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Abstract

With the widespread availability of cellphones and cam-

eras that have GPS capabilities, it is common for images

being uploaded to the Internet today to have GPS coordi-

nates associated with them. In addition to research that

tries to predict GPS coordinates from visual features, this

also opens up the door to problems that are conditioned on

the availability of GPS coordinates. In this work, we tackle

the problem of performing image classification with loca-

tion context, in which we are given the GPS coordinates for

images in both the train and test phases. We explore differ-

ent ways of encoding and extracting features from the GPS

coordinates, and show how to naturally incorporate these

features into a Convolutional Neural Network (CNN), the

current state-of-the-art for most image classification and

recognition problems. We also show how it is possible to

simultaneously learn the optimal pooling radii for a subset

of our features within the CNN framework. To evaluate our

model and to help promote research in this area, we identify

a set of location-sensitive concepts and annotate a subset of

the Yahoo Flickr Creative Commons 100M dataset that has

GPS coordinates with these concepts, which we make pub-

licly available. By leveraging location context, we are able

to achieve almost a 7% gain in mean average precision.

1. Introduction

As Figure 1 shows, it is sometimes hard even for humans

to recognize the content of photos without context. Just by

looking at the photos we can conclude that all these exam-

ples can reasonably be of snow. Consider, however, that (a)

was taken at the Bonneville Salt Flats in Utah, (c) and (d)

were taken in Death Valley and Palo Alto, respectively, both

of which are areas in California that never see snow, and

(b) was taken in New Hampshire, where snow storms are

common. With this information in hand, it is much easier

to correctly deduce that (b) is the only image that actually

contains snow.

Motivated by this observation, we tackle the problem of

image classification with location context. In particular, we

(a) (b)

(c) (d)

Figure 1. Which of these are images of snow? Just by looking at

the images, it may be difficult to tell. However, what if we knew

that (a) was taken at the Bonneville Salt Flats in Utah, (b) was

taken in New Hamsphire, (c) was taken in Death Valley, California

and (d) was taken near Palo Alto, California? Image credits given

in supplementary material.

are interested in classifying consumer images with concepts

that commonly occur on the Internet, ranging from objects

to scenes to specific landmarks, as these are the things that

people often take pictures of, and the Internet is the largest

source of geotagged images. Building on the CNN archi-

tecture introduced in [26], the basis for most state-of-the-

art image classification and recognition results, we address

how to represent and incorporate location features into the

network architecture. This is not an easy problem, as we

have found that naive approaches such as concatenating the

GPS coordinates into the classifier, or leveraging nearby im-

ages as a Bayesian prior result in almost no gain in perfor-

mance. However, knowing the GPS coordinates allows us

to utilize geographic datasets and surveys that have been

collected by various institutions and agencies. We can also

leverage the large amount of data on the Internet tagged

with GPS coordinates in a data-driven fashion.

In summary, the contributions in this paper can be orga-
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nized into three parts.

Constructing effective location features from GPS co-

ordinates. We propose 5 different types of features that

extend upon the latitude and longitude coordinates that are

given to us, and perform a comprehensive evaluation of the

effectiveness of each feature.

Network architectures for incorporating location fea-

tures. We show how to incorporate these additional fea-

tures into a CNN [26]. This allows us to learn the visual

features along with the interactions between the different

feature types in a joint framework. In addition, we also

show how we can simultaneously learn the parameters re-

quired for constructing a subset of our features in the same

framework, giving us improved performance and a better

understanding of what the network is learning.

YFCC100M-GEO100 dataset. We introduce annota-

tions for a set of location sensitive concepts on a subset of

the Yahoo Flickr Creative Commons 100M (YFCC100M)

dataset [4], which we denote as the YFCC100M-GEO100

dataset, and make our annotations publicly available. This

dataset consists of 88,986 images over 100 classes, and al-

lows us to evaluate our models at scale.

