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Abstract

Multiple-instance learning (MIL) is a unique learning

problem in which training data labels are available only for

collections of objects (called bags) instead of individual ob-

jects (called instances). A plethora of approaches have been

developed to solve this problem in the past years. Popular

methods include the diverse density, MILIS and DD-SVM.

While having been widely used, these methods, particularly

those in computer vision have attempted fairly sophisticated

solutions to solve certain unique and particular configura-

tions of the MIL space.

In this paper, we analyze the MIL feature space using

modified versions of traditional non-parametric techniques

like the Parzen window and k-nearest-neighbour, and de-

velop a learning approach employing distances to k-nearest

neighbours of a point in the feature space. We show that

these methods work as well, if not better than most recently

published methods on benchmark datasets. We compare

and contrast our analysis with the well-established diverse-

density approach and its variants in recent literature, us-

ing benchmark datasets including the Musk, Andrews’ and

Corel datasets, along with a diabetic retinopathy pathology

diagnosis dataset. Experimental results demonstrate that,

while enjoying an intuitive interpretation and supporting

fast learning, these method have the potential of delivering

improved performance even for complex data arising from

real-world applications.

1. Introduction

Multiple-instance learning (MIL) is a setting where la-

bels are provided only for a collection of instances called

bags. There are two types of instances: negative instances,

which are found in either negative bags or positive bags, and

positive instances, which are found only in positive bags.

While a positive bag must contain at least one inherently

positive instance, a negative bag must not contain any pos-

itive instances. In MIL, labels are not available at the in-

Figure 1. DR image classification as a MIL problem.

stance level. It is interesting to note however that the label-

space is the same for both at the bag level and at the instance

level. One may attempt to learn instance-level labels during

the training stage, thus reducing the problem to an instance-

level supervised classification. Alternatively, one may also

localize and prototype the positive instances in the feature

space and rely on the proximity to these prototypes for sub-

sequent classification.

MIL is an ideal set-up for many computer vision tasks

and examples of its application include object tracking [4],

image categorization [9] [26] [28] [12], scene categoriza-

tion [20] and content-based image retrieval [36]. In partic-

ular, MIL can be an especially suitable model for medical

image-based pathology classification and lesion detection-

localization, where an image is labeled pathological just be-

cause of one or a few lesions localized to small portions of

the image. Medical images collected in a clinical setting

may readily have an image-level label (either normal or var-

ious levels of pathology) while lacking the exact location of

the lesion(s). Figure 1 illustrates such an example: colour

fundus images of eyes affected with different pathologies

of diabetic retinopathy (DR). It is easy to notice that, al-

though majority of the image looks normal, a small retinal

landmark is enough to alter the label of the image from nor-

mal to pathological. In a MIL formulation for this problem,

each image can be considered a bag and patches of images

can be considered instances.

Over the years, many methods have been proposed to

solve the MIL problem [10] [29] [8] [2]. The most fun-
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Figure 2. An illustrative feature space for multiple-instance set-

ting. The ’x’ in red represents all instances from positive bags and

the ’o’ in blue represents all instances from negative bags.

damental one is the diverse density approach [19], which

has been built upon by many variants [35] [24] [9]. Diverse

density is in its basic sense, a function so defined over the

feature space that it is large at any point in the feature space

that is close to instances from positive bags while being

far away from instances from negative bags and vice-versa.

The various local maximas in this function are positive in-

stance prototypes and any instance that is closer to these

prototypes are labeled inherently positive instances. Other

types of methods also exist in this setting [5] [3] [27] [31].

MIL has many different variants and perspective to its

definition and indeed most MIL solutions are application

centric [1]. This can be easily seen from table 1. Earlier

methods perform as good or better in the MUSK dataset

than the ones published recently although the recent meth-

ods perform better on more complex tasks but for certain

exceptions. In this course of research while many particular

and complicated solutions are sought after, MIL has never

been sufficiently analyzed using traditional non-parametric

learning methods. Despite the recent advances, MIL re-

mains a challenging task as the feature space may be ar-

bitrarily complex, the ratio of positive to negative instances

can be arbitrarily low in a positive bag, and (by definition)

no labeling information is directly available for positive in-

stances.

