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Abstract

Segmenting semantic objects from images and parsing

them into their respective semantic parts are fundamental

steps towards detailed object understanding in computer vi-

sion. In this paper, we propose a joint solution that tack-

les semantic object and part segmentation simultaneously,

in which higher object-level context is provided to guide

part segmentation, and more detailed part-level localiza-

tion is utilized to refine object segmentation. Specifically,

we first introduce the concept of semantic compositional

parts (SCP) in which similar semantic parts are grouped

and shared among different objects. A two-stream fully con-

volutional network (FCN) is then trained to provide the SCP

and object potentials at each pixel. At the same time, a

compact set of segments can also be obtained from the SCP

predictions of the network. Given the potentials and the

generated segments, in order to explore long-range context,

we finally construct an efficient fully connected conditional

random field (FCRF) to jointly predict the final object and

part labels. Extensive evaluation on three different datasets

shows that our approach can mutually enhance the perfor-

mance of object and part segmentation, and outperforms the

current state-of-the-art on both tasks.

1. Introduction
Decomposing an object into semantic parts enables a

more detailed understanding of the object, which can pro-

vide additional information to benefit many computer vision

tasks such as pose estimation [42, 11], detection [3, 8], seg-

mentation [13], and fine-grained recognition [44]. Thus, it

has become an attractive research topic to leverage seman-

tic part representation through part detection [5, 16, 8], and

human joint estimation [36].

In the literature of semantic segmentation, while object-

level segmentation over multiple object categories has

been extensively studied along with the growing popular-

ity of standard evaluation benchmarks such as PASCAL

VOC [15], object parsing (i.e., segmenting objects into se-

mantic parts) is addressed mostly for a few specific cat-

egories provided with accurate localization such as hu-

man [45, 13, 11] and cars [13].

With the increasing availability of semantic part anno-
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Figure 1. We handle the prediction of semantic object and part

segmentation in a wild scene scenario. (a) Original image. (b)&(c)

are the object and part segmentation respectively, generated from

our algorithm.

tations [8], more recent works have attempted to handle

more difficult classes like animals with homogeneous ap-

pearance [39], and to perform both object and part segmen-

tation [21], as illustrated in Fig. 1. However, in [21], ob-

ject and part segmentation are performed sequentially, in

which the object mask is first segmented, and then the part

labels are assigned to the pixels within the mask. As a re-

sult, the errors from the predicted semantic object masks

may be propagated to the parts.

In fact, object and part segmentation are complemen-

tary and mutually beneficial to each other. Semantic ob-

ject segmentation requires a larger receptive field in order

to correctly recognize the object, while part segmentation

focuses on local details to obtain more accurate segmenta-

tion boundaries and accommodate large pose and viewpoint

variations. If these two tasks are tackled simultaneously, by

integrating the object-level guidance with part-level detailed

segmentation, we can address two of the most challenging

problems at the same time, i.e., discovering the subtle ap-

pearance differences between different parts within a single

object, and avoiding the ambiguity across similar object cat-

egories. Motivated by this observation, we propose a joint

solution to object and part segmentation, in which the con-

sistency of the object and parts are enforced through joint

training and inference.

Fig. 2 shows the overall framework of our approach.

When performing part segmentation over multiple object

classes, the appearance of some parts may be very simi-

lar, e.g., horse legs and cow legs. Therefore in order to re-

duce the ambiguity and complexity during training, instead

of treating each semantic part type independently [21], we

allow some part labels to be shared by related object classes,

and group the labelled parts of different classes into a se-
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Figure 2. Our framework for joint part and object segmentation. Given an image, a two-stream FCN is performed to predict both the

semantic compositional parts (SCP) and object potentials with different input image scales. The two potentials are then concatenated and

fed to a new convolutional layer to predict joint object potentials. Finally, from SCP potentials, SCP segments are proposed as nodes for

the fully-connected CRF to jointly infer the part and object labels.

mantic compositional part (SCP) representation based on

their appearance and shape similarity (e.g., horse legs and

cow legs belonging to the same type of leg). Details of part

sharing and SCP labels are illustrated in Fig. 3. Since we are

performing object and part segmentation jointly, the ambi-

guity of shared part labels can be solved by the object label.

