
Learning Discriminative Reconstructions for Unsupervised Outlier Removal

Yan Xia1 Xudong Cao2 Fang Wen2 Gang Hua2 Jian Sun2

1University of Science and Technology of China
2Microsoft Research

Abstract

We study the problem of automatically removing outliers

from noisy data, with application for removing outlier im-

ages from an image collection. We address this problem

by utilizing the reconstruction errors of an autoencoder.

We observe that when data are reconstructed from low-

dimensional representations, the inliers and the outliers can

be well separated according to their reconstruction errors.

Based on this basic observation, we gradually inject dis-

criminative information in the learning process of autoen-

coder to make the inliers and the outliers more separable.

Experiments on a variety of image datasets validate our ap-

proach.

1. Introduction

Building large training datasets has become critical for

many computer vision tasks, especially with the rapid de-

velopment of deep learning, which is data-hungry. Retriev-

ing images from search engines [22, 5, 14, 25] is one of the

most effective solutions. However, retrieved results often

contain many outliers that are irrelevant to the query intent,

as shown in Fig. 1. Therefore, automatically removing out-

liers can greatly help us to construct large scale datasets, or

at least significantly reduce the required labeling cost.

Automatically removing outliers from unlabeled data op-

erates in an unsupervised mode. For this problem, meth-

ods in literature explicitly or implicitly make an assump-

tion that inliers are located in dense areas while outliers

are not. The dense areas can be estimated by statistical

methods [6, 27, 11], neighbor-based methods [17, 3, 7], and

reconstruction-based methods [23, 26]. For example, the

methods in [23, 26] compute PCA projections on data, and

those having large projection variances are determined as

outliers. Since PCA can be interpreted as minimizing the

reconstruction error of training data, we treat the methods in

[23, 26] as reconstruction-based methods for unsupervised

outlier removal.

In this paper, we also use reconstruction error to infer un-

derlying dense areas of data. But different from [23, 26], we

Positives

Outliers

Query

“clownfish”

Figure 1. Example images returned by an image search engine

when querying “clownfish”. Those consist of positive images (rel-

evant to the query intent) and outliers.

adopt the autoencoder [2, 18] to learn reconstructions. Note

that there exists works [10, 16, 20] that use autoencoder for

a similar but fundamentally different task — novelty detec-

tion (or anomaly detection). In novelty detection, training

data are all positive, and it is straightforward to train a nor-

mal profile using autoencoder. Our work is inspired by but

different from these works, since in the problem of unsuper-

vised outlier removal, training data are unlabeled, and it is

more challenging to learn models from noisy data.

As the first step of our work, we find the autoencoder

itself is a simple yet effective tool for unsupervised outlier

removal. We observe that when data are compressed into

low-dimensional representations and then reconstructed by

an autoencoder, the inliers (also called positive examples)

tend to have smaller reconstruction errors than the outliers.

Based on this, one can conveniently identify the images

with large reconstruction errors as outliers. We were both

surprised and excited in finding that simply thresholding the

reconstruction errors can lead to competitive results with

most existing methods.

Based on this finding, we further make the reconstruc-

tion error even more discriminative. This is achieved by

introducing self-learned discriminative information during

the learning procedure of an autoencoder. Instead of min-

imizing the reconstruction errors of all data, our idea is to

minimize the reconstruction errors only from the positives.

By doing so, the reconstruction errors of positive data are

even smaller while those of outliers are not.

11511

Because the true labels of the positive data are unknown,

we implement the above idea in an iterative and “self-

paced” manner. In one step, we estimate data as “posi-

tive” or “outlier” according to their reconstruction errors.

In the other step, we update network parameters in the au-

toencoder by reducing the errors of the “positives”, result-

ing in more discriminative reconstructions. Discriminative

reconstructions benefit labeling and, in turn, accurate labels

help with learning reconstructions. These two steps pro-

mote each other and we cycle them iteratively until conver-

gence.

In addition to its simplicity and superior performance,

our approach also possesses the following merits.

• It is robust to unknown outlier ratios (the proportion of

outliers in the entire noisy set). Our method can adap-

tively handle data with a large range of outlier ratios

(e.g., as high as 70 %), without any parameter tuning.

• It is flexible to design. For various image represen-

tations (raw pixels, hand-craft features, or pre-learned

features), our approach is flexible to involve linear or

non-linear neurons in the autoencoder. This is in con-

trast to most existing methods that deal with non-linear

data using kernel functions.

