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Abstract

Recent advances have enabled 3d object reconstruction

approaches using a single off-the-shelf RGB-D camera. Al-

though these approaches are successful for a wide range of

object classes, they rely on stable and distinctive geomet-

ric or texture features. Many objects like mechanical parts,

toys, household or decorative articles, however, are texture-

less and characterized by minimalistic shapes that are sim-

ple and symmetric. Existing in-hand scanning systems and

3d reconstruction techniques fail for such symmetric objects

in the absence of highly distinctive features. In this work, we

show that extracting 3d hand motion for in-hand scanning

effectively facilitates the reconstruction of even featureless

and highly symmetric objects and we present an approach

that fuses the rich additional information of hands into a

3d reconstruction pipeline, significantly contributing to the

state-of-the-art of in-hand scanning.

1. Introduction

The advent of affordable RGB-D sensors has opened up

a whole new range of applications based on the 3d per-

ception of the environment by computers, which includes

the creation of a virtual 3d representation of real objects.

A moving camera can navigate in space observing the real

world, while incrementally fusing the acquired frames into a

3d virtual model of it. Similarly, a static camera can observe

a scene and dynamically reconstruct the observed moving

objects. This domain has attracted much interest lately in

the computer vision, the graphics and the robotics (SLAM)

community, as it enables a plethora of other applications,

facilitating among others 3d object detection, augmented

reality, the internet of things, human-computer-interaction

and the interaction of robots with the real world.

The field has matured [30] since its beginning in the early

80s [19] and during the 90s [2, 3, 25, 5]. Nowadays, several

commercial solutions for 3D scanning with an off-the-shelf

RGB-D camera have appeared, e.g., Fablitec [31], Skanect1,

1http://skanect.occipital.com/

Figure 1. Reconstruction of a symmetric, textureless object. Both

the front and the bottom view are provided for better visualization.

Left: Existing in-hand scanning approaches fail for such objects.

Middle and right: Successful reconstruction by the proposed in-

hand scanning system that incorporates 3d hand motion capture.

iSense2, KScan3d3, Shapify [16] and Kinect-Fusion [22].

Several open-source projects like KinFu address the same

problem, while other commercial solutions as MakerBot-

Digitizer employ a laser scanning device along with senso-

rimotor information from a turntable.

Instead of a turntable, an object can also be rotated by

hand in case of a static camera. This setting is very conve-

nient for hand-sized objects since moving an object is more

practical than moving a camera with a cable. Such a setup

is also called in-hand scanning [28]. Weise et al. presented

a real-time in-hand scanning system [37] that was later aug-

mented with online loop closure [38]. Although the results

are very convincing, the method uses the hand only as a re-

placement of a turntable and discards the hand information.

When the objects are textureless and contain very few ge-

ometric features, the in-hand scanning fails as illustrated in

Figure 1.

2http://cubify.com/products/isense
3http://www.kscan3d.com/
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In this work, we propose to use the hand motion for in-

hand scanning as an additional cue to reconstruct also tex-

turless objects. Instead of discarding the hands with the use

of a black glove [38], we track the hand pose and use the

captured hand motion together with texture and geometric

features for object reconstruction as in Figure 3. Since the

hand motion provides additional information about the ob-

ject motion, we can reconstruct even textureless and sym-

metric objects as shown in Figure 1.

2. Related work

During the last decades several real-time in-hand scan-

ning systems like [28, 37, 38] have been presented. Such

systems are able to provide a real-time registration of the in-

put frames, while the interactivity enables the user to guide

the reconstruction process. Assuming high temporal conti-

nuity and objects with rich geometric features, the quality

of the final reconstruction can be sufficient. Some meth-

ods add an offline optimization step [25] to solve the loop

closure problem, but in this case the final result might dif-

fer from the intermediate result. In order to solve this is-

sue, Weise et al. presented a real-time in-hand scanning

system [37] that was later augmented with online loop

closure [38]. They follow an as-rigid-as-it-gets approach

based on surfels in order to minimize registration artifacts.

