, sat-

isfy this requirement, and some previous recognition meth-

ods also follow the same assumption [37]. In this case,

we create 12 rendered views by placing 12 virtual cameras

around the mesh every 30 degrees (see Fig. 1). The cameras

are elevated 30 degrees from the ground plane, pointing to-

wards the centroid of the mesh. The centroid is calculated

as the weighted average of the mesh face centers, where

the weights are the face areas. For the 2nd camera setup,

we do not make use of the assumption about consistent up-

right orientation of shapes. In this case, we render from

several more viewpoints since we do not know beforehand

which ones yield good representative views of the object.

The renderings are generated by placing 20 virtual cameras

at the 20 vertices of an icosahedron enclosing the shape. All

cameras point towards the centroid of the mesh. Then we

generate 4 rendered views from each camera, using 0, 90,

180, 270 degrees rotation along the axis passing through the

camera and the object centroid, yielding total 80 views.

We note that using different shading coefficients or il-

lumination models did not affect our output descriptors

due to the invariance of the learned filters to illumination

changes, as also observed in image-based CNNs [20, 10].

Adding more or different viewpoints is trivial, however, we

found that the above camera setups were already enough

to achieve high performance. Finally, rendering each mesh

from all the viewpoints takes no more than ten milliseconds

on modern graphics hardware.

3.2. Recognition with Multi­view Representations

We claim that our multi-view representation contains

rich information about 3D shapes and can be applied to var-

ious types of tasks. In the first setting, we make use of ex-

isting 2D image features directly and produce a descriptor

for each view. This is the most straightforward approach to

utilize the multi-view representation. However, it results in

multiple 2D image descriptors per 3D shape, one per view,

which need to be integrated somehow for recognition tasks.

Image descriptors. We consider two types of image de-

scriptors for each 2D view: a state-of-the-art “hand-crafted”

image descriptor based on Fisher vectors [29] with multi-

scale SIFT, as well as CNN activation features [10].

The Fisher vector image descriptor is implemented using

VLFeat [36]. For each image multi-scale SIFT descriptors

are extracted densely. These are then projected to 80 dimen-

sions with PCA, followed by Fisher vector pooling with a

Gaussian mixture model with 64 components, square-root

and ℓ2 normalization.

For our CNN features we use the VGG-M network

from [3] which consists of mainly five convolutional layers

conv1,...,5 followed by three fully connected layers fc6,...,8
and a softmax classification layer. The penultimate layer

fc7 (after ReLU non-linearity, 4096-dimensional) is used

as image descriptor. The network is pre-trained on Ima-

geNet images from 1k categories, and then fine-tuned on all

2D views of the 3D shapes in training set. As we show in

our experiments, fine-tuning improves performance signif-

icantly. Both Fisher vectors and CNN features yield very

good performance in classification and retrieval compared

with popular 3D shape descriptors (e.g., SPH [16], LFD [5])

as well as 3D ShapeNets [37].

Classification. We train one-vs-rest linear SVMs (each

view is treated as a separate training sample) to classify

shapes using their image features. At test time, we simply

sum up the SVM decision values over all 12 views and re-

turn the class with the highest sum. Alternative approaches,

e.g., averaging image descriptors, lead to worse accuracy.

Retrieval. A distance or similarity measure is required for

retrieval tasks. For shape x with nx image descriptors and

shape y with ny image descriptors, the distance between

them is defined in Eq. 1. Note that the distance between

two 2D images is defined as the ℓ2 distance between their

feature vectors, i.e. ‖xi − yj‖2.

d(x,y) =

∑

j mini ‖xi − yj‖2

2ny

+

∑

i minj ‖xi − yj‖2
2nx

(1)

To interpret this definition, we can first define the dis-

tance between a 2D image xi and a 3D shape y as

d(xi,y) = minj ‖xi − yj‖2. Then given all nx distances

between x’s 2D projections and y, the distance between

these two shapes is computed by simple averaging. In Eq. 1,

this idea is applied in both directions to ensure symmetry.