• It is efficient to learn. The learning of our method

can be well conducted by mini-batch gradient descent.

Each learning iteration only needs a small mini-batch

of training samples, so that we can handle large scale

data in a streaming fashion and leverage the off-the-

shelf parallel computation framework on CPU/GPU.

2. Related Work

Unsupervised outlier removal has been extensively stud-

ied both inside and outside the computer vision literature.

Statistical methods [6, 27, 11] fit parametric distributions

on data, and outliers are identified as those having low

probability under the learned distributions. Neighbor-based

methods [17, 3, 7] assume positive data have close neigh-

bors while outliers are far from each other. The one-class

svm method [21, 7] just treats all training data as positive

and the origin point as negative, and learns a max-margin

classifier to arbitrate outliers. The key underlying assump-

tion of these methods can be summarized as: positive data

are more densely distributed than outliers.

There also exists a category of methods that use recon-

struction error for unsupervised outlier removal. The meth-

ods in [23, 26] learn PCA projections from data, and those

having large projection variances are treated as outliers. We

notice reconstruction error has also been used for novelty

detection [10, 16, 20], which is a related but fundamentally

different task with unsupervised outlier removal: the train-

ing data in novelty detection are all positive, while that in

unsupervised outlier removal are quite noisy.

Most recently, Liu et al.[14] propose an unsupervised

one-class learning (UOCL) method that outperforms all the

above methods. UOCL utilizes manifold regularization,

balanced soft labels and a max-margin classifier. With the

use of these ingredients, UOCL has shown state-of-the-art

performance for unsupervised outlier removal.

3. Autoencoder for Outlier Removal

In this section, we show the reconstruction error in an

autoencoder is discriminative and can be used for unsuper-

vised outlier removal. We further make the reconstruction

error more discriminative and propose our method in the

following Sec. 4.

3.1. Reconstruction error is discriminative

Suppose we have a set {x1, ..., xn} where xi is an im-

age representation (e.g., raw pixels or a feature vector).

We apply an autoencoder to first compress x into a low-

dimensional intermediate representation and then map it

back to a reconstructed copy, f(x). The form of an au-

toencoder f(·) is a neural network, with hidden linear or

non-linear neurons. The reconstruction error of xi is the

squared loss: ǫi = ‖xi − f(xi)‖
2. The autoencoder can be

learned by minimizing the average reconstruction error:

J (f) =
1

n

n∑

i=1

ǫi =
1

n

n∑

i=1

‖f(xi)− xi‖
2. (1)

How does the learned autoencoder relate to the task of

unsupervised outlier removal? Before giving our explana-

tions, we first present our main empirical observation: the

reconstruction errors of positive data are always smaller

than that of outliers. In other words, the error ǫi is a good

indicator of whether a datum xi is an inlier or outlier.

In fact, this phenomenon stems from the nature of au-

toencoder. When an autoencoder compresses noisy data

into low-dimensional representations, it cannot well recon-

struct every datum because the low-dimensional intermedi-

ate layer(s) performs like an information bottleneck. There-

fore, in order to minimize the overall reconstruction error,

an autoencoder has to find the representations that can cap-

ture statistical regularities of training set [1]. In the case of

removing outliers from noisy images, positive data are im-

age features from a same semantic concept, while outliers

are scattered. So the positives have more regularities in their

distribution. Therefore, they are more likely to be recon-

structed well, resulting in relatively smaller reconstruction

errors.

Besides the above empirical explanation, we further

study the reason why an autoencoder can produce discrimi-

native error by looking into its learning procedure.

Effective gradient magnitude. In an autoencoder, network

1512

parameters can be updated by gradient descent:

ḡ =
dJ

df
=

1

n

n∑

i=1

gi =
2

n

n∑

i=1

(f(xi)− xi), (2)

where gi = 2(f(xi)− xi) is the gradient contributed by xi.

The above gradient shows that, when an autoencoder up-

dates its parameters, the gradient is averaged over all train-

ing data. Therefore, for each single datum, the overall gra-

dient (ḡ) is different from the gradient on this point (gi).

This means an autoencoder does not try to reduce the error

of every single datum, but the overall error.

Then we wonder how much the error is reduced for a sin-

gle datum. This can be measured by the effective gradient

magnitude, i.e., the projection of the overall gradient on the

direction of this datum’s gradient:

geffect
i =

< gi, ḡ >

|gi|
= |ḡ|cosθ(gi, ḡ), (3)

where θ(gi, ḡ) is the angle between the two vectors.