Due to online loop closure, the approach does not require

any post-processing. A different approach is proposed in

STAR3D [26]. In this work a 3d level-set function is used to

perform simultaneous tracking and reconstruction of rigid

objects. Similarly to in-hand scanning, this approach works

only for objects with sufficient geometric or texture fea-

tures. In order to reconstruct textureless and symmetric ob-

jects, additional information from sensors, markers [21], or

a robotic manipulator is required [12, 13].

In this work, we propose to extract the additional infor-

mation directly from the hand within an in-hand scanning

framework. Instead of simply discarding the hand [28, 37,

38], we capture the hand motion. In recent years, there has

been a progress in hand motion capture. In particular, cap-

turing of hand-object interactions has become of increasing

interest [27, 9, 8, 23, 14, 1]. These approaches assume that a

model of the object is given, while we aim to reconstruct the

object during hand-object interactions. In [20] a rigid tool is

tracked in a multicamera setup to reconstruct textureless and

even transparent objects. Shape carving is in this case ex-

plicitly performed by the tool and the tool needs to be swept

over the entire objects, which can be time-consuming. In

contrast to in-hand scanning, this approach needs an addi-

tional tool. Static objects have also been used in [29] to

augment a SLAM system with the pose of repetitive objects

in a scene.

Figure 2. The hand tracker used in the in-hand scanning pipeline.

The left image shows the raw depth input map, the middle image

shows the hand pose overlaid on top of the RGB-D data, while the

right image shows just the hand pose.

3. Hand motion capture for in-hand scanning

As illustrated in Figure 2, we observe an RGB-D video

where a hand is interacting with an object. The data is first

preprocessed as described in Section 3.1 and the hand pose

is estimated in each frame as described in Section 3.2. We

then exploit the captured hand motion to reconstruct the ob-

ject as shown in Figure 1. The reconstruction process is

described Section 4.

3.1. Preprocessing

We first remove irrelevant parts of the RGB-D image D

by thresholding the depth values in order to avoid unneces-

sary processing like normal computation for distant points.

To this end, we keep only points within a specified vol-

ume. For the used Primesense Carmine 1.09 sensor, only

points (x, y, z) within the volume [−100mm, 100mm] ×
[−140mm, 220mm] × [400mm, 1000mm] are kept. Sub-

sequently we apply skin color segmentation on the RGB

image using the Gaussian-Mixtures-Model (GMM) of [10]

and get the masked RGB-D images Do for the object and

Dh for the hand.

3.2. Hand motion capture

In order to capture the motion of a hand, we employ an

approach similar to [35]. The approach uses a hand tem-

plate mesh and parameterizes the hand pose by a skele-

ton and linear blend skinning [15]. For pose estimation,

we minimize an objective function, which consists of three

terms:

E(θ,D) = Emodel→data(θ,Dh)+

Edata→model(θ,Dh) + γcEcollision(θ)
(1)

where Dh is the current preprocessed depth image for the

hand and θ are the pose parameters of the hand. The

first two terms of Equation (1) minimize the alignment er-

ror between the input depth data and the hand pose. The
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alignment error is measured by Emodel→data, which mea-

sures how well the model fits the observed depth data, and

Edata→model, which measures how well the depth data

is explained by the model. Ecollision penalizes intersec-

tions of fingers and enhances realism by ensuring physically

plausible poses. The parameter γc is set to 10 as in [35]. For

simplicity we do not use the additional term Esalient of [35]

for the detected salient points. The overall hand tracking ac-

curacy for the hand joints is approximately 17mm.

4. Object reconstruction

In order to use the captured hand motion for 3D recon-

struction, we have to infer the contact points with the object.

This is described in Section 4.1. The reconstruction process

based on the estimated hand poses and the inferred contact

points is then described in Section 4.2.

4.1. Contact Points Computation

In order to compute the contact points, we use the high-

resolution mesh of the hand, which has been used for hand

motion capture. To this end, we compute for each vertex

associated to each end-effector the distance to the closest

point of the object point cloud Do. We first count for each

end-effector the number of vertices with a closest distance

of less than 1mm. If an end-effector has more than 40
candidate contact vertices, it is labeled as a contact bone

and all vertices of the bone are labeled as contact vertices.