Given an image with certain objects, we train a two-

stream fully convolutional network (FCN) with the first

channel predicting the SCP potentials while the second pre-

dicting the object potentials. We then concatenate the two

potentials as the input to an additional convolutional layer

to refine the object potentials through joint training. At the

same time, a compact set of SCP region proposals are gener-

ated from the SCP potentials. Using these region proposals

as nodes, we construct a fully connected conditional ran-

dom field (FCRF) to further incorporate the object and SCP

potentials, yielding the jointly predicted object and part seg-

mentations. In our FCRF, the consistency between the ob-

ject and parts are enforced with long-range constraints.

We did extensive experiments over three derived datasets

based on PASCAL VOC segmentation benchmark [14, 8].

Experimental results demonstrate that our joint approach

improves both object and part segmentation, and signifi-

cantly outperforms the state-of-the-art on both tasks.

2. Related work
In the literature of detection, the usefulness of mining se-

mantic part representation in helping object recognition has

been long studied. Felzenszwalb et.al [16, 19] proposed the

deformable part-based model (DPM) which is an implicit

way of discovering hidden parts. Later models use more

accurate part-representation through explicit part supervi-

sion [34, 46]. Poselets [5] are proposed to model the local

human parts through 2D projections from 3D data, which

can be used as robust representation for both detection [20]

and segmentation [29, 1]. In addition to human body parts,

Azizpour et. al [3] explicitly induce the bounding-box an-

notations of animal parts, yielding stronger detection results

on both object and parts. Chen et. al [8] extend such ideas

by providing richer labeling of part segments, which can

better capture the appearance features for learning.

In the literature of segmentation, semantic parsing has

also been actively investigated. However, due to its in-

creased challenge in getting detailed boundaries, most pre-

vious work focused on parsing objects given both the se-

mantic category and a cropped bounding box with no oc-

clusion, such as human parsing [4, 45, 41, 13, 11], car

parsing [35, 13, 28] or animal parsing [39]. Such meth-

ods are limited in their applications, as objects in real-

world images are often occluded with large deformation

and appearance variations, which is difficult to be handled

by those shape-based [4] or appearance-based [11] models

with hand-crafted features or bottom-up segments.

Recently, deep convolutional neural networks [24]

(CNN) have achieved great success in many applications

such as object detection [17, 22, 47] and end-to-end seg-

mentation [40, 12, 21, 27, 7], with advanced network struc-

tures such as the VGG-Net [33]. Some studies tried to

understand the implicitly learned filters [43] or compara-

ble structures with the DPM [38, 18] in the network, and

discovered some meaningful part representations in deeper

layers. However, such representations are still not semantic

parts, and using explicit supervision from semantic part la-

bels for segmentation has not been investigated. In our ap-

proach, we propose to explicitly model the semantic parts

along with the whole object by taking advantage of the re-

cent advance of fully convolutional network (FCN) [27].

It has been very successful in predicting structured output

such as semantic object segmentation. Specifically, FCN

converts the fully-connected layers in the original CNN

to 1 × 1 convolution layers, thus can efficiently perform
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sliding-window-based classification at each pixel with a cer-

tain receptive field. However, it starts from local convo-

lutional kernels with limited receptive fields and may not

be able to capture all the long-range context, yielding lo-

cal confusions. In our case, we solve such problem through

modelling over object scale context, which is also suggested

in prior arts [5, 9, 37, 10].

Perhaps the closest work in our scenario is the hypercol-

umn approach [21]. However, they perform object and part

segmentation sequentially, and train many part classifiers

separately for each class, which may suffer from increased

training cost and has less scalability when the number of

object class is large. In contrast, we use semantic composi-

tional part (SCP) to allow part sharing and reduce training

complexity. Moreover, our model leverages the advantage

of both object segmentation and semantic part segmenta-

tion, yielding strong results in very challenging scenarios.

To the best of our knowledge, this is the first work that pro-

vides a joint solution to tackle the segmentation of semantic

parts and objects, which allows the part and object poten-

tials interact and benefit each other.

3. Joint part and object segmentation
Our framework includes four major parts, i.e. shared se-

mantic compositional parts (SCP) generation, part and ob-

ject potentials, proposal of SCP regions and fully connected

conditional random field (FCRF). In the following sessions,

we will describe these techniques in details.

3.1. Semantic compositional parts

When performing semantic object segmentation and

parsing over multiple object classes, some parts from differ-

ent object classes yet with similar semantic meanings may

also have very similar shapes and appearances (e.g., horse

legs and cow legs). In such scenarios, allowing the parts to

be shared among similar object classes [46, 31] could al-

leviate the difficulties of distinguishing similar parts from

different objects, and at the same time reduce the increasing

complexity of training and inference as the number of ob-

ject categories grows. Therefore, before we formally train

our framework for these two tasks, we group those similar

parts to form the semantic compositional parts (SCP) that

are shared among related object classes.