To illustrate these factors, we simulate a typical MIL fea-

ture space as depicted in figure 2. Each instance belonging

to a particular cluster is independently drawn from a normal

distribution that defines the said cluster. While positive bags

can draw a subset of random cardinality of instances from

negative distributions, negative bags cannot draw any data

from positive distributions. Every positive bag must have

at least one instance sampled from a positive distribution

(marked in green ellipses P1 through P4). The centroids

of these clusters would be the ideal positive instance proto-

types that a MIL algorithm should identify. With the help of

this illustration, it is not difficult to imagine that, one or few

noisy negative instances coming close to a true positive in-

stance prototype could lower the diverse density drastically

and thus lead to a dramatic decrease in performance. Herein

lies a core argument to the MIL definition - the strictness

of positive neighbourhood. We show that DD-based algo-

rithms are not tolerant even to a single negative instance in

an arbitrary positive instance neighbourhood. Such strict as-

sumptions are not suitable for real-world (medical imaging)

data wherein the feature space can be noisy.

In this paper, we propose modifications to traditional

non-parametric methods adapting them to MIL. We demon-

strate their effectiveness against DD taking into consider-

ation the complex arrangements of a typical MIL feature

space. In particular, the formulation aims at easing the

dramatic impact of noisy negative instances on instance-

prototyping in DD-based approaches. The formulation

draws intuition from k-nearest-neighbour classification and

thus leads readily to an efficient learning algorithm. It em-

ploys an aggregated and weighted distance measure com-

puted from any point to its neighbouring instances labeled

according to their respective parent bags, conforming to

MIL requirement. Analysis with simulated data and ex-

periments with real data in comparison to existing state-of-

the-art approaches suggest that the proposed method, while

enjoying simplicity in formulation and learning, has the po-

tential of delivering superior performance for challenging

benchmark datasets.

The remainder of the paper is organized as follows. Sec-

tion 2 cites related works, while Section 3 describes the

proposed method. Section 4 presents the experimental set-

up and discusses results on the various evaluation datasets.

Section 5 provides concluding remarks.

2. Related Works

MIL was first introduced for the problem of drug activity

prediction [10], where axis-parallel hyper-rectangles (APR)

were used to design three variants of enclosure algorithms.

The APR algorithms tried to surround at least one positive

instance from each positive bag while eliminating any neg-

ative instances inside it. Any test bag was classified posi-

tive as long as it had at least one instance within the APR.

Conversely a bag was classified as negative when it had no

instance represented within the APR.

The first density-based formulation of MIL was diverse

density (DD) [19]. DD is not a conventional density but is

rather defined as the intersection of the positive bags against

the intersection of the negative bags. It is a measure that is

high at any point on the feature space x if x is closer to pos-

itive instances and is farther away from negative instances.
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The local maxima of DD would yield a potential concept

for the positive instances. Several local maxima can yield

several prototypes of positive instances that can be far apart

in the feature space. Some of these prototypes can be sep-

arated by other negative instances. The concept point of a

diverse density in a MIL feature space was defined as,

argmax
x

∏

i

Pr(x = t|B+
i )

∏

i

Pr(x = t|B−
i ). (1)

These local maxima were termed as instance prototypes. A

noisy-or model was used to intuitively maximize the DD

in Equation 1. This was further developed to assume more

complicated and disjoint concepts in EM-DD and further

developed by other methods including DD-SVM and Accio

[35] [9] [24]. The major drawback of the diverse density

arises in a situation where the distribution of negative in-

stances is noisy. In other terms, if one instance prototype

has a negative distribution closer to the prototype than the

others, then its diverse density is largely lower than that of

the others, as DD unfairly favours the distribution of pos-

itive instances that is farther away from negative instances

than those that are relatively closer. This makes it hard to

define that particular prototype in such situations. Even the

presence of one noisy negative instance near the potential

instance prototype can lower the DD drastically as we show

in the later sections. In figure 2 the prototype P4 was the

twenty second largest local maxima in the DD of the feature

space. If there were a bag that contained only one positive

instance near P4 but was still close enough to the nega-

tive instances, chances are that this bag will be misclassi-

fied as negative. DD defined in such a formulation provides

a density-like function that is fickle and is easily affected

by introducing even just one negative sample closer to the

positive prototype.