If there are not at least 2 end-effectors selected, we itera-

tively increase the distance threshold by 0.5mm until we

have at least two end-effectors. In our experiments, we

observed that the threshold barely exceeds 2.5mm. As a

result, we obtain for each frame pair the set of contact

correspondences (Xhand, X
′
hand) ∈ Chand(θ,Dh), where

(Xhand, X
′
hand) is a pair of contact vertices in the source

and target frame, respectively. Figure 3 depicts the contact

correspondences for a frame pair.

4.2. Reconstruction

We use a feature-based approach for reconstruction,

where we first align the currently observed point cloud

(source) to the previous frame (target) and afterwards we

align the transformed source by ICP to the previously accu-

mulated transformed point cloud [4] for refinement.

For pairwise registration, we combine features extracted

from Do and the contact points, which have been extracted

from Dh and the hand pose θ. As a result, we minimize an

energy function based on two weighted energies:

E(θ,Dh, Do,R, t) = Evisual(Do,R, t)+

γtEcontact(θ,Dh,R, t)
(2)

where E is a measure of the discrepancy between the in-

coming and the already processed data, that needs to be

Figure 3. Illustration of the contact correspondences

(Xhand, X
′

hand) ∈ Chand(θ,Dh) between the source frame (red)

and the target frame (blue). Although the correspondences are

formed for all the vertices of the end-effectors of the manipulating

fingers, we display only the detected candidate contact points to

ease visualization. The candidate contact points are displayed

with yellow color, while the multi-color lines show the contact

correspondences. The white point cloud is a partial view of the

unknown object whose shape is reconstructed during hand-object

interaction.

minimized. In that respect, we seek the rigid transforma-

tion T = (R, t), where R ∈ SO(3) is a rotation matrix and

t ∈ R
3 is a translation vector, that minimizes the energy E

by transforming the source frame accordingly.

The visual energy Evisual consists of two terms that are

computed on the visual data of the object point cloud Do:

Evisual(Do,R, t) = Efeat2d(Do,R, t)+

Efeat3d(Do,R, t)
(3)

The term Efeat2d is based on a sparse set of correspon-

dences Cfeat2d(Do) using 2d SIFT [18] features that are

back-projected in 3d by the function ϕ(x): R2 → R
3, given

the intrinsic parameters of the camera. The 2d SIFT key-

point correspondences in the source and target image re-

spectively are denoted as (x2d, x
′
2d) ∈ Cfeat2d(Do), while

X2d = ϕ(x2d) and X ′
2d = ϕ(x′

2d) are the corresponding

back-projected 3d points. Efeat2d is then formulated as

Efeat2d(Do,R, t) =
∑

(X2d,X
′

2d
)∈Cfeat2d

‖X ′
2d − (RX2d + t)‖2. (4)

In a similar manner, the term Efeat3d is based on a sparse

set of correspondences Cfeat3d(Do). Instead of the im-

age domain, we operate on the 3d point cloud by choosing

ISS3D [39] keypoints and the CSHOT [33] feature descrip-

tor, that augments the SHOT [32] descriptor with texture in-

formation. This combination has been shown to work well
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for point clouds [6, 34]. Efeat3d is then formulated as

Efeat3d(Do,R, t) =
∑

(X3d,X
′

3d
)∈Cfeat3d

‖X ′
3d − (RX3d + t)‖2. (5)

Finally, the term Econtact depends on the current hand

pose estimate θ and the hand point cloud Dh. Based on

these, the contact correspondences Chand(θ,Dh) are com-

puted as described in Section 4.1. Let (Xhand, X
′
hand) ∈

Chand(θ,Dh) be the corresponding contact points, i.e. ver-

tices, in the source and target frame respectively, then

Econtact(θ,Dh) is written as

Econtact(θ,Dh,R, t) =
∑

(Xhand,X
′

hand
)∈Chand

‖X ′
hand − (RXhand + t)‖2.