On noisy training set, the overall gradient is more likely

to be dominated by the positives. First, outliers are usu-

ally not as many as the positives in real tasks. Second,

even though the outliers are more than half, positive data

still have chances to dominate the gradient. This is be-

cause outliers are arbitrarily scattered throughout the fea-

ture space, resulting in counterbalancing gradient direc-

tions; while positive data are densely distributed, and their

gradient directions are relatively more consistent. However,

the positives will not occupy the dominant position when

there are too many outliers in the noisy set.

In case positive data dominate the direction of the over-

all gradient, the angle θ(gi, ḡ) for a positive datum is more

often smaller than it is for an outlier, leading to larger effec-

tive gradient magnitude geffect
i . In other words, the overall

gradient puts more efforts on reducing the errors of posi-

tive data. Therefore, an autoencoder trained on noisy data

is more likely to reconstruct the positives better.

An example case. We validate the above reasoning by

experiments. To simulate a noisy dataset, we use images

with the same semantic meanings downloaded from the Im-

ageNet website1 as the positives, and randomly sample out-

liers from 1.2 million ILSVRC2012 [19] images. Images

are represented by 2048-dimensional deep learning features

extracted from a pre-trained CNN model.2 The concept “car

wheel”, which contains 1,981 positive images and equal

number of outliers, is used as an example set here, as well

as the rest illustrative experiments in this paper.

1http://image-net.org/
2We use the network introduced in [12], which contains five convolu-

tional layers and two fully connected layers. The 2048-dimensional out-

puts of the first fully connected layer are used as image features.

-0.05

0

0.05

0.1

0.15

0.2

1 10 100 1000 10000

iterations

positives

outliers

-0.05

0

0.05

0.1

0.15

0.2

1 10 100 1000 10000

iterations

positives

outliers

(a) train auto-encoder on a set with 50% outliers

(b) train auto-encoder on a set with 70% outliers

Figure 2. The effective gradient magnitude (Equation 3) in an au-

toencoder, averaged over positive training data and outliers respec-

tively. The training set has (a) 50% and (b) 70% outliers.

We train an autoencoder having one hidden layer with

32 linear neurons on this example set. In the training proce-

dure, we compute the effective gradient magnitude on each

datum, and average them on positive data and outliers re-

spectively. The result is shown in Fig. 2 (a). We can see

positive data always have larger effective gradient magni-

tudes than outliers, until training converges.

The above result is on a set with half outliers. We fur-

ther show the result on a set with 70% outliers3 in Fig. 2

(b). We can see even when outliers are more than half, the

autoencoder still put more efforts on reducing the errors of

positive data, showing its robustness to outlier ratios.

By putting more efforts on reducing the errors of positive

data, an autoencoder is prone to reconstruct the positives

better. We also show an example case here. On the example

set with half outliers, we train auto-encoders with various

intermediate dimensionalities, and plot the results in Fig. 3.

We can see the average reconstruction error of positive data

is consistently lower than that of outliers, no matter what

the intermediate dimensionality is.

3The positive data are the same as in previous example, and outliers are

still randomly sampled from ILSVRC2012 images, at a ratio of 70%.

1513

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16 32 64 128 256 512 1024 2048

er
ro

r

intermediate dimensionality

positives

outliers

Figure 3. The average reconstruction errors in an autoencoder on

the example set with half outliers. The thumbnail shows the error

distributions when the intermediate dimensionality is 32.

3.2. Autoencoder — a baseline method

Based on the discriminative reconstruction error of an

autoencoder, it is straightforward to label data having large

errors as outliers. Specifically, after an autoencoder is

learned, we can apply any clustering algorithm (such as k-

means [15]) to partition reconstruction errors into two clus-

ters. Samples in the cluster with a large average error are

identified as outliers.

4. Learning Discriminative Reconstructions

4.1. Basic idea

Although the reconstruction error is discriminative, the

error distributions of positives and outliers may still be sig-

nificantly overlapped, especially at high outlier ratios (as

shown in Fig. 4 (a)). In these cases, simply thresholding

reconstruction errors will lead to many misclassifications.

To deal with this problem, we propose to only recon-

struct the positives. If we can do this, the overall gradient in

an autoencoder is only contributed by the positives. Then

the reconstruction errors of positive data are minimized

while those of outliers are not, leading to more separable

error distributions. We verify this idea with an experiment.