2. Related Work

There is a large body of work that focuses on the prob-

lem of image geolocation, such as geolocating static cam-

eras [22], city-scale location recognition [37], im2gps [20,

43], place recognition [19, 40], landmark recognition [10,

13, 34, 44], geolocation leveraging geometry informa-

tion [10, 21, 31, 36], and geolocation with graph-based rep-

resentations [12]. More recent works have also tried to sup-

plement images with corresponding data [7, 8, 27, 30, 32],

such as digital elevation maps and land cover survey data,

which we draw inspiration from in constructing our fea-

tures. In contrast to these works, we assume we are given

GPS coordinates to help image classification.

In addition, several works also explore other aspects of

images and location information, such as 3D cars with lo-

cations [33], organizing geotagged photos [14], structure

from motion on Internet photos [38], recognizing city iden-

tity [45], looking beyond the visible scene [25], discovering

representative geographic visual elements [16, 28], predict-

ing land cover from images [29], and annotation enhance-

ment using canonical correlation analysis [11].

Most similar are works that leverage location informa-

tion for recognition tasks [5, 6, 9, 23, 42]. The work of [5]

tackles object recognition with geo-services on mobile de-

vices in small urban environments. The work of [6] uses

available Geographic Information System (GIS) databases

by projecting exact location information of traffic signs,

traffic signals, trash cans, fire hydrants, and street lights

onto images as a prior. The work of [9] uses bird sightings

to estimate a spatio-temporal prior distribution to help im-

prove fine-grained categorization performance. The work

of [23] uses bags of geo-tags to represent local neighbor-

hoods of information. The work of [42] leverages season

and location context in a probabilistic framework to help

improve region recognition in images. Our work differs in

that we are interested in recognizing a wide range of con-

cepts present on the Internet beyond birds [9], small sets of

specific urban objects [5, 6], simple events [23] or generic

region types [42], and constructing features that are not spe-

cific to a particular class or source of GIS information. In

addition, we exhaustively evaluate ways of incorporating

these features into a CNN, and we propose a way to parame-

terize the geo-features and extend the back-propagation al-

gorithm to allow the net to learn the most discriminative

geo-feature parameters. We also introduce a large-scale

geotagged dataset collected from real-world images to train

our models and effectively evaluate performance.

Also closely related are the numerous works on context,

which have shown to be helpful for various tasks in com-

puter vision [15, 41]. We leverage contextual information

by considering the GPS coordinates of our images and ex-

tracting complementary location features.

3. Our Approach

Similar to standard image classification problems, we

are given a set of n training images {I1, I2, . . . , In} with

associated class labels {y1, y2, . . . , yn}, where y ∈ C is the

set of classes we are trying to predict. In addition to the

images, we are also given the GPS coordinates for each

image {(long1, lat1), (long2, lat2), . . . , (longn, latn)},

where longi is the longitude and lati is the latitude for

image i. Note that the GPS coordinates are given in both

the training and testing phase, and our goal is to predict the

class labels given both the image and the GPS coordinates.

In this paper, we focus on images taken within the contigu-

ous United States, but the majority of our features can be

trivially extended to encompass the entire world.

3.1. Neural network architecture

We build on the CNN model introduced in [26], as this

model and extensions to it are commonly used benchmarks

in image classification and recognition [18, 35, 39]. For

more details on the network architecture, we refer the reader

to [26]. To incorporate location features into the network,

we add a layer to concatenate the different feature types be-

fore the softmax layer, as shown in Figure 2. This makes

intuitive sense, as the lower layers of the CNN model are

aimed at learning effective image filters and features, and

we are interested in incorporating our features later on at a

higher semantic level. In addition, we also experiment with

adding additional depth using fully connected layers before
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Figure 2. Our CNN architecture. The pink rectangles denote convolutional layers, the yellow rectangles denote normalization layers, the

blue rectangles denote pooling layers, the grey rectangles denote fully connected layers, and the green rectangles denote concatenation

layers. The final fully connected layer is the softmax layer. Our model is given as input an image and its associated longitude and latitude

coordinates. The image network denoted by the magenta box is the network architecture introduced in [26].

and after the concatenation layer, denoted by the pre-cat and

post-cat layers in Figure 2, and perform comprehensive ex-

periments detailed later in the paper.