(6)

The two terms in the energy function (2) are weighted

since they have different characteristics. Although visual

correspondences preserve local geometric or textural details

better, they tend to cause a slipping of one frame upon an-

other in case of textureless and symmetric objects. In this

case, the contact correspondences ensure that the move-

ment of the hand is taken into account. An evaluation of

the weight γt is presented in Section 5.

The sparse correspondence sets Cfeat2d, Cfeat3d, and

Chand provide usually an imperfect alignment of the source

frame to the target frame either because of noise, ambigui-

ties in the visual features or the pose, or a partial violation

of basic assumptions like the rigid grasping of an object

during interaction. For this reason, we refine the aligned

source frame by finding a locally optimal solution based on

dense ICP [2] correspondences. While for the sparse corre-

spondences we align the current frame only to the previous

one, during this refinement stage we align the current frame

to the accumulation of all previously aligned frames [4],

i.e. the current partial reconstructed model. After finding a

dense set (Xicp, X
′
icp) ∈ Cicp(Do) of ICP correspondences

with maximum distance of 5mm, we minimize the discrep-

ancy between them

Eicp(Do,R, t) =
∑

(Xicp,X
′

icp
)∈Cicp

‖X ′
icp − (RXicp + t)‖2. (7)

4.2.1 Surface model

To obtain a mesh representation of the reconstructed ob-

ject, we first employ a truncated signed distance function

(TSDF) [5, 22] to get a volumetric representation. The

TSDF volume has a dimension of 350mm for all objects

(a) (b)

Figure 4. Reconstruction without (a) and with (b) hand motion

capture on synthetic data generated from [1]. Since the visual

correspondences alone are not descriptive enough for symmetric

objects, the reconstruction collapses to a hemisphere (a). On the

contrary, the use of hand motion capture gives meaningful contact

correspondences, successfully driving the reconstruction process

(b). The clear observation of the occlusions by the manipulating

fingers (b) indicates a sensible registration. The motion includes

some notable translation and rotation, but the object is not fully

rotated in order to allow for a complete reconstruction.

with 256 voxel resolution and 6mm maximum voxel size.

Subsequently we apply the marching-cubes [17] method

to extract a mesh and remove tiny disconnected compo-

nents. The final mesh is then obtained by Laplacian smooth-

ing [36] followed by Poisson reconstruction [11] with an

octree with 10 layers in order to get a smooth, water-tight

mesh with preserved details.

5. Experiments

In this section we show that although existing in-hand

scanning pipelines fail for symmetric and textureless ob-

jects, the incorporation of hand motion capture can effec-

tively improve the reconstruction, enabling the efficient and

full reconstruction of such objects without the use of addi-

tional intrusive markers or devices in the scene. We present

thus for the first time the effective reconstruction of 4 sym-

metric objects with an in-hand scanning system, which can-

not be reconstructed by two state-of-the-art reconstruction

systems. Furthermore, we perform an experiment with syn-

thetic data, showing that the pipeline can also be applied to

multicamera RGB videos.

The recorded sequences, calibration data, hand motion

data, as well as video results, the resulting meshes and the

source code for reconstruction are publicly available4.

5.1. Synthetic data

In order to generate synthetic data we use the publicly

available5 data of a multicamera RGB hand tracker [1]. We

use the frames 180-203 of the sequence in which a hand

interacts with a rigid ball. We generate synthetic point

clouds by rendering the moving meshes. We then apply the

4http://files.is.tue.mpg.de/dtzionas/ihScanning
5http://cvg.ethz.ch/research/ih-mocap
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Table 1. Quantitative evaluation of the captured object shapes. The ground-truth parameters, estimated parameters and errors are given.

We compare our proposed setup with γt = 15 with the methods KinFu and Skanect. For the methods highlighted with (*), we perform a

reconstruction three times and we report the best results of them.

Dimensions Comparison G.Truth Ours γt = 15 KinFu (*) Skanect (*) Detect.Baseline Enriched Texture

Capture Diff. Capture Diff. Capture Diff. Capture Diff. Capture Diff.