In particular, given a semantic part, it has an object label

lo (e.g., horse) and a particular semantic meaning ls (e.g,

leg). The joint label of this part we would like to infer is

denoted by lop (e.g, horse-leg). We group the original part

labels lop to a shared compositional part representation lscp
if they have the same semantic meanings ls and highly sim-

ilar appearances and shapes. The SCP lscp are then used

to compose different objects lo as illustrated in Fig. 3. For

example, in the case of horse and cow, the representation

of different labels are, lo ∈ {horse, cow}, lop ∈ {horse-

head, horse-body, horse-leg, horse-tail, cow-head, cow-leg,

cow-body, cow-tail} and ls ∈ {head, body, leg, tail}. If we

SCP

Semantic meaning

Object

Figure 3. Illustration of our semantic compositional part (SCP)

grammer in Sec. 3.1. Each SCP is associated with one semantic

meaning, and all the objects are composed of several SCPs.

allow the two objects to share the same type of body, leg and

tail, we get the SCP label lscp ∈ {head(h), head(c), body1,

leg1, tail1 }, as in Fig. 3, which is a much smaller predic-

tion space than lop. The information of lop is kept in the

connections between lo and lscp. During the inference, by

enforcing the consistency of lscp and lo, lop can be directly

recovered, e.g. known lo = horse and lscp = leg1, then

we get lop = horse-leg. Currently we manually group those

part labels. Nonetheless, automatically generating SCP is a

very interesting problem especially with increased number

of object categories, and will be investigated in the future.

3.2. Deep part and object potentials

In this section, we mainly describe the joint prediction of

the semantic compositional parts (SCP) potentials and ob-

ject potentials by a two-stream FCN, which is then used

to construct the FCRF. Specifically, as illustrated in the

framework (Fig. 2), the first channel of the FCN predicts

a (Np + 1)-channel SCP potential map (Np is the SCP la-

bel number, while the additional label represents the back-

ground). Similarly, the second channel of the network pre-

dicts a (No + 1)-channel object-class potential map (No

being the object class number). In addition, we concate-

nate the SCP potentials and the object potentials as a set

of high-level features, and feed them to a new k × k conv.

layer for object potential refinement. This predicted joint

object potential has less noise within the object and better

boundaries. It is because firstly, the conv. layer accesses

larger context for reducing the confusions, and secondly,

our SCP potentials keep better edge information that can

interact with the object potentials during joint training. As

shown in Tab. 2, compared with the original FCN, the “Joint

FCN” produce better performance.

One may consider to also generate refined SCP poten-

tials similarly using the joint prediction layer. However, us-

ing the SCP potentials in this way does not show much im-

provement in our experiments. This is because firstly, the

SCP potentials have already encoded more detailed bound-

ary information than the object potentials, and the inter-

actions would not help the SCP potentials to refine their

boundaries. Secondly, the ambiguity of similar parts from

different objects, which is the most challenging problem in
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part segmentation, has already been better addressed by us-

ing part sharing and the object-scale FCRF. Therefore, the

joint prediction for SCP refinement is not adopted in our

framework to reduce the system complexity.

Last but not the least, the SCP potentials and object po-

tentials actually need different levels of context. This is also

a key factor in DPM [16], where they use a larger image

scale for part filters and a smaller scale for root filters. In

our case, we adopt a similar strategy with different input

resolutions to obtain proper receptive fields, i.e. sp × sp for

SCP and so × so for object, where we require sp > so. We

investigated the influence of input scale in our experiments,

and chose the optimal sp and so using cross-validation.

3.3. SCP segments proposal

As mentioned earlier, our FCRF is built upon a compact

set of SCP segments. In our case, traditional object proposal

algorithms such as CPMC [6] or MCG [2] would typically

fail due to the subtle difference of appearance between con-

nected parts such as the leg and body. Nevertheless, we

can use the SCP FCN network to generate accurate seg-

ments that are associated with SCP. Based on the predicted

(Np + 1)-channel SCP probability map, we assign the SCP

label with the highest probability to each pixel and generate

the SCP label map. SCP segments are then generated by

grouping the pixels with the same SCP labels.