With this architecture, we turn to the problem of ex-

tracting location features. For each image i, we construct

a set of features that effectively represent contextual infor-

mation about the location specified by the GPS coordinates

(longi, lati). To do this, we utilize the wealth of geographic

datasets and surveys collected by various agencies that doc-

ument a large variety of statistics about each location, rang-

ing from surveys on age and education, to geographic fea-

tures such as elevation and precipitation. We also utilize the

large amounts of geotagged data available on the Internet

such as images and textual posts.

3.2. GPS encoding feature

The actual GPS coordinates are very fine location indica-

tors, making it difficult for the classifier to effectively use.

To make better use of the coordinates, we grid the contigu-

ous United States into a rectangular grid with a latitude to

longitude ratio of 1
2 , and construct an indicator vector for

each image i that indicates which grid cell the GPS coor-

dinate (longi, lati) falls into, resulting in a feature vector

with dimension equal to the total number of cells in the grid.

The aspect ratio is chosen so that each grid cell is roughly a

square. We used rectangular grids up to 100x200, resulting

in 25x25km square cells, limited by the computational time

and memory for even larger grids.

3.3. Geographic map feature

There exist many different types of geographic maps and

datasets that provide detailed information about each GPS

coordinate in the form of a colored map, with different col-

ors representing different geographic features. In particular,

Figure 3. Example geographic map of precipitation in the United

States [2], with darker colors roughly indicating larger values of

average precipitation. Regions with more rainfall may give rise to

images that more commonly contain objects such as umbrellas.

Google Maps [2] is one of many online sites that stores a

large set of such maps, with an example shown in Figure 3.

We use 10 different types of maps from Google Maps: av-

erage vegetation, congressional district, ecoregions, eleva-

tion, hazardous waste, land cover, precipitation, solar re-

source, total energy, and wind resource. Since each map

uses different colors to represent the value of a feature at a

particular location, for each image i we take the normalized

pixel color values in a 17x17 patch around the GPS coordi-

nate (longi, lati) for each map type, and concatenate these

to form a 8670 dimensional feature. Intuitively, map fea-

tures such as precipitation may tell us how likely it is to see

an umbrella in a picture, while indicators such as elevation

may tell us how likely it is for us to see snow.

3.4. ACS feature

Given the GPS coordinate (longi, lati) for image i, we

can perform reverse geocoding to obtain the corresponding

zip code. This allows us to tap into the rich source of ge-
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Figure 4. To build the hashtag context features, we look at the

distribution of hashtags around each GPS coordinate by finding

Instagram images tagged with relevant hashtags and GPS coordi-

nates. For each hashtag, we pool over circles of different radii,

counting the number of times each hashtag (blue/magenta stars)

appears within a particular radius.

ographic surveys organized by zip code, collected by agen-

cies like the United States government. We use the Ameri-

can Community Survey (ACS) [1], an ongoing survey that

provides yearly data with statistics on age, sex, race, fam-

ily/relationships, income and benefits, health insurance, ed-

ucation, veteran status, disabilities, work status, and living

conditions, all organized by zip code and pooled over a 5

year period. We treat each statistic as a feature, and collect

them into a vector resulting in a 21,038 dimensional feature.

Intuitively, statistics such as age may tell us how likely it is

to see toys in a picture, while statistics such as income may

tell us how likely it is for us to see expensive cars.

3.5. Hashtag context feature

The aforementioned geographic map and ACS features

are based on map and survey data collected about a particu-

lar location from various agencies. However, a large source

of data lies directly on the Internet, where millions of im-

ages are uploaded daily, many of which tagged with GPS

coordinates. We propose a set of data-driven features that

are able to make use of the images on Instagram [3].