Suppose we have groundtruth labels of the sample set. We

train an autoencoder only on the positive part and plot the

error distributions in Fig. 4 (b). From this figure we can tell,

by only reconstructing the positive data, the autoencoder

produces more separable error distributions, compared with

the one trained on all data (Fig. 4 (a)).

However, it is a chicken-and-egg problem because we do

not know which part of the data is positive or outlier at the

very beginning. Nevertheless, we can tackle this problem

by alternating the following two steps:

• Discriminative labeling: estimate positives from entire

noisy data based on current reconstruction errors.

• Reconstruction learning: update the autoencoder to re-

duce reconstruction errors of the “positives” and en-

large the separability of error distributions.

As a preview, Fig. 4 (c) shows the error distributions by

iterating the above two steps. We can see the reconstruc-

tion errors of positive data and outliers become much more

separable with this method and the separability is almost as

good as that obtained by using the groundtruth (Fig. 4 (b)).

4.2. Algorithm

As mentioned, our algorithm works by iterating two

steps: discriminative labeling and reconstruction learning.

We outline our algorithm in Fig. 5 and detail it as follows.

Discriminative Labeling. This step aims to estimate data

labels, i.e., classify xi into either positive label yi = 1 or

outlier label yi = 0, according to its reconstruction error ǫi.

We achieve this goal by optimizing the following objective:

min
y

h =
σw

σt

, (4)

where σw is the summation of within-class variances which

is desired to be small, and σt is the total variance. Specif-

ically, σw =
∑

yi=1
(ǫi − c+)2 +

∑
yi=0

(ǫi − c−)2 and

σt =
∑

(ǫi − c)2, where c+, c− and c are the mean re-

construction errors of positive data, outliers, and the entire

noisy data, respectively. We normalize σw by the total vari-

ance σt, in order to make h dimensionless.

Since ǫi is scalar, labeling data can be translated into

sorting the reconstruction errors and then finding a cut-off

threshold. Therefore, the objective in Equation 4 can be

trivially optimized by linearly scanning an optimal thresh-

old. Then we label each sample xi by comparing its recon-

struction error ǫi against the obtained optimal threshold.

Reconstruction Learning. When data labels are provided

by the labeling step, we want to reduce the reconstruction

errors of the positives to make error distributions more sep-

arable. With this in mind, we design the loss function as:

L(f) =
1

n+

∑

yi=1

ǫi + λh, (5)

where the first term measures the averaged reconstruction

error of data labeled as positive, and the second term (h

is given in Equation 4) represents the separability of error

distributions. The parameter λ controls the tradeoff between

the two terms.4

The loss L can be reduced by gradient descent, which

can be easily integrated into the back-propagation proce-

dure of the autoencoder. The gradient of L with respect to

4We find the final solution is insensitive to the value of the parameter

λ. So we fix it to 0.1 for the sake of simplicity in all our experiments.

1514

10% outliers 70% outliers30% outliers 50% outliers

(a) Error distributions produced by an auto-encoder

(b) Error distributions if we only minimize the errors of ground-truth positives

10% outliers 70% outliers30% outliers 50% outliers

 error

n
u
m

b
er

 o
f

d
at

a
n

u
m

b
er

 o
f

d
at

a

 error

(c) Error distributions produced by our algorithm

10% outliers 70% outliers30% outliers 50% outliers

n
u
m

b
er

 o
f

d
at

a

 error

Positives Outliers

Figure 4. Reconstruction error distributions on datasets with various outlier ratios. Data are reconstructed by: (a) an autoencoder, (b) an

autoencoder that only reconstructs groundtruth positives and (c) our algorithm.

the network f is given by:

dL

df
=

n∑

i=1

∂L

∂ǫi
×

dǫi

df

=

n∑

i=1

(
yi

n+
+ λ

∂h

∂ǫi
) · 2(f(xi)− xi).

(6)

This gradient has clear intuitions. The factor of the first

term, yi

n+ , means only positive data are considered when

learning reconstructions (yi = 0 for outliers). The factor

of the other term, ∂h
∂ǫi

, explicitly makes error distributions

more separable. Both terms help to enlarge the separability

of error distributions, leading to more discriminative recon-

structions.