We investigated alternative distance measures, such as

minimun distance among all nx · ny image pairs and the

distance between average image descriptors, but they all led

to inferior performance.

3.3. Multi­view CNN: Learning to Aggregate Views

Although having multiple separate descriptors for each

3D shape can be successful for classification and retrieval

compared to existing 3D descriptors, it can be inconvenient

and inefficient in many cases. For example, in Eq. 1, we

need to compute all nx×ny pairwise distances between im-

ages in order to compute distance between two 3D shapes.

Simply averaging or concatenating the image descriptors

leads to inferior performance. In this section, we focus on

the problem of learning to aggregate multiple views in order
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Method
Training Config. Test Config. Classification

(Accuracy)

Retrieval

(mAP)
Pre-train Fine-tune #Views #Views

(1) SPH [16] - - - - 68.2% 33.3%

(2) LFD [5] - - - - 75.5% 40.9%

(3) 3D ShapeNets [37] ModelNet40 ModelNet40 - - 77.3% 49.2%

(4) FV - ModelNet40 12 1 78.8% 37.5%

(5) FV, 12× - ModelNet40 12 12 84.8% 43.9%

(6) CNN ImageNet1K - - 1 83.0% 44.1%

(7) CNN, f.t. ImageNet1K ModelNet40 12 1 85.1% 61.7%

(8) CNN, 12× ImageNet1K - - 12 87.5% 49.6%

(9) CNN, f.t.,12× ImageNet1K ModelNet40 12 12 88.6% 62.8%

(10) MVCNN, 12× ImageNet1K - - 12 88.1% 49.4%

(11) MVCNN, f.t., 12× ImageNet1K ModelNet40 12 12 89.9% 70.1%

(12) MVCNN, f.t.+metric, 12× ImageNet1K ModelNet40 12 12 89.5% 80.2%

(13) MVCNN, 80× ImageNet1K - 80 80 84.3% 36.8%

(14) MVCNN, f.t., 80× ImageNet1K ModelNet40 80 80 90.1% 70.4%

(15) MVCNN, f.t.+metric, 80× ImageNet1K ModelNet40 80 80 90.1% 79.5%

* f.t.=fine-tuning, metric=low-rank Mahalanobis metric learning

Table 1. Classification and retrieval results on the ModelNet40 dataset. On the top are results using state-of-the-art 3D shape descriptors.

Our view-based descriptors including Fisher vectors (FV) significantly outperform these even when a single view is available at test

time (#Views = 1). When multiple views (#Views=12 or 80) are available at test time, the performance of view-based methods improve

significantly. The multi-view CNN (MVCNN) architecture outperforms the view-based methods, especially for retrieval.

to synthesize the information from all views into a single,

compact 3D shape descriptor.

We design the multi-view CNN (MVCNN) on top of

image-based CNNs (Fig. 1). Each image in a 3D shape’s

multi-view representation is passed through the first part

of the network (CNN1) separately, aggregated at a view-

pooling layer, and then sent through the remaining part

of the network (CNN2). All branches in the first part of

the network share the same parameters in CNN1. We use

element-wise maximum operation across the views in the

view-pooling layer. An alternative is element-wise mean

operation, but it is not as effective in our experiments. The

view-pooling layer can be placed anywhere in the network.

We show in our experiments that it should be placed close

to the last convolutional layer (conv5) for optimal classifi-

cation and retrieval performance. View-pooling layers are

closely related to max-pooling layers and maxout layers

[14], with the only difference being the dimension that their

pooling operations are carried out on. The MVCNN is a di-

rected acyclic graphs and can be trained or fine-tuned using

stochastic gradient descent with back-propagation.