Fig. 4 shows several examples of the proposed SCP seg-

ments from an image. We can see our SCP segments work

very well in terms of capturing correct semantic part regions

and locating the object boundaries. To practically evaluate

the segments, we did an oracle experiments by assigning the

proposed SCP segments to be the overlapping ground truth

class labels. The best possible object IOU is 85.1% over the

quadrupeds animal set in Sec. 4.3, which performs reason-

ably well for capturing the object boundaries. One might

also apply local dense pixel-wise refine strategy [7] to fur-

ther refine the segments, but it will increase computational

cost and need further investigation.

3.4. Joint FCRF

FCN is essentially a sliding-window based approach,

where its receptive field is always fixed to a local area given

the input image, thus local confusion can hardly be avoided

in many cases. Intuitively, the optimal receptive field should

be close to the scale of the presented object in the image.

Therefore, after generating SCP segments as well as SCP

and object potentials from the joint FCN, we further con-

struct a fully-connected CRF (FCRF) to automatically dis-

cover the object-scale context, where all the parts of an ob-

ject can interact with each other, yielding the optimal se-

mantic object and part prediction simultaneously.

Specifically, given the set of SCP segment proposals, we

first cluster the proposed SCP segments into several groups

according to their spatial distances, in case there are mul-

dog head cat head sheep head cow head horse head 

body_2 leg_1 leg_2 tail

Figure 4. The SCP segments proposals handle various difficul-

ties such as truncation, occlusion, deformation and view point

changes. The colors maps shown at the bottom for each kind of

SCP. We keep the color consistent in the results and will show

more in our supplementary materials.

tiple isolated objects in an image. Two SCP segments are

merged in the same group if the minimum distance of the

pixels within these two segments is smaller than a threshold

ts = 10. We assume each group of SCP segments forms an

object or overlapping objects in the image, which provides

a good estimation of the object-scale. Then, we build one

FCRF for each corresponding group. Formally, the FCRF

can be represented as G = {V, E}, where V is the set of

SCP segments in the same group and E is the set of edges

connecting every pair of segments. As introduced in our

framework (Fig. 2), for each SCP segment P, we want to

predict its semantic part label lop(P) (defined in Sec. 3.1),

but can be reduced to separately inferring the object label

lo(P) and SCP label lscp(P) by enforcing their label con-

sistency. In the following we use liop for lop(Pi), l
i
p for

lscp(Pi) and lio for lo(Pi) for simplicity.

In sum, our FCRF is formulated as,

min
L

∑

i∈V

ψi(l
i
op) + λe

∑

i,j∈V,i 6=j

ψi,j(l
i
op, l

j
op)

where, ψi(l
i
op) = η(lio, l

i
p)(ψ

o
i (l

i
o)) + λpψ

p
i (l

i
p)); (1)

ψi,j(l
i
op, l

j
op) = η(lio, l

i
p)η(l

j
o, l

j
p)ψ

op
i,j(l

i
o, l

j
o, l

i
p, l

j
p);

where L is the label set of the proposed SCP seg-

ments, λe and λp are balancing parameters. ψo
i (l

i
o) =∑

xj∈Pi
− log(P (lo(xj)), is the sum of pixel-wise object

potentials inside the SCP segment Pi, and ψ
p
i (l

i
p) is sim-

ilarly defined with the SCP potentials. η(lio, l
i
p) is a con-

straint for part and object combination, which is 1 if lio, l
i
p

is a meaningful combination, i.e. a connection exists be-

tween lio and lip in the grammar as in Fig. 3, and set to be ∞
otherwise.

In order to learn the pairwise potentials, we train a two-

layer fully-connected neural network, which takes the fea-

tures from a pair of segments i and j as input, and predicts

the probabilities of the four labels lio, ljo, lip, ljp. The ground

41576



truth labels for each training segment are the most domi-

nant labels of the pixels within the segment, and we adopt

the multinomial logistic loss for training.

For the pairwise features, we consider multiple seman-

tically meaningful cues from the pairwise relations, i.e.

fij = [fTi , f
T
j , κij , θj|i]

T , where fi = [fToi, f
T
pi, fai]

T is a

segment self-descriptor, κij = [daij , d
p
ij ]

T is a spatial metric

of the segment pair. θj|i is the relative angle. We sum-

marize the features as follows, (1) fToi: the mean of pixel-

wise object potentials. (2) fTpi: the mean of pixel-wise SCP

potentials. (3) fai: the segment area, normalized by the

discovered object area. (4) daij : the appearance geodesic

distance from segment i to j, which accumulates the edge

weights along the path from i to j on the image. (5) d
p
ij :

the Euclidean distance between the center of the two seg-

ments normalized by the height and width of the object.