Intuitively, for each image i associated with GPS coor-

dinate (longi, lati), our goal is to capture the distribution

of hashtags in the vicinity. Hashtags that commonly occur

near image i can help indicate the types of things that occur

in the real-world context of image i, giving us contextual in-

formation about what is in the image. We start by defining a

set of hashtags H that we are interested in. For a particular

hashtag h ∈ H, we obtain images from Instagram with GPS

coordinates and matching hashtag. Then, we define a set of

radii R, and for each r ∈ R, we pool over a circle of ra-

dius r around (longi, lati) and count the number of images

tagged with hashtag h that fall into the radius. As shown in

Figure 4, this is done for each of the radii in R and each of

the hashtags in H, resulting in a set of |H|x|R| counts.

To build features from these counts, we perform two

types of normalization for the |H| counts in each radius

r ∈ R. The first is normalization across hashtags, where

we normalize each count by the sum of counts for all hash-

tags within r. This normalization gives us an idea of the

relative frequency of a particular hashtag in relation to the

other hashtags that appear in the area, and normalizes for the

density of photos in the area. The second is normalization

within hashtag, where we normalize each count by the to-

tal number of images we obtained from Instagram with the

particular hashtag. This normalization gives us an idea of

the relative frequency of a particular concept in relation to

how often this concept appears in the entire United States.

We perform both types of normalization and concatenate

the feature vectors together to form the final feature vector,

resulting in a 2x|H|x|R| dimensional feature.

In our experiments, we set C = H, using the set of

classes as the set of hashtags for simplicity, and set R =
{1000, 2000, . . . , 10000}. To save computation time, we

quantize all the GPS coordinates into a 25000x50000 grid,

which results in approximately square grid cells each cov-

ering a 100x100 meter area.

3.6. Visual context feature

The visual context feature is similar to the hashtag con-

text feature, except in this case we would like to take ad-

vantage of the visual signal around our GPS coordinate

(longi, lati), and not just the hastags that have been tagged.

To do this, we retrieve images from various online social

websites with GPS coordinates, and for each image run a

CNN with similar architecture to [26] to generate probabili-

ties for 594 of the common types of concepts that appear on

the Internet, such as “clothes”, “girl”, and “coffee”. The full

list of 594 concepts is given in the supplementary material.

Similar to the hashtag context feature, we pool the prob-

abilities for each radius r ∈ R around (longi, lati) by

summing the probabilities of all the images that fall into

the radius, individually for each concept, resulting in a set

of 594x|R| probabilities. Then, we perform the same two

types of normalization and concatenate to form the final fea-

ture vector, resulting in a 2x594x|R| dimensional feature.

We use the same set of radii R and GPS grid quantization

as the hashtag context feature.

4. Learning the Optimal Pooling Radius

In the previous section we introduced the hashtag context

and visual context features. For both of these features, we

explained how to build features from the aggregated hash-

tag counts and concept probabilities by concatenating to-

gether normalized histograms pooled over a set of radii R.

However, we don’t expect that all radii are informative. For

example, for hashtags or concepts that are rare, even being
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a few kilometers away may be an important indicator. Sim-

ilarly, certain hashtags that are common may require being

extremely close to truly pinpoint the location.

Radius learning layer. To address this, we show how to

construct a layer in the CNN that automatically learns the

optimal radius used for pooling, which we denote as the

radius learning layer. Learning the optimal radius is poten-

tially useful in many ways. First, by focusing on the im-

portant radii with informative features, we can avoid over-

fitting. Second, we can visualize the radii that we have

learned, providing insight into what the CNN is learning.

We start by considering the radius for a single hash-

tag/concept h, and fit a function H(longi,lati),h(ρ) over the

histogram that returns the value of the histogram feature for

hashtag h and radius ρ at location given by (longi, lati).
There are several ways to fit such a function, but for sim-

plicity we use the histogram values computed over R from

the previous section and fit a piece-wise linear approxima-

tion to the values. We do this for all the hashtags, concepts,

and both types of normalization schemes to obtain a set of

2 · (H+594) histogram functions for each training image i.