Using fc7 (after ReLU non-linearity) in an MVCNN

as an aggregated shape descriptor, we achieve higher per-

formance than using separate image descriptors from an

image-based CNN directly, especially in retrieval (62.8%

→ 70.1%). Perhaps more importantly, the aggregated de-

scriptor is readily available for a variety of tasks, e.g., shape

classification and retrieval, and offers significant speed-ups

against multiple image descriptors.

An MVCNN can also be used as a general framework

to integrate perturbed image samples (also known as data

jittering). We illustrate this capability of MVCNNs in the

context of sketch recognition in Sect. 4.2.

Low-rank Mahalanobis metric. Our MVCNN is fine-

tuned for classification, and thus retrieval performance is

not directly optimized. Although we could train it with a

different objective function suitable for retrieval, we found

that a simpler approach can readily yield a significant re-

trieval performance boost (see row 12 in Tab. 1). We learn a

Mahalanobis metric W that directly projects MVCNN de-

scriptors φ ∈ R
d to Wφ ∈ R

p, such that the ℓ2 distances

in the projected space are small between shapes of the same

category, and large otherwise. We use the large-margin met-

ric learning algorithm and implementation from [32], with

p < d to make the final descriptor compact (p = 128 in our

experiments). The fact that we can readily use metric learn-

ing over the output shape descriptor demonstrates another

advantage of using MVCNNs.

4. Experiments

4.1. 3D Shape Classification and Retrieval

We evaluate our shape descriptors on the Princeton Mod-

elNet dataset [1]. ModelNet currently contains 127,915
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3D CAD models from 662 categories.1 A 40-class well-

annotated subset containing 12,311 shapes from 40 com-

mon categories, ModelNet40, is provided on the ModelNet

website. For our experiments, we use the same training and

test split of ModelNet40 as in [37].2

Our shape descriptors are compared against the 3D

ShapeNets by Wu et al. [37], the Spherical Harmonics de-

scriptor (SPH) by Kazhdan et al. [16], the LightField de-

scriptor (LFD) by Chen et al. [5], and Fisher vectors ex-

tracted on the same rendered views of the shapes used as

input to our networks.

Results on shape classification and retrieval are sum-

marized in Tab. 1. Precision-recall curves are provided in

Fig. 2. Remarkably the Fisher vector baseline with just

a single view achieves a classification accuracy of 78.8%

outperforming the state-of-the-art learned 3D descriptors

(77.3% [37]). When all 12 views of the shape are avail-

able at test time (based on our first camera setup), we can

also average the predictions over these views. Averaging

increases the performance of Fisher vectors to 84.8%. The

performance of Fisher vectors further supports our claim

that 3D objects can be effectively represented using view-

based 2D representations. The trends in performance for

shape retrieval are similar.

Using our CNN baseline trained on ImageNet in turn

outperforms Fisher vectors by a significant margin. Fine-

tuning the CNN on the rendered views of the training shapes

of ModelNet40 further improves the performance. By using

all 12 views of the shape, its classification accuracy reaches

88.6%, and mean average precision (mAP) for retrieval is

also improved to 62.8%.

Our MVCNN outperforms all state-of-the-art descriptors

as well as the Fisher vector and CNN baselines. With fine-

tuning on the ModelNet40 training set, our model achieves

89.9% classification accuracy, and 70.1% mAP on retrieval

using the first camera setup. If we do not make use of the

assumption about consistent upright orientation of shapes

(second camera setup), the performance remains still in-

tact, achieving 90.1% classification accuracy and 70.4%

retrieval mAP. MVCNN constitutes an absolute gain of

12.8% in classification accuracy compared to the state-of-

the-art learned 3D shape descriptor [37] (77.3% → 90.1%).

Similarly, retrieval mAP is improved by 21.2% (49.2% →
70.4%). Finally, learning a low-rank Mahalanobis metric

improves retrieval mAP further while classification accu-

racy remains almost unchanged, and the resulting shape de-

scriptors become more compact (d = 4096, p = 128).