(6) θj|i: the relative angle of the center of the segments j

with respect to the center of segment i. Specifically for daij ,

the edge weight between the two neighbouring segments is

the sum of the edgemap [25] values over their overlapping

boundary.

After the model is learned, given the pairwise feature fij ,

the potentials ψ
op
i,j(l

i
o, l

j
o, l

i
p, l

j
p) is computed as the negative

log-likelihood, i.e. − log(P (lio)P (l
j
o)P (l

j
p)P (l

j
p)), where

the probabilities are from the neural network prediction.

For inference, since our graphical model have a very

small number of nodes (less than 15 SCP segments in aver-

age), using the efficient LBP [30], our algorithm can con-

verge very fast within 5 iterations.

3.5. Relation to the DPM structure

While we are dealing with semantic segmentation and

parsing, our approach follows the spirit of DPM [16] in ob-

ject detection. In [18], Girshick et. al connected the DPM

root filter and part filters with the convolutional filters from

CNN, and the distance transform can be regarded as an ad-

ditional pooling and geometry filtering step. Our work aims

to solve the segmentation task here but has analogy with

DPM, where the object prediction can be considered as the

root filter and SCP potentials are our learned part filters.

The difference is that rather than firing when the target is at

the exact center of the detection window, our model fires at

every location inside the target which produces more accu-

rate location estimation. Regarding the part and root geom-

etry, rather than explicitly modeling the geometry of root-

part distance transform as in DPM, we implicitly model

these spatial relationships using spatial distances and rela-

tive angles as spatial features and learn the pair-wise poten-

tials in the fully-connected graphic model, which is more

data-driven and generalizes better for handling variations.

For inference, DPM tries to find the probability of the

part-root locations p given the object label lo through slid-

ing window, i.e. maxp∈I P (p|lo). In our case, sliding-

window for part and object localization is realized by our

FCN, based on which we can infer over the smaller label

space i.e. maxlo∈L P (lo|p), at the object-scale context.

4. Experiments
In this section, we provide all the experimental de-

tails, and evaluate our approach in terms of different ex-

perimental settings to demonstrate the advantage of our

approach. Specifically, we conduct experiments on the

Horse-Cow parsing dataset introduced in [39], the PASCAL

Quadrupeds dataset from [8], and our PASCAL Part bench-

mark, over which extensive comparisons are performed.

4.1. Model training.
Both of our FCN models for SCP and object prediction

are based on the 16-stride (16s) FCN, since there is trivial

improvement (less than 1% as shown in our Tab. 2 and Tab.2

of [27]), while significant more time required to train a 8-

stride model (8s).

Data augmentation. Effective data augmentation is the

key to the success of FCN. Thus in our case, we did suffi-

cient augmentation by first cropping out the connected ob-

ject masks using a random generated bounding box around

it. The size of the crop is specially 1.3 times larger than the

object bounding box, which is a rough localization of the

object for generalization. Then, each cropped image is re-

sized into 300×300, based on which we further augmented

using the ideas from [12], i.e. we perform 4 additional ran-

dom cropping at the size of 200 × 200, flipping, changing

the color intensity by a random scale in [0.7, 1.3] with a

probability of 0.4 and rotation in [−5,+5] degree with a

probability of 0.5. In average, each image is augmented up

to around 25 training samples.

Optimization and step-wise training. We fine-tune all

our models step-by-step from the publicly available VGG-

net [27]. For training the SCP FCN, we first train a 32s

FCN with the learning rate as 10−4 for the final convfc8
layer which is the layer predicting the SCP potentials, and

10−5 learning rate for the layers after pool4, while we fix

the layers before pool4. Then for the 16s FCN, we start

with training the convpoo4 layer which is used for predicting

SCP potentials from the pool4’s output. Then, we use the

trained layers as initialization for the final 16s FCN training.

We further fine-tune the convfc8 and convpoo4 layer with a

learning rate as 10−5. For training the joint object FCN, we

fix the SCP FCN and concatenate the SCP potentials with

the 16s object potentials, over which another convolutional

layer convjnt (with a kernel size of 5) is used to predict the

joint object potentials. For fine-tuning this model, we use

10−4 learning rate for the convjnt layer, while 10−6 learn-

ing rate for the convfc8 and convpool4 of the object FCN.