The outputs of these histogram functions are treated as

input features to the CNN in place of the concatenated

histograms, with a radius parameter ρh for each hash-

tag/concept that selects the value of the function to treat as

input to the neural network. When computing the gradient

for backpropagation, we backpropogate the gradient of the

error E into the gradient of the histogram function H:

∂E

∂ρh
=

∂E

∂H(longi,lati),h(ρh)

∂H(longi,lati),h(ρh)

∂ρh
(1)

The first term in the RHS is the error derivative propa-

gated to the radius learning layer from the network archi-

tecture above it, and the second term is the derivative at ρh
of the histogram function H(longi,lati),h. Since we use a

piece-wise linear approximation to fit the histogram func-

tion, the second term is easily computed by taking the slope

between the two nearest points in R. Although we could fit

more complicated functions, we found the linear approxi-

mation to be fast and sufficient, as we aggregate gradients

over all the training examples. Since hashtags/concepts may

have multiple radii and weightings between the radii that are

informative, we replicate the radius learning layer multiple

times for each histogram function.

5. Dataset

To evaluate our method, we use the recently released

Yahoo Flickr Creative Commons 100M (YFCC100M)

dataset [4], which consists of 100 million Creative Com-

mons copyright licensed images from Flickr. Of the 100

million images, approximately 49 million are geotagged

with GPS coordinates, which makes this dataset particularly

suitable for evaluating our task because of its unprecedented

scale. Also provided with the images are tags for the images

produced by users on Flickr, which we use as a first step to

identify images that contain a particular class. However, be-

cause the tags are very noisy, we must manually verify and

discard images that do not actually contain the classes we

were interested in. As mentioned before, we focus only on

images geotagged within the contiguous United States.

Selecting location-sensitive classes. One of the problems

we have to deal with is selecting classes that are likely to be

location-sensitive, and will benefit from our location con-

text features. This is important because there are certainly

classes that are not, and adding these additional features

may just cause the classifier to overfit. Practically speak-

ing, we also need a way of limiting the number of classes to

a manageable number we can annotate.

To address this issue, we use a simple data-driven

method for selecting classes. Using a large set of images

from Instagram, we estimate the discrete geospatial dis-

tribution P of all images by first gridding the contiguous

United States into a fine grid, and then counting the num-

ber of images that fall into each grid cell and normalizing

to create a valid probability distribution. Then, we obtain a

large list of classes through commonly occuring Instagram

hashtags, and for each class c we estimate the geospatial

distribution Qc of images tagged with c in a similar man-

ner. With these two distributions, we compare their similar-

ity with the Kullback-Leibler (KL) divergence:

DKL(P ||Qc) =
∑

i

P (i) ln
P (i)

Qc(i)
(2)

Intuitively, we would like to find classes that do not

exhibit a geospatial distribution similar to the distribution

of all images, as this would suggest that they have some

location-sensitive properties. The KL divergence does this

by giving us a measure of the difference between the two

probability distributions, and we select the top 100 classes

with the highest KL divergence. In practice, given a new

class c, we can simply compute DKL(P ||Qc) and thresh-

old to determine whether or not the class will benefit from

our additional location features. Examples of the geospatial

distributions are shown in Figure 5.

YFCC100M-GEO100 dataset. Using the top 100 classes

selected with the highest KL divergence, we manually ver-

ified and annotated a large set of the YFCC100M images

that were noisily tagged with these classes by Flickr users.

This resulted in a dataset of 88,986 images, with at least

100 images per class, which we denote as the YFCC100M-

GEO100 dataset and will make publicly available. The

classes we selected range from objects to places to scenes,
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DisneylandBeach Mountain Snow

Figure 5. Instagram hashtag distributions for various classes in the contiguous United States. Although we can see interesting patterns such

as beach hashtags near coasts and the outline of the Appalachian Mountains in the mountain hashtags, there is a great deal of noise.