These two steps, discriminative labeling and reconstruc-

tion learning, are performed alternatively until the labels

stay unchanged.5 In this manner, network parameters in f

are updated gradually and data labels are refined step by

step. Finally, we perform the discriminative labeling step

on all data to finish the algorithm.

5We did not observe any divergence or oscillation in our experiments.

mini-batch data

errors

errors

labels

Discriminative Labeling Reconstruction Learning

Auto-encoder Network �

Loss function L

Figure 5. Flow chart of our algorithm.

4.3. Discussions

Learning procedure. To illustrate the algorithm, we plot

the evolution of reconstruction errors on the example set in

Fig. 6. Some key stages in the learning procedure are:

• At the beginning, network parameters are randomly ini-

tialized, and positive data and outliers have nearly the

same error distributions (Fig. 6 (a)). So in this stage, re-

construction error is not discriminative, and the labeling

step can only produce noisy labels: false positives are

1515

n
u
m

b
e
r

o
f

d
a
ta

 error

Positives Outliers

(a) initialization (b) after 10 iterations (c) after 100 iterations (d) after 5000 iterations (e) after 10000 iterations

Figure 6. The evolution of reconstruction errors in the learning procedure of our algorithm.

roughly in the same proportion to the outliers in the en-

tire training set. This is the worst case for labeling. With

noisy labels, our algorithm works in the same manner as

an autoencoder, i.e., tries to reconstruct all training data.

• After a few iterations, error distributions start to be sepa-

rable (Fig. 6 (b)) due to the discrimination power of au-

toencoder, as discussed in Sec. 3. The labeling step be-

gins to produce more accurate labels, i.e., the percentage

of false positives is less than the outlier ratio. Conse-

quently, the reconstruction step updates network param-

eters towards the direction of better reconstructing posi-

tives.

• The better reconstructions, the smaller errors for pos-

itives. Meanwhile, most outliers are not well recon-

structed and even be pushed away by the discriminative

term h in our loss function. Then the reconstruction error

becomes more discriminative (Fig. 6 (b) to Fig. 6 (c)).

• After positives and outliers are already well separated,

more iterations only make them more distant, but not

change their labels (Fig. 6 (d) to Fig. 6 (e)). In this situa-

tion, data labels become stable and iteration ends.

Properties. As can be seen from the learning procedure,

our algorithm does not require a pre-specified outlier ratio.

Actually, it is quite robust to outlier ratios, as an advan-

tage inherited from the autoencoder (discussed in Sec. 3).

Moreover, as long as the autoencoder can provide discrim-

inative reconstruction errors, our algorithm can make them

more discriminative. Fig. 4 (a)(c) compare the results of an

autoencoder without/with discriminative reconstruction, at

various outlier ratios. From this figure we can see: first, the

discriminative reconstruction can significantly improve the

autoencoder; second, even at a high outlier ratio of 70%,

our algorithm still produces decent results.

Note that our algorithm does not impose any restriction

on the design of the autoencoder. Therefore, our algorithm

is flexible for various data representations. For example,

when input data are raw images, the network can be de-

signed to have multiple hidden layers with non-linear neu-

rons(as in [9]); for deep learning features, we can even de-

sign f as a single-hidden-layer network with linear neurons.

1 10 100 3962
0.5

0.6

0.7

0.8

0.9

1

batch size

F
1

DRAE 30% outlier

DRAE 50% outlier

DRAE 70% outlier

AE 30% outlier

AE 50% outlier

AE 70% outlier

Figure 7. Labeling accuracy vs.batch size. AE stands for the au-

toencoder method and DRAE stands for our algorithm.

This flexibility is not possessed by some existing methods,

where non-linearity is only involved by kernel functions.

Last, mini-batch gradient descent makes our algorithm

efficient. As shown in Fig. 7, on the example set with 3,962

samples, we can safely use batch size as small as 100 for

various outlier ratios.6 Thus, we can use the highly opti-

mized CPU/GPU computation framework and are ready to

handle large scale data.

5. Experiments

5.1. Datasets and features

• ImageNet-16 [25]. This dataset consists of images in 16

semantic concepts from the ImageNet website, and each

concept contains about 5,000 images on average. For

each concept, we randomly sample outliers from 1.2 mil-

lion ILSVRC2012 images [19] with the proportion from

10% to 70%.

• Caltech-101 [8] was used for the task of unsupervised

outlier removal by [14]. In this dataset, 11 concepts with

100-800 positive images are used in the experiments. For

6In Fig. 7, the labeling accuracy is measured by F1= 2·Precision·Recall
Precision+Recall

.