The maximization procedure for DD is started from ini-

tial guesses. An idea was put forward by Chen and Wang

that the maximization should start from every instance in

every positive bag (or at least a large sample of positive

bags) so that unique local maxima in DD can be identi-

fied [9]. A plethora of methods still use this DD formula-

tion [9] [8] [24] [35] [18]. The decision boundary of a DD

system is a hyper-ellipsoid in the feature space. A kernel

based maximum-margin approach would construct hyper-

planar decision boundaries characterizing complex decision

surfaces. The first formulation of a support vector machine

(SVM) for MIL was proposed in 2002 [2]. They devised an

instance-level classifier mi-SVM and a bag-level classifier

MI-SVM. In a way, MI-SVM maximized the margin be-

tween the most positive instances and the least negative in-

stances in positive and negative bags respectively. The MI-

SVM framework is now modified and re-christened as la-

tent-SVM which plays a central role in the deformable-part

models based object recognition algorithms [12]. MILIS

provided a similar SVM-based approach with a feedback

loop to select instances that provided a higher training stage

confidence [13]. This was an idea adapted from a previously

existing related idea, MILES [8].

The first distance-based non-parametric, lazy learning

approach to MIL was taken by citation-k-NN [29]. Inter-

bag distances were found using a minimal Hausdorff dis-

tance. A k-nearest neighbour approach was used along

with this distance to classify a new bag or to retrieve closer

bags. This did not always work in a MIL setting as k-NN

uses a majority voting scheme. If a positive bag contains

fewer number of inherently positive instances than inher-

ently negative instances, majority of its neighbours are go-

ing to be negative and the algorithm was confused by the

false-positives it reported. Therefore the concept of citers

was introduced. If k-NN refereed its neighbours, then its

neighbours are cited by citers. Citers are the backward

propagated references, in the sense that they refer back the

considered instance. Though it was a generalized approach,

citation k-NN did not work as well when positive instances

were clustered and such clusters were separated by negative

instances, in which case the citers and references did not

always compliment each other.

This problem does not apply to all nearest neighbour

based approaches. Nearest neighbour approaches should be

used properly and their smart usage was discussed in [6]. A

novel concept of bag to class (B2C) distance learning was

adopted for the use of k-NN. A complimentary idea was

utilized in a MIL set-up by learning class to bag (C2B) dis-

tances by combining all training bags of a particular class

to form a super-bag [26] [31]. A similar instance specific

distance learning approach was used in [27]. On further

study, this was reformulated as a l2,1 minimax problem and

was solved with some effort [28]. A similar idea was im-

plemented to group faces in an image by considering inter

bag or bag to bag (B2B) distances in [15]. A related bag to

bag approach is used to quantify super-bags in [3].

Most of the MIL algorithms presented above assume that

the bags are independent. Though it is a reasonable as-

sumption in a computer vision context, it might not be a

general idea. Zhang et al., explored the MIL idea for struc-

tured data [34]. A data-dependent mixture model approach

was developed in [30]. Another approach designed specifi-

cally for special data space is the fast bundle algorithm for

MIL [5]. One important assumption in the early understand-

ing of MIL is that every positive bag must contain at least

one positive instance. Chen et al. felt this was too restrictive

and developed a feature mapping using instance selection

that projects a MIL problem into a much simpler supervised

learning problem using an instance similarity measure [8].

This counter-assumption was also used in a histopathology

cancer image learning system using a multiple clustered

instance learning approach [33]. Although in a MIL for-
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mulation bag level classification is sufficient and instance

level classification though clever, is not required, many al-

gorithms attempt to identify positive instances. A SVM was

used to minimize the hinge loss (modeled as slack variables)

to identify positive instances in [32]. The above methods

cater to certain particular configurations of the MIL space

and are suitable for particular domains.

3. The proposed approach

Consider figure 2. Though not universal, this figure il-

lustrates a typical MIL feature space. The instances arising

from regions P1 to P4 are potentially inherently positive

instances as they are farther away from negative instances

while being closer to other positive instances. The instances

from positive bags in other regions, along with negative in-

stances are in reality, negative instances as they are close in

proximity to negative instances from negative bags.

Suppose we have labeled data D =















X(1) Y (1)

X(2) Y (2)

X(3) Y (3)

...
...

X(n) Y (n)















where X(i) is the ith bag in the dataset and Y (i) ∈ {0, 1}
is its label. Internally, each bag X(i) contains mi (often is

a constant m by design, particularly in image classification

contexts) instances such that X(i) = {x
(i)
1 , x

(i)
2 , . . . x

(i)
mi

}.