Figure 6. The geographic distribution of the 88,986 images in the

YFCC100M-GEO100 dataset that we introduce.

with examples such as ‘autumn’, ‘beach’, and ‘whale’ that

illustrate the diversity of classes we are trying to classify.

Figure 6 visualizes the distribution of GPS coordinates for

the images in the dataset. The full list of classes is given in

the supplementary material.

6. Results

We randomly divide the YFCC100M-GEO100 dataset

into an 80% training set and 20% test set. We further leave

out a small portion of the training set as a validation set for

parameter tuning in our models.

Implementation details. Following [26], we train our

models using stochastic gradient descent with momentum

of 0.9 and a 0.005 weight decay. We use a learning rate

of 0.1, and run approximately 30 passes through our data,

decreasing the learning rate by 0.1 every 10 passes. We

use a 0.5 dropout ratio for all of our fully connected layers.

Since our training data is relatively small, we initialize the

parameters in the Image Network portion of the model (see

Figure 2) by pre-training it on a large set of Instagram im-

ages, and then freezing the pre-trained parameters into our

model. Note that we could further fine-tune these parame-

ters as well, but chose not to for speed concerns.

Performance metrics. To evaluate our models, we use

three different performance metrics. In addition to the stan-

dard metric of mean average precision (AP), we also in-

clude results for normalized accuracy@1 and normalized

Method Mean AP Acc@1 Acc@5

Image only 36.82% 39.45% 70.15%

Image + GPS coordinates 36.83% 39.47% 70.23%

Image + GPS encoding 10x20 38.58% 41.48% 72.39%

Image + GPS encoding 100x200 38.89% 41.67% 72.47%

Image + Geographic map feature 37.70% 40.28% 70.79&

Image + ACS feature 40.41% 42.79% 73.84%

Image + Hashtag context feature 39.86% 42.27% 73.38%

Image + Visual context feature 38.81% 41.53% 72.31%

Image only (SVM) 33.41% 36.56% 60.05%

Image + All features (SVM) 34.61% 38.06% 62.88%

Image + All features χ2 kernel (SVM) 35.12% 38.57% 63.74%

Image + Flickr prior 10NN 24.15% 25.36% 36.46%

Image + Flickr prior 100NN 33.38% 35.45% 60.62%

Image + Flickr prior 1000NN 36.30% 37.86% 68.57%

Image + Instagram prior 1000km 24.03% 22.70% 38.23%

Image + Instagram prior 4000km 31.96% 30.62% 58.69%

Image + Instagram prior 8000km 33.08% 30.67% 60.13%

Table 1. Results comparing various baseline methods. For the

CNN models we do not use pre-cat and post-cat layers.

accuracy@5, motivated by their use in recent papers [24] as

well as the ImageNet classification challenge [35]. The nor-

malized accuracy@k measure indicates the fraction of test

samples that contained the ground truth label in the top k

predictions, normalized per class to adjust for differences in

the number of images per class.

6.1. Baseline methods

We evaluate the benefit of each proposed feature, shown

in the top two sections of Table 1, without the pre-cat layer

and post-cat layers as a baseline (see Figure 2). Not sur-

prisingly, using the GPS coordinates does not yield any sig-

nificant gain in performance, as they do not make sense in

the context of a linear classifier. Using the GPS encoding

features, we get much better performance, with a gain of

around 2% in all performance measures. We can also see

that for each feature, we obtain performance gains from

concatenating the features with the baseline image features,

which shows they provide complementary information. In

particular, the ACS feature yields the largest increase in per-

formance, with almost a 4% gain in all performance mea-

sures.