We considered different locations to place the view-

pooling layer in the MVCNN. Performance is not very sen-

1As of 09/24/2015.
2Based on our correspondence with the authors of [37], for each cate-

gory the first 80 shapes in the “train” folder (or all shapes if there are fewer

than 80) should be used for training, while the first 20 shapes in the “test”

folder should be used for testing.
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Figure 2. Precision-recall curves for various methods for 3D shape

retrieval on the ModelNet40 dataset. Our method significantly out-

performs the state-of-the-art on this task achieving 80.2% mAP.

sitive among the later few layers (conv4∼fc7); however any

location prior to conv4 decreases classification accuracies

significantly. We find conv5 offers slightly better accura-

cies (∼1%), and thus use it for all our experiments.

Saliency map among views. For each 3D shape S, our

multi-view representation consists of a set of K 2D views

{I1, I2 . . . IK}. We would like to rank pixels in the 2D

views w.r.t. their influence on the output score Fc of the net-

work (e.g. taken from fc8 layer) for its ground truth class c.

Following [33], saliency maps can be defined as the deriva-

tives of Fc w.r.t. the 2D views of the shape:

[w1, w2 . . . wK ] =

[

∂Fc

∂I1

∣

∣

∣

∣

S

,
∂Fc

∂I2

∣

∣

∣

∣

S

. . .
∂Fc

∂IK

∣

∣

∣

∣

S

]

(2)

For MVCNN, w in Eq. 2 can be computed using back-

propagation with all the network parameters fixed, and can

then be rearranged to form saliency maps for individual

views. Examples of saliency maps are shown in Fig. 3.

4.2. Sketch Recognition: Jittering Revisited

Given the success of our aggregated descriptors on mul-

tiple views of a 3D object, it is logical to ask whether ag-

gregating multiple views of a 2D image could also improve

performance. Here we show that this is indeed the case by

exploring its connection with data jittering in the context of

sketch recognition.

Data jittering, or data augmentation, is a method to gen-

erate extra samples from a given image. It is the process

of perturbing the image by transformations that change its

appearance while leaving the high-level information (class
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Figure 3. Top three views with the highest saliency are highlighted in blue and the relative magnitudes of gradient energy for each view is

shown on top. The saliency maps are computed by back-propagating the gradients of the class score onto the image via the view-pooling

layer. Notice that the handles of the dresser and of the desk are the most discriminative features. (Figures are enhanced for visibility.)

label, attributes, etc.) intact. Jittering can be applied at train-

ing time to augment training samples and to reduce overfit-

ting, or at test time to provide more robust predictions. In

particular, several authors [20, 3, 35] have used data jittering

to improve the performance of deep representations on 2D

image classification tasks. In these applications, jittering

at training time usually includes random image translations

(implemented as random crops), horizontal reflections, and

color perturbations. At test time jittering usually only in-

cludes a few crops (e.g., four at the corners, one at the center

and their horizontal reflections). We now examine whether

we can get more benefit out of jittered views of an image by

using the same feature aggregation scheme we developed

for recognizing 3D shapes.

The human sketch dataset [11] contains 20,000 hand-

drawn sketches of 250 object categories such as airplanes,

apples, bridges, etc. The accuracy of humans in recogniz-

ing these hand-drawings is only 73% because of the low

quality of some sketches. Schneider and Tuytelaars [30]

cleaned up the dataset by removing instances and categories

that humans find hard to recognize. This cleaned dataset

(SketchClean) contains 160 categories, on which humans

can achieve 93% recognition accuracy. Using SIFT Fisher

vectors with spatial pyramid pooling and linear SVMs,

Schneider and Tuytelaars achieved 68.9% recognition accu-

racy on the original dataset and 79.0% on the SketchClean

dataset. We split the SketchClean dataset randomly into

training, validation and test set,3 and report classification

accuracy on the test set in Tab. 2.