Consider a small region R of volume V in this feature space.

The estimate for the density of instances from positive bags

is given by
(|k+|)/n

V , where k+ is the set of instances from

positive bags in the region R and |k+| its cardinality, and n
is the number of instances in all of the feature space. Sim-

ilarly the estimate for the density of negative instances is

given by
(|k−|)/n

V , where k− is the set of instances from

negative bags in the region R, |k−| is the number of nega-

tive instances in the region R.

Putting them together,
(|k+|)/n

V − (|k−|)/n
V is a measure

that, will be high if the number of positives exceed the num-

ber of negatives in that region, will be low if the number of

negatives exceed the number of positives in that region, and

will be 0 if the number of positives equal the number of

negatives within that region. Alternatively, if one considers

a (rectangular) Parzen window,

φ(u) =

{

1, |uj | ≤ h where, j = 1, 2, ...d,

0, otherwise
(2)

the aforementioned measure can also be formulated as,

fparzen(x) =
1

n

|k+
n
|

∑

i=1

1

V
φ(

x− k+i
h

)−
1

n

|k−

n
|

∑

i=1

1

V
φ(

x− k−i
h

)

(3)

Figure 3. Parsing the MIL feature space with a Parzen window

technique. It can be seen that this follows the properties of a MIL

density-like.

where, x is any location on the feature space and k+i and k−i
are instances from positive and negative bags within that re-

gion respectively. Such a parsing of the MIL feature space

of figure 2 is shown in figure 3. The properties of the func-

tion fParzen(x) hold similar to that of DD and can be easily

observed in figure 3. The choice of the size of the region

(analogous to the selection of the variance for the Gaussian

in the DD formulation) and the Parzen window functions

are in line with that of a traditional Parzen window: if the

size becomes too large, the measure will not have sufficient

resolution. Picking a proper region-size would be a practi-

cal difficulty.

Instead of considering a region R of fixed size, let’s

limit to a fixed number of neighbours k. In this set-up,

we start with a region of zero volume from x and grow

two regions, one for positive instances and one for neg-

ative instances, until we just enclose for each of the re-

gions, k points respectively. This enables us to have dif-

ferent sized regions for positive and negative estimates re-

spectively. While it appears to be a simple k-NN approach

to density estimation, we emphasize that we are not using

the nearest-neighbour voting rules. In fact, a direct applica-

tion of nearest-neighbour voting technique will not work on

a MIL space as was pointed out by Wang et. al, but the idea

of nearest neighbour can still be modified and used to suit

the MIL needs [29]. The vote contributions of positive and

negative neighbours enclosed by the two regions are their

respective kernelized distances to the point x, instead of a

uniform majority vote. This aggregated vote can be formu-
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Figure 4. A region of a typical 2D MIL feature space and its parse

using the k-NN measure. Red represents positive and blue repre-

sents negative.

lated as,

fkNN (x) =

|k−|
∑

i=1

Ψ(||x− k−i ||)−

|k+|
∑

i=1

Ψ(||x− k+i ||)

such that, |k+| = |k−| = k. (4)

where, Ψ(.) is a monotonically increasing sub-modular

function, k is the number of neighbours considered, and k+

and k− are now the set of k instances from positive and

negative bags that are the nearest to x respectively. Ψ(.) is

used as a way to scale distances when the feature space is

arbitrarily large. It can be considered as normalization. For

all our experiments, we typically use Ψ(x) = x.

The advantage of fixing the number of neighbours is that

in a region where there are no points or very few number

of points, we will get a block of uniform measure and in a

region where there is a high density of points, we will get a

smoothly varying measure. Such a measure is shown in fig-

ure 4. The impact of the number of neighbours k is similar

to that of the size of the region R in the Parzen window idea.

If k is too small, the measure is going to give information

about a very small local region and is thereby unreliable.

If k is too large , the impact of proximity is going to be

averaged out.

Learning

Learning under this formulation is a straight forward

threshold learning and this is done by maximizing the vali-

dation accuracy. An instance-level classifier using this mea-

sure can be constructed as,

h(x) = 1{fkNN (x) ≥ T} (5)

This is an indicator function that outputs 1 if the measure

is above a threshold T and 0 if the measure is below the

threshold T . We can use this instance-level classifier to con-

struct a bag-level classifier.

b(X) = 1{

m
∑

i=1

h(xi) ≥ a}∀x1, x2, . . . , xm ∈ X. (6)

This is an indicator function that classifies the bag 1 if it has

at least a instances classified as positive and 0 other-wise.