Support vector machines. We perform experiments us-

ing Support Vector Machines (SVM) and kernelizing our

features. We use kernel averaging to combine features, as
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it has been shown to perform on par with more complicated

methods [17]. In the middle section of Table 1, we show

results using a multi-class hinge loss SVM classifier and

cross-validating the regularization parameter. For the naive

combination, we use linear kernels for all features, and for

the χ2 combination, we compute χ2 kernels for the his-

togram features (hashtag context, visual context), and use

linear kernels for the rest due to dimensionality concerns.

In general, we found the SVM to perform worse than the

softmax classifier. Kernelizing the histogram features with

χ2 kernels performs better than using just linear kernels, but

still doesn’t exceed the performance of the softmax.

Bayesian priors. Following the approach used in [9], we

also try incorporating location context as a Bayesian prior.

Using Bayes’ rule, the probability of predicting class c

given image Ii and location (longi, lati) can be written as:

P (c|Ii, longi, lati) =
P (Ii, longi, lati|c)P (c)

P (Ii, longi, lati)
(3)

Assuming the image and location are conditionally inde-

pendent given the class, further applying Bayes’ rule and

removing terms that do not depend on c, we obtain:

P (c|Ii, longi, lati) ∝
P (c|Ii)

P (c)
P (c|longi, lati) (4)

In our experiments, we assume a uniform prior over the

classes for P (c). We tried two different approaches to com-

puting the location prior P (c|longi, lati), with results given

in the bottom two sections of Table 1. In the Flickr prior,

for each test image we find the k-nearest-neighbors (k-NN)

from the training set in GPS space and use their labels to es-

timate a distribution for the location prior. In the Instagram

prior, for each of our test images we take the histogram

computed in the hashtag context feature for a certain radius

r, and use the normalized histogram as the distribution for

the location prior. Although the overall results do not im-

prove for either method, it’s interesting to note that for some

classes such as “disneyland”, results improve by more than

45% mean AP for both types of priors. However, for the

majority of the classes, the location prior hurts rather than

helps, causing an overall decrease in performance.

6.2. Architectures for feature combination

We evaluate the various architectures for combining the

features together, and evaluate the effect of varying levels of

depth before and after the concatenation layer in the model.

Results are shown in Table 2. The top section of the table

shows results for adding additional depth in the pre-cat layer

for each individual feature, and the bottom section shows

the result with a 4096 dimensional post-cat layer. We make

all comparisons to the “Image only” model from Table 1,

which we now refer to as the baseline image model.

Method Mean AP Acc@1 Acc@5

Image only 36.82% 39.45% 70.15%

Image + All features with -/- 37.97% 40.19% 70.67%

Image + All features with 128/- 42.22% 44.76% 75.74%

Image + All features with 256/- 42.34% 44.82% 75.86%

Image + All features with 512/- 42.20% 44.43% 75.53%

Image + All features with 1024/- 41.60% 43.98% 75.16%

Image + All features with 256/4096 43.28% 43.74% 74.30%

Table 2. Results when concatenating all features and varying the

pre-cat and post-cat layers. The X/Y notation refers to the dimen-

sionality X of the pre-cat layers and Y of the post-cat layer, with -

representing no pre-cat or post-cat layer.

Method Mean AP Acc@1 Acc@5

Image only 36.82% 39.45% 70.15%

Image + Hashtag context feature 39.86% 42.27% 73.38%

Image + Hashtag context feature RL5 40.19% 42.52% 73.57%

Image + Hashtag context feature RL10 40.80% 43.10% 74.15%

Image + Visual context feature 38.81% 41.53% 72.31%

Image + Visual context feature RL5 38.75% 41.31% 72.08%

Image + Visual context feature RL10 39.07% 41.78% 72.48%

Image + All features with 256/- 42.34% 44.82% 75.86%

Image + All features with 256/- RL10 42.91% 45.17% 76.09%

Image + All features with 256/4096 43.28% 43.74% 74.30%

Image + All features with 256/4096 RL10 43.78% 44.14% 74.70%

Table 3. Results through learning the optimal pooling radius. RL5

and RL10 refer to the number of replicas (5,10) of the radius learn-

ing layer used to replace the concatenated histograms.