Water-bottle diameter 73 82.3 9.3 66.2 6.8 64.3 8.7 86.6 13.6

m
m

Water-bottle height 218 225.4 7.4 195.7 22.3 222.1 4.1 237.4 19.4
Bowling-pin head diameter 50 50.8 0.8 54.1 4.1 39.0 11.0 48.7 1.3 49.8 0.2
Bowling-pin body diameter 82 90.0 8.0 70.9 11.1 63.8 18.2 93.2 11.2 89.4 7.4
Bowling-pin height 268 275.2 7.2 239.3 28.7 270.9 2.9 272.4 4.4 267.7 0.3
Small-bottle diameter 52 57.7 5.7 45.6 6.4 39.5 12.5 61.6 9.6
Small-bottle height 80 89.5 9.5 78.1 1.9 84.9 4.9 95.0 15.0
Sphere diameter 70 71.4 1.4 46.9 23.1 43.8 26.2 72.2 2.2
Average 6.1625 13.05 11.0625 9.5875

Sphere volume 179503 190490 10987 53988 125515 43974 135529 196965 17462 mm3

Figure 5. The objects to be reconstructed (left to right): a water-

bottle, a bowling-pin, a small-bottle and a sphere. The dimensions

of the objects are summarized in Table 1. All four objects are

characterized by high symmetry and lack of distinctive geometri-

cal and textural features, causing existing in-hand pipelines to fail.

We perform successful reconstruction of all four objects.

pipeline described in Section 4 to the rendered point clouds

and use the hand meshes and motion data of [1].

The resulting accumulated and aligned point cloud is de-

picted in Figure 4. Figure 4(a) shows the reconstruction

without hand motion data, while Figure 4(b) shows the re-

construction after the incorporation of hand motion into

the in-hand scanning system. The reconstruction without

the hand motion data collapses to a degenerate hemisphere,

while it is clear that the hand motion data significantly con-

tributes towards the effective reconstruction of the manipu-

lated object. Parts of the object are never visible in the se-

quence. The occlusions caused by the manipulating fingers

can be clearly observed, verifying the correct registration of

the camera frames.

5.2. Realistic data

For our experiments with realistic data, we use a Prime-

sense Carmine 1.09 short-range, structured-light RGB-D

camera. Structured light sensors may not be optimal for

hand pose estimation, in contrast to time-of-flight sensors,

because significant parts of the hand completely disappear

from the depth image in case of reflections or at some view-

ing angles. Nevertheless, the used hand tracker worked well

with the sensor.

In order to perform both a qualitative and a quantitative

evaluation, we have captured new sequences for the four

objects depicted in Figure 5. As seen in Table 1, the size

of the objects varies in order to be representative of several

everyday objects. However, all objects have in common the

high symmetry and the lack of distinctive geometrical and

textural features, that renders them especially challenging

for existing in-hand scanning systems.

In the following we show the successful reconstruction

of these objects for the first time with an in-hand scan-

ning system, while we systematically evaluate the perfor-

mance of our pipeline both with respect to existing base-

lines, ground-truth object dimensions as well as state-of-

the-art systems.

5.2.1 Quantitative evaluation

Acquiring a ground-truth measure is difficult for most ob-

jects, however, for symmetric ones it is easy to measure the

dimensions of some distinctive areas. We therefore measure

manually the distinctive dimensions of the objects depicted

in Figure 5 in order to quantitatively evaluate the proposed

setup. The ground-truth dimensions, along with the mea-

sured ones by our approach and the measurement error, are

presented in Table 1. Especially for the case of the sphere,

we can easily acquire a ground truth value for its volume,

that is less prone to measurement errors introduced by hu-

man factors.

During quantitative evaluation, we measured the distinc-

tive dimensions of the water-tight meshes that are recon-

structed by our pipeline. We then evaluate the most impor-

tant parameter of our pipeline, namely the weight γt that

steers the influence of the contact correspondences in the

in-hand scanning system. The results of our experiments

are summarized in Figure 6, which plots the mean accumu-
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Figure 6. Quantitative evaluation of the weight γt of the energy

function (2) based on the ground truth dimensions of the objects

presented in Table 1. The error for each parameter is normalized

by the ground-truth value.