Precision is the proportion of correctly identified positives relative to the

number of identified positives, and recall is the proportion of correctly

identified positives relative to the total number of positives in one set.

1516

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.5

0.6

0.7

0.8

0.9

1

DRAE

AE

UOCL

LOF

OCSVM

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.5

0.6

0.7

0.8

0.9

1

DRAE

AE

UOCL

LOF

OCSVM

Seed-based SVM

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.5

0.6

0.7

0.8

0.9

1

DRAE

AE

UOCL

UOCL_reported

LOF

OCSVM

(a) ImageNet-16: deep learning feature (b) Caltech-101: deep learning feature (c) Caltech-101: LLC feature

outlier ratio outlier ratio outlier ratio

F
1

F
1

F
1

Figure 8. Comparisons on (a) ImageNet-16 with deep learning features, (b) Caltech-101 with deep learning features and (c) Caltech-101

with LLC features. F1 scores are averaged over all concepts in one dataset.

dataset ImageNet-16 Caltech-101 Caltech-101

feature deep learning feature deep learning feature LLC feature

measure Precision Recall F1 Precision Recall F1 Precision Recall F1

UOCL 0.899 0.940 0.917 0.950 0.968 0.957 0.755 0.916 0.822

DRAE 0.927 0.940 0.933 0.970 0.981 0.973 0.790 0.931 0.865

Table 1. Comparisons between UOCL and DRAE when outlier ratio is 50% on each dataset. Scores are averaged over all concepts.

each concept, outliers are randomly sampled from all the

other concepts with a proportion from 10% to 70%.

• MNIST [13] contains 60,000 handwritten digits from 0

to 9. For each category of digit, we simulate outliers as

randomly sampled images from other categories.

• Google-30 [14] has 30 concepts (about 500 images per

concept) of images crawled from search engines. Out-

liers in this set are real images that are irrelevant to a

corresponding textual query.

In most of our experiments, images are represented by

features extracted from a seven-layer CNN [12], which is

pre-trained on ImageNet. We use the 2048-dimensional

outputs of the first fully-connected layer as image features.

On Caltech-101, we also extract locality-constrained linear

codes (LLC) [24] for the comparison with existing methods.

On MNIST, we directly use raw pixels as inputs.

5.2. Methods to be compared

Since our method is to learn discriminative reconstruc-

tions in an autoencoder, we call our method DRAE. We

compare the following methods with it:

• Autoencoder (AE). This is our baseline method as in-

troduced in Sec. 3. Notably, with linear neurons and

squared loss, an autoencoder learns the same subspace

as PCA [2]. So we omit the comparisons with using PCA

to learn reconstructions.

• Unsupervised one-class learning (UOCL) [14]. We re-

produce the results of UOCL by strictly following the

details (e.g., using Gaussian kernels and the number of

neighbors) in [14].

• One-class svm (OCSVM) [21]. We use the implemen-

tation of LibSVM [4]. In this method, the amount of

identified outliers is proportional to a parameter v. Since

the outlier ratio is unknown before training, we just set v

based on ground-truth.

• Seed-based SVM [25]. We directly compare the results

reported in [25].

• Local outlier factor (LOF) [3]. In this method, we set

the neighbor number as 10% of the dataset size and use

groundtruth outlier ratio to determine outliers as those

with highest outlier factors.

5.3. Results on ImageNet-16/Caltech-101/Google-30

On these datasets, images are represented by deep learn-

ing features. The architecture of autoencoder has one hid-

den layer with 32 linear neurons, and the batch size is 100

in AE and DRAE. F1 score is used for evaluating accuracy.

Comparisons on ImageNet-16 and Caltech-101 are shown

in Fig. 8, from which we have the following observations.

• Comparing AE with LOF and OCSVM, we can see even

a naive version of autoencoder outperforms LOF and

1517

0.5

0.6

0.7

0.8

0.9

1.0
F

1
UOCL DRAE

Figure 9. Comparisons on each concept in Google-30 dataset

OCSVM. Note that the outlier ratio is even pre-given for

these two methods. This indicates utilizing reconstruc-

tion error for unsupervised outlier removal is vaild.

• DRAE significantly outperforms AE for all outlier ratios

on both datasets. This validates our idea of learning more

discriminative reconstructions.