With an off-the-shelf CNN (VGG-M from [3]), we are

able to get 77.3% classification accuracy without any net-

work fine-tuning. With fine-tuning on the training set, the

accuracy can be further improved to 84.0%, significantly

surpassing the Fisher vector approach. These numbers are

3The dataset does not come with a standard training/val/test split.

achieved by using the penultimate layer (fc7) in the network

as image descriptors and linear SVMs.

Although it is impractical to get multiple views from 2D

images, we can use jittering to mimic the effect of views.

For each hand-drawn sketch, we do in-plane rotation with

three angles: −45°, 0°, 45°, and also horizontal reflec-

tions (hence 6 samples per image). We apply the two CNN

variants (regular CNN and MVCNN) discussed earlier for

aggregating multiple views of 3D shapes, and get 85.5%

(CNN w/o view-pooling) and 86.3% (MVCNN w/ view-

pooling on fc7) classification accuracy respectively. The

latter also has the advantage of a single, more compact de-

scriptor for each hand-drawn sketch.

With a deeper network architecture (VGG-VD, a net-

work with 16 weight layers from [34]), we achieve 87.2%

accuracy, further advancing the classification performance,

and closely approaching human performance.

4.3. Sketch­based 3D Shape Retrieval

Due to the growing number of online 3D repositories,

many approaches have been investigated to perform effi-

cient 3D shape retrieval. Most online repositories (e.g.

3D Warehouse, TurboSquid, Shapeways) provide only text-

based search engines or hierarchical catalogs for 3D shape

retrieval. However, it is hard to convey stylistic and geomet-

ric variations using only textual descriptions, thus sketch-

based shape retrieval [38, 31, 12] has been proposed as

an alternative for users to retrieve shapes with an approx-

imate sketch of the desired 3D shape in mind. Sketch-

based retrieval is challenging since it involves two heteroge-

neous data domains (hand-drawn sketches and 3D shapes),

and sketches can be highly abstract and visually different

from target 3D shapes. Here we demonstrate the potential

strength of MVCNNs in sketch-based shape retrieval.

For this experiment, we construct a dataset containing
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Method Aug. Accuracy

(1) FV [30] - 79.0%

(2) CNN M - 77.3%

(3) CNN M, fine-tuned - 84.0%

(4) CNN M, fine-tuned 6× 85.5%

(5) MVCNN M, fine-tuned 6× 86.3%

(6) CNN VD - 69.3%

(7) CNN VD, fine-tuned - 86.3%

(8) CNN VD, fine-tuned 6× 86.0%

(9) MVCNN VD, fine-tuned 6× 87.2%

(10) Human performance n/a 93.0%

Table 2. Classification results on SketchClean. Fine-tuned CNN

models significantly outperform Fisher vectors [30] by a signif-

icant margin. MVCNNs are better than CNN trained with data

jittering. The results are shown with two different CNN architec-

tures – VGG-M (row 2-5) and VGG-VD (row 6-9).

3D mesh depth bu er
Canny edge 

  detection
human sketch

Figure 4. Line-drawing style rendering from 3D shapes.

193 sketches and 790 CAD models from 10 categories ex-

isting in both SketchClean and ModelNet40. Following

[12], we produce renderings of 3D shapes with a style simi-

lar to hand-drawn sketches (see Fig. 4). This is achieved by

detecting Canny edges on the depth buffer (also known as

z-buffer) from 12 viewpoints. These edge maps are then

passed through CNNs to obtain image descriptors. De-

scriptors are also extracted from 6 perturbed samples of

each query sketch in the manner described in Sect. 4.2. Fi-

nally we rank 3D shapes w.r.t. “average minimum distance”

(Eq. 1) to the sketch descriptors. Representative retrieval

results are shown in Fig. 5.