Pre-cat layer. From the results, we see that simply con-

catenating the features together does not result in a signifi-

cant increase in performance, likely because the feature di-

mension is large, and the model is overfitting. Thus, we

introduce the pre-cat layers to capture relationships within

each feature type, and to serve as dimensionality reduction.

Although they perform comparably, the 256 dimensional

layer seems to strike the best balance between performance

and the number of parameters to learn, obtaining almost a

6% gain in performance across all performance measures.

We also tried adding additional depth beyond a single layer,

but found that this did not help significantly and drastically

increased the number of parameters to learn.

Post-cat layer. We also perform experiments with the

post-cat layer to capture relationships between the different

feature types. We found that a 4096 dimensional fully con-

nected layer seems to help increase mean AP slightly, but

decreases both normalized accuracy rates due to overfitting.

Again, as observed previously, adding additional depth here

also causes the model to overfit, and decreases performance.

6.3. Learning the optimal pooling radius

In the previous sections, we concatenated histograms

computed at varying radii for the hashtag context and vi-

sual context features. Since there are often multiple radii

and weightings between the radii that are most informative,

we replace the concatenated histograms with multiple repli-

cas of radius learning layers, with results shown in Table 3.
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Figure 7. Example results comparing the baseline image model to our best model (256/- RL10), with correct predictions in green and

incorrect predictions in red. Image credits given in supplementary material.
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Figure 8. AP difference between our best model (256/- RL10) and

the baseline image model for the 20 best and worst classes.

R
ad

iu
s

Foliage

R
ad

iu
s

Coast

R
ad

iu
s

Buildings

Figure 9. Visualizations of the learned radii for three classes from

our best model (256/- RL10), sorted from smallest to largest.

In the top two sections, we observe large improvements for

the hashtag context feature, and mild improvements for the

visual context feature in a controlled setting with no pre-cat

and post-cat layers. In the bottom section, we are able to ob-

tain an additional 0.5% gain in mean AP by using the radius

learning layers for both of our best models from the previ-

ous section. We found again that adding the post-cat layer

causes the model to slightly overfit, and thus use the 256/-

RL10 model as our best model in the following analyses.

Figure 7 shows some interesting examples and predictions.

Best and worst classes. In Figure 8, we show the top 20

best and worst performing classes compared to the base-

line image model. Location-specific classes like “disney-

land”, “casino”, and “alcatraz” see a large increase in per-

formance, as they are confined to one or a small number of

locations in the United States. On the other hand, some of

the worst performing classes are car brands, which suggests

that fine-grained car classes are not very location-specific,

or not handled well in our features and model. However,

since our method for selecting location-sensitive concepts

was data-driven and unsupervised, they were included.

Learned radius parameters. We visualize the radius pa-

rameters learned for several classes in Figure 9. We found

that for most concepts, the 10 different replicas of the radius

learning layers typically converge to 3 or fewer different

radii, like the “coast” and “foliage” classes, which suggests

that certain radii are indeed more informative. Occasion-

ally, some classes like “building” learn almost all different

radii, possibly because within urban areas the abundance of

buildings makes smaller radii important, and within rural

areas larger radii become important.

7. Conclusion

In this paper, we introduce the problem of image classifi-

cation with location context. To represent location context,

we propose 5 features that help capture context about a par-

ticular location, and show how to incorporate them into a

CNN model. For features that require pooling over radii, we

show how to automatically learn the optimal radius within

the same framework, allowing us to obtain better perfor-

mance and a deeper understanding into the network param-

eters. Furthermore, we introduce and make publicly avail-

able the YFCC100M-GEO100 dataset, which we manually

annotate to obtain class labels for geotagged images.

For future work, we would like to explore taking ad-

vantage of other aspects of images that are now becoming

widely available, such as time and date taken or the social

relationships between the users.
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