Typically in most MIL settings a = 1, although this need

not be the case generally. The aim of this non-parametric

empirical risk minimization formulation is to minimize the

training error,

ˆǫ(b) =
1

n

n
∑

i=1

1{b(X(i)) 6= Y (i)}, ∀(X,Y ) ∈ D. (7)

by estimating T̂ that best minimizes ˆǫ(b) as,

T̂ = argmin
T

ˆǫ(b) (8)

Once the threshold is learnt, classification is performed

directly by using the bag-level classifier in equation 6 with

the learnt threshold. Note that in MIL, it is not required,

although possible in this case, to label each instance in the

bag. The labeling of instances can be as follows:

y(x) = h(x)|T=T̂ (9)

This process is equivalent to maximizing the equation 4

(or 3) for all points of feature space and considering the

local maximas as instance prototypes, as was described by

Chen et. al, for the DD formulation [9]. This now enables

comparison to prototyping-based methods. Such a formula-

tion can now be re-written as,

x̂ = argmax
x

[

|k−|
∑

i=1

Ψ(||x− k−i ||)−

|k+|
∑

i=1

Ψ(||x− k+i ||)

]

,

such that,|k+| = |k−| = k. (10)

where x̂ is a prototype positive instance. One advantage

of using equation 10 is that once the prototypes are found,

we neither need the entire dataset anymore nor do we need

to calculate distances to all the points in the dataset. The

prototypes easily divide the feature space into probabilistic

Voronoi tessellations such as in figure 4. We could also

estimate a radius around every prototype to isolate hyper-

spherical regions that are positive.

We solve this optimization problem by using an idea sim-

ilar to the one used in [9]. We start a local gradient ascent

from every instance from every positive bag in the train-

ing dataset and find a local maxima. Since such maximas

can only ever end in a high density region of true positive

instances from positive bags and since we start each gradi-

ent ascent from every instance in every positive bag, each

ascent is computationally tractable in small number of iter-

ations. Indeed, often few well-chosen instances from posi-

tive bags make this convergence faster and such techniques

can be found for maximizing the DD in various papers pre-

viously surveyed in section 2. Similar techniques can be
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applied here as well. All the local maximas are sorted (after

non-maximal suppression) and top N are considered as in-

stance prototypes. It is to be noted that for the dataset shown

in figure 2, while the top 5 maximas were enough to find all

four prototypes for our approach, it takes top 24 maximas

for DD to find the four prototypes.

The k for k-NN is picked here by a typical elbow

method. Once local maximas (instance prototypes) are

found we can again maximize a validation accuracy jointly

for all instance prototypes to find a threshold of classifica-

tion for each prototype in terms of the distance to the pro-

totype, hence creating a hyper-spherical decision regions

around each prototype. Thus the decision boundaries of

this method creates a tessellation of the feature space. The

tessellation is a superposition of hyper-spherical regions

around a positive prototype with varying radii.

4. Experiments and Results

In this section we provide details of our experiments

and the results from those experiments. We evaluated

our method using three standard MIL datasets: the musk

dataset, Andrew’s datasets, the Corel datasets (both 1k and

2k), and our own dataset: the DR dataset. For all the results

shown on all the datasets, we used the most common imple-

mentation methodologies, including data splits, cross vali-

dations and average over runs that were found in literature.

This enabled us to compare against results that were pub-

lished in the same. When results were not available or when

the protocol doesn’t match, we evaluated the results using

the codes from CMU MIL toolbox1. In case of MILES, the

results were obtained by using the author’s original code2.

4.1. Musk dataset

An accepted benchmarking dataset in the MIL literature

is the musk dataset. The musk dataset is well-described

in [10]. Musk dataset is a benchmark feature space used to

predict drug activity. It contains two sub-datasets: MUSK1

and MUSK2. MUSK 1 contains 92 molecules with 47

musk and 45 non-musk molecules. MUSK 2 contains 102

molecules with 39 musk and 63 non-musk molecules. Each

bag contains variable number of instances with 166 dimen-

sional features and binary labels. We use the standard

implementation specifications that is used in the original

APR paper and other published literature: ten-fold cross-

validation over the entire dataset, since its easier to com-

pare against a plethora of methods [10]. Table 1 compares

the performance of various algorithms against the proposed

method. It can be seen that the proposed method is best

in MUSK 1 and among the high performing methods in

MUSK 2.