Figure 7. The bowling-pin object enriched with 2d texture using

stickers (left). The added texture allows for the reconstruction of

a reference ground truth shape (middle, right) facilitating quanti-

tative evaluation.

lated estimation errors of the eight parameters p normalized

by the ground-truth values, i.e., 1
8

∑
p

|pest−pGT |
pGT

. Without

the contact correspondences and using only visual features

(γt = 0), the error is relatively high since the reconstruction

for symmetric objects fails in this case. Even small values

for γt result in an abrupt drop in the error metric, however,

the influence of the contact correspondences starts becom-

ing more apparent for values above 5. In all subsequent

experiments, we use γt = 15.

The performance of our setup is described in more de-

tails in Table 1 which provides a direct comparison to the

measured object dimensions. The average error is only

6mm, comparable to the noise of commodity RGB-D sen-

sors, showing the potential of such a system for a wide range

of everyday applications.

For evaluation against a reference reconstructed shape,

we also add textural features on the bowling-pin in the form

of stickers, as depicted in Figure 7, without altering the ge-

ometrical shape of the object. We then perform the recon-

struction by rotating the object on a turntable. The resulting

reconstruction is illustrated in Figure 7, while quantitative

measures are provided for comparison in Table 1.

We further test the effectiveness of our system in com-

parison to two state-of-the-art systems, namely KinFu6, an

open-source implementation of Kinect-Fusion [22], and the

similar commercial system Skanect7. For technical reasons,

we use KinFu with a Kinect and Skanect with the Structure-

IO camera. Existing in-hand scanning approaches are ex-

pected to have a performance similar to these systems. For

comparison, we use KinFu and Skanect to reconstruct the

four objects depicted in Figure 5. A turntable rotates each

object for approximately 450 degrees in front of a static

camera, while we repeat the process three times and report

only the best run in order to assure objectiveness. Quantita-

tive performance measures are provided for these methods

in Table 1.

In order to show the important role of the hand pose

in our reconstruction pipeline, we replace the contact cor-

respondences Chand based on contact vertices with corre-

spondences Cdetect based on a contact detector. In that

respect we train a Hough forest [7] detector that detects

finger-object contacts in RGB images. We then establish

correspondences (Xdet, X
′
det) ∈ Cdetect between the points

enclosed by the detection bounding boxes in the source and

target frames simply by associating points with the same

2d coordinates inside the fixed-sized bounding boxes. In

that respect, the term Econtact(θ,Dh,R, t) in the objective

function (2) is replaced by the term

Edetector(Dh, Do,R, t) =
∑

(Xdet,X
′

det
)∈Cdetect

‖X ′
det − (RXdet + t)‖2. (8)

The results of the reconstruction, depicted in Figure 9, show

that the reconstruction is either incomplete or it has major

flaws, which is supported by the numbers in Table 1.

In order to measure the accuracy of the contact corre-

spondences obtained by the hand pose or the contact de-

tector, we manually annotated two points for each of the

two manipulating fingers for pairs of consecutive frames

and we do so for every 10th frame in our four sequences.

We then measure the pairwise registration error for each an-

notated pair (Xgt, X
′
gt) by ‖X ′

gt−(RXgt+t)‖. The results

are summarized in Table 2 and show that the hand tracker

is more accurate for pairwise registration than a detection

based approach.

5.2.2 Qualitative evaluation

Although the quantitative evaluation is informative, a qual-

itative evaluation can give further intuition about the effec-

tiveness of the system and the influence of its parameters.

6http://pointclouds.org/documentation/

tutorials/using_kinfu_large_scale.php
7http://skanect.occipital.com
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Figure 8. Qualitative evaluation of the weight γt of the energy function (2). The images show the reconstruction of the objects water-bottle

and bowling-pin (bottom view) for the weights γt: 0, 1, 5, 10, 15 and 20 (from left to right).

Figure 9. When a contact detector is used instead of the contact

points based on a hand tracker, the reconstruction fails. For each

object the front and the bottom view are shown.

Figure 10. Qualitative results for the bowling-pin object without

the term Eicp of Equation (7). In this case, the point clouds are

not well aligned.