We are able to retrieve 3D objects from the same class

with the query sketch, as well as being visually similar,

especially in the top few matches. Our performance is

36.1% mAP on this dataset. Here we use the VGG-M net-

work trained on ImageNet without any fine-tuning on either

sketches or 3D shapes. With a fine-tuning procedure that

optimizes a distance measure between hand-drawn sketches

and 3D shapes, e.g., by using a Siamese Network [6], re-

trieval performance can be further improved.

5. Conclusion

While the world is full of 3D shapes, as humans at least,

we understand that world is mostly through 2D images. We

query top 10 retrieved 3D shapes

Figure 5. Sketch-based 3D shape retrieval examples. Top matches

are shown for each query, with mistakes highlighted in red.

have shown that using images of shapes as inputs to modern

learning architectures, we can achieve performance better

than any previously published results, including those that

operate on direct 3D representations of shapes.

While even a näive usage of these multiple 2D pro-

jections yields impressive discrimination performance, by

building descriptors that are aggregations of information

from multiple views, we can achieve compactness, effi-

ciency, and better accuracy. In addition, by relating the

content of 3D shapes to 2D representations like sketches,

we can retrieve these 3D shapes at high accuracy using

sketches, and leverage the implicit knowledge of 3D shapes

contained in their 2D views.

There are a number of directions to explore in future

work. One is to experiment with different combinations of

2D views. Which views are most informative? How many

views are necessary for a given level of accuracy? Can in-

formative views be selected on the fly?

Another obvious question is whether our view aggregat-

ing techniques can be used for building compact and dis-

criminative descriptors for real-world 3D objects from mul-

tiple views, or automatically from video, rather than merely

for 3D polygon mesh models. Such investigations could be

immediately applicable to widely studied problems such as

object recognition and face recognition.

Acknowledgements We thank Yanjie Li for her help on

rendering meshes. We thank NVIDIA for their generous

donation of GPUs used in this research. Our work was par-

tially supported by NSF (CHS-1422441).

952



References

[1] The Princeton ModelNet. http://modelnet.cs.

princeton.edu/. [Online; accessed March 2015]. 5

[2] A. Bronstein, M. Bronstein, M. Ovsjanikov, and L. Guibas.

Shape Google: Geometric words and expressions for invari-

ant shape retrieval. ACM Trans. Graph., 30, 2011. 2

[3] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.

Return of the devil in the details: Delving deep into convo-

lutional nets. In Proc. BMVC, 2014. 4, 7

[4] S. Chaudhuri and V. Koltun. Data-driven suggestions for cre-

ativity support in 3D modeling. ACM Trans. Graph., 29(6),

2010. 2

[5] D. Chen, X. Tian, Y. Shen, and M. Ouhyoung. On visual

similarity based 3D model retrieval. Proc. Eurographics,

22(3):223–232, 2003. 3, 4, 5, 6

[6] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity

metric discriminatively, with application to face verification.

In Proc. CVPR, 2005. 8

[7] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and

A. Vedaldi. Describing textures in the wild. In Proc. CVPR,

2014. 3

[8] C. M. Cyr and B. B. Kimia. A similarity-based aspect-graph

approach to 3D object recognition. 57(1), 2004. 3

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

Proc. CVPR, 2009. 1, 2

[10] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,

E. Tzeng, and T. Darrell. DeCAF: A deep convolutional

activation feature for generic visual recognition. CoRR,

abs/1310.1531, 2013. 3, 4

[11] M. Eitz, J. Hays, and M. Alexa. How do humans sketch

objects? ACM Trans. Graph., 31(4):44:1–44:10, 2012. 2, 7

[12] M. Eitz, R. Richter, T. Boubekeur, K. Hildebrand, and

M. Alexa. Sketch-based shape retrieval. ACM Trans. Graph.,

31(4), 2012. 3, 7, 8

[13] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich

feature hierarchies for accurate object detection and semantic

segmentation. In Proc. CVPR, 2014. 3

[14] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville,

and Y. Bengio. Maxout networks. ArXiv e-prints, Feb. 2013.