1CMU MIL toolbox: http://www.cs.cmu.edu/˜juny/MILL
2MILES homepage: http://www.cs.olemiss.edu/˜ychen/

MILES.html

Methods MUSK 1 MUSK 2

DD [19] 88.9% 82.5%

EM-DD [35] 84.8% 84.9%

citation (k)-NN [29] 92.4% 86.3%

mi-SVM [2] 87.4% 83.6%

MI-SVM [2] 77.9% 84.3%

DD-SVM [9] 85.8% 91.3%

MILES [8] 86.3% 87.7%

MIforest [31] 85% 82%

MILIS [13] 88.6% 91.1%

ISD [27] 85.3% 79.0%

ALP-SVM [3] 87.9% 86.6%

MIC-Bundle [5] 84% 85.2%

Ensemble [18] 89.22% 85.04%

Proposed 92.4% 86.4%

Table 1. Performance of various MIL algorithms on the musk

dataset.

MUSK datasets are uni-concept datasets. For instance,

in MUSK 1, among a total of 476 unique instances each

with feature values ranging from -348 degrees to 336 de-

grees, there are only 633 unique feature values. In such a

heavily quantized feature space that is 166 dimensional, de-

tecting one potential instance prototype is easier for density

based algorithms.

4.2. Andrew’s datasets

Andrews et. al, in their mi-SVM paper proposed the use

of three classification datasets, elephant, fox and tiger, for

the use of evaluating multiple-instance learning [2]. These

are now popular benchmark datasets in the MIL literature.

We also test our algorithm on these datasets using the same

specifications mentioned on the said article. Each dataset

has 200 images with 100 positive and 100 negative images.

The number of instances in each category are 1391, 1320

and 1220 respectively with varying number of instances per

bag. Each instance is a 230 dimensional feature vector. We

train on a 2/3 random split of the data and test on the re-

maining 1/3 of the unseen data. The results are maximized

over 15 runs of validation and are shown in table 2. Our

result while being the best in the Elephant and Fox classes

is almost as good as the best in the Tiger class. It is to be

noted that we are significantly higher in the Fox class which

is widely considered to be a notoriously noisy dataset for

MIL. This is a strong indicator of our method’s adaptabil-

ity.

4.3. Corel dataset

Corel is another well known, image categorization

dataset for MIL benchmarking. The Corel-2k dataset con-

sists of 2000 images. There are 20 classes and each class

consists of 100 images. The Corel-1k dataset is a subset
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Methods Elephant Fox Tiger

citation k-NN [29] 79.2% 62.5% 82.6%

mi-SVM [2] 79.7% 62.9% 79%

MILES [8] 70% 56% 62%

MIforest [31] 84% 64% 82%

ISD [27] 77.9% 63% 85.3%

ALP-SVM [3] 84% 69% 86%

MIC-Bundle [5] 80.5% 58.3% 79.11%

Ensemble [18] 84.25% 63.05% 79.30%

Proposed 86% 73.94% 85.7%

Table 2. Performance of various MIL algorithms on Andrew’s

dataset.

Methods Corel-1k Corel-2k

mi-SVM [2] 76.4% 53.7%

MI-SVM [2] 75.1% 55.1%

MILES [8] 82.3% 68.7%

DD-SVM [9] 81.5% 67.5%

MILIS [13] 83.8% 70.1%

Proposed 87.3% 71.9%

Table 3. Performance of various MIL algorithms on Corel dataset.

of this dataset with the first 10 difficult categories. Ta-

ble 3 shows the performance of the proposed approach in

the corel dataset. It is to be noted that we are producing

the best results in the Corel dataset. Training-testing data is

again a 2/3− 1/3 split.

4.4. A DR dataset

As was briefly discussed in section 1, DR image clas-

sification is an application especially suitable for MIL. In

practice, the difficulty in this problem arises from the fact

that the physical and observable difference between a nor-

mal eye and a pathological eye can be very small, localizing

to regions with slightly different characteristics. This can be

seen in figure 1.