Table 2. Quantitative evaluation of the pairwise registration based

on annotated pairs of frames. We assess the performance of both

the proposed pipeline based on hand pose Econtact as described

in Equation (6), as well as the detector-based baseline Edetect as

described in Equation (8). We report the mean and the standard

deviation over all the sampled frame pairs of all sequences in mil-

limeters.
Energy mean st.dev.

Econtact+Evisual 1.67 0.95

m
mEcontact 1.64 0.88

Edetector+Evisual 1.73 1.08

Edetector 1.80 1.12

We therefore show in Figure 8 the mesh extracted from the

TSDF volume of our pipeline for a number of different val-

ues for the weight γt. The experiment is done for the two

objects where the influence of γt can be easily observed

visually. As expected, the reconstruction without the use

of hand motion capture results in a degenerate alignment.

The incorporation of contact correspondences immediately

improves the reconstruction, driving the alignment process

according to the spatiotemporal movement of the contact

fingers. A low value, however, leads only to a partial recon-

struction. A sensible choice seems to be a value between

10 and 30, while for bigger values some small alignment

artifacts appear. For our experiments we choose γt = 15.

While Figure 9 shows the reconstruction when the hand

tracker is replaced by a detector, Figure 10 shows the re-

construction of the bowling-pin when ICP, as described in

Equation (7), is not used. In both cases, the point clouds are

not well aligned.

Figure 11 shows the best reconstruction of three runs by

KinFu and Skanect in comparison to our pipeline, both with

and without the use of hands and hand motion data. The

images show that the reconstruction without hands is sim-

ilar across different systems and results in a degenerate 3d

representation of the object. The incorporation of hand mo-

tion capture in the reconstruction plays clearly a vital role,

leading to the effective reconstruction of the full surface of

the object.

Although Figure 11 compares the TSDF meshes, more

detailed results are shown in Figure 12. The camera poses

are reconstructed effectively, showing not only the rota-

tional movement during the scanning process, but also the

type and intensity of hand-object interaction. The water-

tight meshes that are shown compose the final output of

our system. The resulting reconstruction renders our ap-

proach the first in-hand scanning system to cope with the

reconstruction of symmetric objects, while also showing

prospects of future practical applications.
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Figure 11. Qualitative comparison of different in-hand scanning

systems for all four objects of Figure 5. We visualize the meshes

extracted from the TSDF volume. From left to right, each row con-

tains the result of: (a) KinFu, (b) Skanect, (c) Our pipeline with

a turntable and without hand motion data, (d) Our pipeline with

in-hand scanning but without hand motion data, (e) Our pipeline

with in-hand scanning that includes hand motion data (the pro-

posed setup). Only the combination of in-hand scanning with hand

motion data succeeds in reconstructing all symmetric objects.

5.3. Limitations

While our approach does not depend on a specific hand

tracker, it only works if the hand tracker does not fail. At the

moment only end-effectors are considered, therefore cases

where there is only contact with the palm are not handled,

but the approach can be extended to more general contact

points. Moreover the case of fingers slipping over the ma-

nipulated object is not handled currently, but this could be

addressed by using a hand tracker that estimates forces [24].

6. Conclusion

While existing in-hand scanning systems discard infor-

mation originating from the hand, we have proposed an

approach that successfully incorporates the 3d motion in-

formation of the manipulating hand for 3d object recon-

struction. In that respect, the visual correspondences based

on geometric and texture features are combined with con-

tact correspondences that are inferred from the manipulat-

ing hand. In our quantitative and qualitative experiments

we show that our approach successfully reconstructs the 3d

shape of four highly symmetric and textureless objects.

Figure 12. Qualitative results of our pipeline for all four objects

of Figure 5 when a hand rotates the object in front of the camera.

The left images show the reconstructed camera poses. The poses

follow a circular path, whose shape signifies the type of hand-

object interaction during the rotation. The middle images show

the mesh that is acquired with marching cubes from the TSDF

volume, while the right ones show the final water-tight mesh that

is acquired with Poisson reconstruction.
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