In all the cases, we keep the batch size as 32. For the other

parameters, we refer to the ones given by [27].

For the two-layer neural network in training the pairwise

potentials of the fully-connected CRF, we set 32 hidden
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sp = 400 sp = 500 sp = 600
so = 300 78.58 78.88 79.18

so = 400 77.55 78.62 78.11

so = 500 77.09 75.81 74.20

Figure 5. Investigation of image scales. Top: an example from our

joint object FCN prediction, showing that larger scale leads to finer

boundaries, but introduces local ambiguities. Bottom: validate the

accuracy of scale combination of so and sp.

nodes, and use the RELU for no-linearity with a dropout

rate of 0.2 to regularize the model. We use a batch size of

10000 and set the learning rate to be 10−2. In learning the

pair-wise term, other than separately training SCP and ob-

ject labels, i.e. lscp and lo, one may also consider output the

semantic part label lop which lies in the joint space of object

and part. Nevertheless, we found it is harder to train due to

that a lot more data are required for prediction in a high di-

mensional output space. Thus we chose to train separately.

In addition, we found it is important to balance different

classes for part segmentation since some part can be very

small, e.g. tails. Specifically, for both FCN and FCRF, we

set the weight for each class in terms of the portion of sam-

ples in the class. This help the network avoid overwhelming

of other dominant classes.

All our neural networks are based on the caffe plat-

form [23] and partially from the code provided by [27].

4.2. Parameters and details
In the FCRF, we set λe = 2 and λp = 0.3 which are

validated over a validation set from the Quadrupeds dataset.

The same set is used for all other validation experiments.

For inference over the graphical model, we use the LBP

tool provided by Meltzer1.
Investigation of input image scale. The input image

scale for FCN is one of the most important factors for

achieving good performance as also shown in recent

works [7, 26]. Fig. 5 shows the investigation of changing

the input image scale for SCP proposals and object poten-

tials. In the top row, we can see the larger the image scale

is, the more accurate the object boundaries could be, while

the more local confusion it has, e.g. a leg of the cow is start-

ing to be confused with horse. Thus, we validate the scale

of sp ∈ {400, 500, 600} and so ∈ {300, 400, 500}. At the

bottom of Fig. 5, we show the validated results, and the op-

timal combination, i.e. sp = 600, so = 300 is used in all

our experiments.

Training and inference time. For training, we found the

model would converge after 40k iterations and it takes

1http://www.cs.huji.ac.il/ talyam/inference.html

around 2 days for SCP FCN, 1 day for object potentials

and 8 hours for the graphical model with a platform of 4

core 3.2Hz CPU and a K40 GPU. For inference, in average,

one image takes 0.3s for FCN forward propagation with the

GPU and 1.3s for the graph model with our CPU.

4.3. Performance comparisons

We compare our algorithm with three state-of-the-art

methods on the two tasks. For object segmentation, we

compare our method with the FCN [27]. We use the code

provided by the author and tune their model based on our

dataset, including tuning a fixed optimal image scale for a

fair comparison. For semantic part segmentation, we com-

pare with the most recent compositional-based semantic

part segmentation (SPS) [39] over the Horse-Cow parsing

dataset, and the hypercolumn (HC) [21] in all datasets. For

comparing with HC [21], as there is no available code or re-

sults from the author, we implemented a similar part parsing

framework by first performing figure-ground mask with the

trained FCN 8s [27], and then assign part labels inside with

a optimally tuned image scale to be our baseline method.

This baseline is close to HC and also performs well in the

experiments, but is different from [21] in some details, thus

we mark it as HC∗. For evaluation, we adopt the standard

intersection over union (IOU) criteria.

Horse-Cow parsing dataset. The Horse-Cow dataset is a

two-animal part segmentation benchmark proposed in [39].
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Figure 6. Comparison examples with SPS [39] and

HC∗ [21] in the horse, cow dataset and the color map is

in Fig. 4 (Best view in color).
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For each animal class, they manually select the mostly ob-

servable animal instances in both train-val and test set from

the PASCAL VOC 2010 [15]. There are 294 training exam-

ples and 277 test images. Since it is not published yet, we

asked the author for this dataset and their results. In [39],

the task is to segment the part given the object class. Thus

for a fair comparison, we also test every instance with the

object class known. In such a case, our graphical model in

Eqn.(1) is reduced to inferring the part label lp with a binary

object potential lo.