A variety of classification and retrieval schemes have

been tried on DR images. Structural Analysis of the Retina

(STARE) is one of the earliest attempts to solve the DR co-

nundrum [21] [14]. STARE performs automated diagno-

sis and comparison of images to search for images similar

in content. Recently other learning approaches were de-

veloped to identify relevant patterns using local relevance

scores [23]. Application of MIL approaches to DR is gain-

ing interest in recent years [22].

In this study, we consider the auto colour correlogram

(AuoCC) as a colour feature, which is well-studied in the

medical imaging literature [16]. A modified and quantized

64-bin AutoCC feature is extracted for each instance in an

image [25]. We neglect the black regions and sample 48

non-overlapping instances from every image. We use a

Methods Accuracy

DD [19] 61.29%

EM-DD [35] 73.5%

citation k-NN [29] 78.7%

mi-SVM [2] 70.32%

MILES [8] 71%

Proposed 81.3%

Table 4. Performance of various MIL algorithms on DR dataset.

high-quality colour fundus image database of 425 images

comprising 160 normal images, and 265 affected images to

test our algorithm on. This dataset was constructed from

publicly available databases including DiabRetDB0 [11],

DiabRetDB1 [17], STARE [21] and Messidor3 and has been

used in some existing studies [7] [25]. The balance of the

database is more towards the positive bags and this makes it

more challenging for a MIL algorithm. The results were all

evaluated using a 2/3− 1/3 train-test split.

Prototyping DR instances

In the prototyping sense, each prototype of positive in-

stances should roughly correspond to one type of lesion. As

we use colour features this is easily possible. We estimated

a total of about 35 different types of lesion prototypes us-

ing our algorithm and verified it with EM-DD’s prototypes.

EM-DD had its maximum accuracy at about 40 prototypes.

It is reasonable to assume from this information that there

are in the range of, 35-40 different positive prototypes, each

of which in the feature space might correspond to a unique

lesion type or character. In this feature space, the nega-

tive instances are of three types: normal skin, nerves and

the optical disk. This is a reasonably noisy datasets and of-

ten has only one or two instances among 48 instances that

are positive in a positive bag. Though the distribution of

the optic disc might be noisy, and the number of true posi-

tive instances are very low, the proposed algorithm has the

potential to adjust to it. Table 4 shows the results of the

proposed approach on the DR dataset, where the proposed

method stands best.

4.5. Sensitivity to labeling error

Although not an implicit feature of the proposal, we per-

form the experiments to demonstrate the proposed method’s

sensitivity to labeling error, exactly similar to the one de-

scribed in [8]. We deliberately flip the labels for a range of

percentages of labels randomly on our training split and test

the trained model on the original labels in the testing split.

The split was 2/3 − 1/3. The accuracies of the proposed

method on various datasets are shown in figure 5. After

3Kindly provided to us by the messidor program partners. Visit http:

//messidor.crihan.fr
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Figure 5. Accuracy vs Percentage of labels flipped for the pro-

posed method. Flatter curve is good.

Figure 6. Drop in accuracy at various noise levels for proposed and

MILES on the DR dataset. The lower the value the better.

about 20% of labels are corrupted, the proposed method

still loses only about 5% accuracy and only when about

one-third of the labels are corrupted, the proposed method

loses about 10% accuracy. The average drop in accuracy

for both the proposed method and MILES are compared in

figure 6. It is clear that MILES and the proposed algorithm

follow the exact same trend. This trend is clearly indica-

tive that the proposed method is as good as MILES and is

often times better, when it comes to sensitivity to labeling

noise. It is noteworthy that MILES is considered the state-

of-the-art benchmark for sensitivity to labeling error out of

all MIL methods published and that was one of its core con-

tributions.

5. Conclusion

In this paper, we postulate whether lazy learning ideas

can be carried over from traditional non-parametric meth-

ods for supervised learning to a MIL setup. We proposed a

simple, yet novel usage of non-parametric learning philos-

ophy to the MIL problem. In particular, we analyzed the

MIL feature space using a k- NN philosophy and proposed

a new formulation based on distances to k-nearest neigh-

bours. The new formulation was compared and contrasted

with the widely used DD formulation. The proposed ap-

proach was tested on the musk datasets, Andrews dataset

and the corel datasets, and was found to be effective. The al-

gorithm was used to solve the DR image classification prob-

lem and was found to be the best among other algorithms.

We therefore conclude that a non-parametric learning phi-

losophy to MIL not only makes intuitive sense but can also

be a powerful tool for most general cases.
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