5

[15] B. K. P. Horn. Extended gaussian images. Proc. of the IEEE,

72(12):1671–1686, 1984. 2

[16] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation

invariant spherical harmonic representation of 3D shape de-

scriptors. Proc. Symposium of Geometry Processing, 2003.

2, 4, 5, 6

[17] J. Knopp, M. Prasad, G. Willems, R. Timofte, and

L. Van Gool. Hough transform and 3D SURF for robust

three dimensional classification. In Proc. ECCV, 2010. 2

[18] J. J. Koenderink and A. J. Van Doorn. The singularities of the

visual mapping. Biological cybernetics, 24(1):51–59, 1976.

3

[19] I. Kokkinos, M. Bronstein, R. Litman, and A. Bronstein. In-

trinsic shape context descriptors for deformable shapes. In

Proc. CVPR, 2012. 2

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Proc. NIPS. 2012. 3, 4, 7

[21] Y. LeCun, F. Huang, and L. Bottou. Learning methods for

generic object recognition with invariance to pose and light-

ing. In Proc. CVPR, 2004. 3

[22] D. G. Lowe. Object recognition from local scale-invariant

features. In Proc. ICCV, 1999. 1, 3

[23] D. Macrini, A. Shokoufandeh, S. Dickinson, K. Siddiqi, and

S. Zucker. View-based 3-D object recognition using shock

graphs. In Proc. ICPR, volume 3, 2002. 3

[24] H. Murase and S. K. Nayar. Visual learning and recognition

of 3-D objects from appearance. 14(1), 1995. 3

[25] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. Shape

distributions. ACM Trans. Graph., 21(4), 2002. 2

[26] F. Perronnin, J. Sánchez, and T. Mensink. Improving the

Fisher kernel for large-scale image classification. In Proc.

ECCV, 2010. 1, 3

[27] B. T. Phong. Illumination for computer generated pictures.

Commun. ACM, 18(6), 1975. 3

[28] A. S. Razavin, H. Azizpour, J. Sullivan, and S. Carlsson.

CNN features off-the-shelf: An astounding baseline for

recognition. In DeepVision workshop, 2014. 3

[29] J. Sanchez, F. Perronnin, T. Mensink, and J. Verbeek. Image

classification with the Fisher vector: Theory and practice.

2013. 4

[30] R. G. Schneider and T. Tuytelaars. Sketch classification

and classification-driven analysis using Fisher vectors. ACM

Trans. Graph., 33(6):174:1–174:9, Nov. 2014. 3, 7, 8

[31] T. Shao, W. Xu, K. Yin, J. Wang, K. Zhou, and B. Guo.

Discriminative sketch-based 3D model retrieval via robust

shape matching. In Computer Graphics Forum, volume 30.

Wiley Online Library, 2011. 7

[32] K. Simonyan, O. M. Parkhi, A. Vedaldi, and A. Zisserman.

Fisher vector faces in the wild. In Proc. BMVC, 2013. 5

[33] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep in-

side convolutional networks: Visualising image classifica-

tion models and saliency maps. CoRR, abs/1312.6034, 2013.

6

[34] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014. 7

[35] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. CoRR, abs/1409.4842,

2014. 7

[36] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable

library of computer vision algorithms. http://www.

vlfeat.org/, 2008. 4

[37] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and

J. Xiao. 3D ShapeNets: A deep representation for volumetric

shape modeling. In Proc. CVPR, 2015. 1, 2, 4, 5, 6

[38] S. M. Yoon, M. Scherer, T. Schreck, and A. Kuijper. Sketch-

based 3D model retrieval using diffusion tensor fields of sug-

gestive contours. In Proc. International Conference on Mul-

timedia, 2010. 7

953

http://modelnet.cs.princeton.edu/
http://modelnet.cs.princeton.edu/
http://www.vlfeat.org/
http://www.vlfeat.org/