Tab. 1 provides the results of SPS [39], HC∗ [21] and

ours over semantic part and figure-ground segmentation.

Our method outperforms the previous state-of-the-art with a

significant margin, averagely 13% better than SPS and 4.5%
better than HC∗. Several qualitative examples are shown in

Fig. 6, where we keep the color map consistent with the

SPC labels (Fig. 4). In these cases, we can see that, built

on explicit geometry rules, SPS is limited in handling large

variance of object parts, which makes it difficult to model

highly deformable cases like the tail, or occluded animals.

For HC∗, due to inaccuracy from the object mask, it may

miss some detailed regions like legs such as the 1st column

of horse in Fig. 6.

Quadrupeds dataset. We further extend our experiments

into the Quadrupeds part dataset which contains five animal

classes, i.e., cat, dog, sheep, cow and horse. In this task,

we simultaneously predict the object and part masks. We

obtain the data given by [8], which include all the part la-

bels in PASCAL VOC 2010 training and validation images.

We select the images containing the target objects, and treat

the validation set as our test images, resulting in 3120 train-

ing images and 294 testing images. In addition, since we

are focusing more on semantic part segmentation, during

testing, we roughly localize the object inside by using the

strategy in data augmentation (Sec. 4.1). We will provide

our code of this localization to others for a fair comparison.

It should be noted that such localization is still very coarse

with much looser bounding boxes than the ones needed in

previous parsing methods [11, 39].

Following HC, the parts of all the quadrupeds are la-

belled into head, body, leg and tail, from which we con-

struct a shared SCP grammar as introduced in Sec. 3.1. In

Horse

Bkg head body leg tail Fg IOU Pix. Acc

SPS [39] 79.14 47.64 69.74 38.85 - 68.63 - 81.45

HC∗ [21] 85.71 57.30 77.88 51.93 37.10 78.84 61.98 87.18

Ours 87.34 60.02 77.52 58.35 51.88 80.70 65.02 88.49

Cow

Bkg head body leg tail Fg IOU Pix. Acc

SPS [39] 78.00 40.55 61.65 36.32 - 71.98 - 78.97

HC∗ [21] 81.86 55.18 72.75 42.03 11.04 77.07 52.57 84.43

Ours 85.68 58.04 76.04 51.12 15.00 82.63 57.18 87.00

Table 1. Average precision over the Horse-Cow dataset.

our grammar, horse, cow and sheep share the same body

and leg type, while cat and dog share others. All the an-

imals share a tail label, and each animal has its own head

label since the head is highly distinguishable [32]. In total,

10 SCPs are used, while 20 labels are need if all the parts

are treated independently.

Tab. 2 shows the compared results on both object and

part segmentation. As shown, in terms of object segmenta-

tion, comparing with FCN [27], our final results improves

6.2%, which demonstrates the advantage of the joint model.

We also compare the variants of our approach with different

components. “Joint FCN(16s)” produces the object masks

directly from the two-stream FCN without FCRF inference.

By including the SCP potentials, the object prediction of

“Joint FCN (16s)” already out-performs FCN, which shows

that the joint object potentials have less pixel-wise confu-

sion. In addition, as shown in the “FCRF+FCN(16s)”, us-

ing the FCRF with the FCN object potentials without the

joint convolutional layer improves over 2% compared to

“FCN(16s)”, showing FCRF inference can help refine seg-

mentation results by exploring long-range context. More-

over, with the joint potentials, the performance of our full

model has another 4% boost. This shows the joint FCN

object potentials provide better evidence for our graphical

model and is essential to our system. At last, in “Ours (w/o

SCP)”, we investigate the usefulness of SCP by not allow-

ing the part sharing. The results drops 2% and 4% for ob-

ject and part respectively compared to our final results. This

is mostly because more confusion happened for parts with

similar appearance, yielding worse part segments.

We show several qualitative comparison examples with

the FCN at left of Fig. 7, in which our algorithm is able

to solve the local ambiguities that FCN usually encounters.

For instance, at the 4th row, the legs of a cow are confused

with horse using FCN. In contrast, by borrowing the object-

scale evidence from the cow body and cow head, our model

can correct this local confusion. In addition, as shown in the

horse segments at the 3rd row, our SCP segments are able

to provide more precise object boundaries in many difficult

cases, like the legs of the horse crossing the bar.

Object segmentation accuracy

Bkg Dog Cat Cow Horse Sheep IOU Pix. Acc

FCN 16s [27] 93.25 74.30 78.62 61.88 56.56 67.63 72.04 93.00

FCN 8s [27] 93.55 74.39 78.52 60.81 58.39 69.15 72.47 93.17

Joint FCN(16s) 94.04 75.13 80.52 66.76 63.04 71.54 75.17 93.77

FCRF+FCN(16s) 93.88 77.10 80.92 68.76 63.40 64.54 74.57 93.87

Ours (w/o SCP) 93.29 77.50 77.81 70.24 68.94 71.31 76.51 93.89

Ours final 94.40 79.03 83.04 74.82 69.94 70.59 78.64 94.71

Semantic part segmentation accuracy

Bkg Dog Cat Cow Horse Sheep IOU Pix. Acc

HC∗ [21] 92.83 42.07 43.99 35.49 38.59 33.80 41.36 89.54

Ours (w/o SCP) 93.31 40.71 43.37 36.65 43.65 32.81 42.01 90.68

Ours final 94.46 45.63 47.81 42.7 49.60 35.74 46.69 91.74

Table 2. Average precision over the Quadrupeds data.
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Dog Cat Cow Horse Sheep

Image FCN-8s [27] Ours object Object GT HC∗ [21] Our part Part GT.

Figure 7. Comparison examples with FCN [27] for object segmentation and HC∗ [21] for part segmentation in the Quadrupeds dataset.

The object label color map is shown at above and part label color map is shown in Fig. 4 (Best view in color).

For semantic part segmentation, we summarized the

mean IOU of all parts for each object in Tab. 2 due to space

limitation. We will include more detailed results in our

supplementary materials. Our results are also significantly

higher than the results of HC∗ [21] (over 5%). As HC per-

forms object and part segmentation sequentially, the errors

in object predictions, including local confusion and inaccu-

rate boundaries, will propagate to the parts. For example, at

the 2nd row of Fig. 7, the cat and dog are confused in the

object FCN prediction, which makes part of the cat head

errorly labelled as dog head in HC. We solve such prob-

lems through the FCRF by considering object-scale con-

text. In addition, thanks to our optimized image scale for

both object and part, our method can capture part bound-

aries that are sometimes missed by the FCN and HC. We

provide more results in our supplementary materials.

PASCAL part segmentation benchmark. In addition to

the labels from the train-validation set of [8], following the

same hierarchical part labelling system, we additionally la-

belled semantic parts over the PASCAL VOC 2010 test

set [14] of the object segmentation task, which includes 994

images. With respect to the PASCAL VOC test benchmark,

we are not going to release the labels and will instead launch

an evaluation server for researchers to fairly compare their

part segmentation results.

We test our algorithm over images with the five

quadrupeds, which include 281 images. As shown in Tab. 3,

the results are consistent with that from the validation set,

and our method achieves the best overall IOU outperform-

ing the state-of-the-art with a large margin.

5. Conclusion and discussion
In this paper, we proposed the framework for jointly

solving object and part segmentation. Our approach fol-

lows the spirit of DPM, and leverages the advantages of

both sides, yielding the state-of-the-art results. Recently, for

object segmentation, there are other methods that provides

additional improvement over the FCN such as adding pixel-

wise Dense CRF [7, 26]. Our framework is complementary

to them in terms of modelling over parts and adaptive to

object scale for solving local ambiguity. In addition, we

tackles the part segmentation beyond the object. Possible

failure cases for us would be strong appearance confusion,

strong occlusion, where object scale or SCP segments can

be misled, yielding inaccurate results (e.g. the back leg of

the dog in the first example of Fig. 7).

In the future, we will try to automatically learn the SCP,

and jointly model the instance segmentation to incorporate

detection, which provides better object scale and solve the

remaining localization issue.
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Object segmentation accuracy

Bkg Dog Cat Cow Horse Sheep IOU Pix. Acc

FCN 8s [27] 94.45 70.14 75.45 64.06 64.75 69.06 72.99 93.90

Ours final 95.31 77.44 80.47 72.13 76.18 67.96 78.25 95.26

Semantic part segmentation accuracy

Bkg Dog Cat Cow Horse Sheep IOU Pix. Acc

HC∗ [21] 94.36 41.24 42.42 35.22 45.00 38.86 43.11 90.64

Ours final 95.14 46.52 48.06 41.80 56.67 36.02 48.16 92.47

Table 3. Average precision over the part segmentation benchmark.
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