• DRAE also outperforms the state-of-the-art UOCL

method, especially at high outlier ratios.

• Even though the outlier ratio is as large as 70%, DRAE

still achieves a high F1 score (0.865), showing its robust-

ness for outlier ratios.

On Caltech-101, we also use LLC features for a fair com-

parison with UOCL. From Fig. 8 (c), the performance of

UOCL in our implementation is very close to that reported

in [14]. The minor difference may come from different

codebooks and parameters in extracting LLC features, and

different mixtures of outliers.

We further report the average precision and recall val-

ues of DRAE and its best competitor UOCL in Table. 1, on

datasets with 50% outliers. It can be seen DRAE outper-

forms UOCL in various measures.

Fig. 9 shows the result on Google-30 dataset. DRAE out-

performs UOCL on 23 concepts out of the total 30 concepts,

and the average F1 scores of the two methods are 0.849 and

0.826, respectively.

5.4. Results on MNIST

For the raw pixel inputs of MNIST, we use four hidden

layers (784-1000-500-250-30) and sigmoid neurons [9] in

the autoencoder. The performance is shown in Fig. 10 (a),

where DRAE still achieves the best performance.

Note that UOCL performs poor on the raw pixel input.

We argue that this is because the non-linearity in UOCL

solely relies on the applied kernel functions. In contrast, the

non-linearity in DRAE is introduced by the powerful neu-

ral network. To verify this, we train an autoencoder with

the same architecture as before using the whole training set

of MNIST, and use the outputs of the fourth hidden layer

(30-dimensional) as image features. Fig. 10 (b) shows the

0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1

DRAE

UOCL

LOF

OCSVM

(b) MNIST

feature learned by auto-encoder

0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1

DRAE

UOCL

LOF

OCSVM

(a) MNIST

raw pixel representation

outlier ratio outlier ratio

F
1

F
1

Figure 10. Comparisons on MNIST dataset when (a) images are

represented by raw pixels and (b) images are represented by out-

puts of the fourth hidden layer in a pre-trained autoencoder.

new result.7 Here, DRAE has one linear hidden layer, while

OCSVM and UOCL adopt Gaussian kernels. As can be ex-

pected, the gaps between UOCL/OCSVM and DRAE be-

come smaller due to the using of better non-linear features.

This demonstrates that the autoencoder can simultaneously

play two roles: feature learning and reconstruction.

6. Conclusion

In this paper, we focus on the problem of automatically

removing outliers from noisy data. We present that an au-

toencoder itself is a simple yet effective tool for the unsu-

pervised outlier removal task. Moreover, we further make

this tool more powerful by learning more discriminative re-

constructions. Our method, which is robust to outlier ratios,

flexible to design, and efficient to learn, would benefit con-

structing large scale datasets in the further.

7In Fig. 10 (b), the F1 of UOCL at 10% outlier ratio is lower than it is

at 40% outlier ratio. This is because in UOCL, the soft labeling balances

the amount of identified positives and outliers, but in turn this can be a

disadvantage when groundtruth labels are not balanced. This disadvantage

could be remedied by its manifold regularization, but not the case here.

1518

References

[1] Y. Bengio. Learning deep architectures for ai. Foundations

and trends in Machine Learning, 2009. 2

[2] H. Bourlard and Y. Kamp. Auto-association by multilayer

perceptrons and singular value decomposition. Biological

cybernetics, 59(4-5):291–294, 1988. 1, 7

[3] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof:

identifying density-based local outliers. In International

Conference on Management of Data, 2000. 1, 2, 7

[4] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support

vector machines. ACM Transactions on Intelligent Systems

and Technology, 2011. 7

[5] X. Chen, A. Shrivastava, and A. Gupta. Neil: Extracting

visual knowledge from web data. In ICCV, 2013. 1

[6] E. Eskin. Anomaly detection over noisy data using learned

probability distributions. In ICML, 2000. 1, 2

[7] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo.

A geometric framework for unsupervised anomaly detec-

tion. In Applications of data mining in computer security.

Springer, 2002. 1, 2

[8] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative

visual models from few training examples: An incremental

bayesian approach tested on 101 object categories. In CVPR,

2004. 6

[9] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimen-

sionality of data with neural networks. Science, 2006. 6,

8

[10] N. Japkowicz, C. Myers, M. Gluck, et al. A novelty detection

approach to classification. In International Joint Conference

on Artificial Intelligence, 1995. 1, 2

[11] J. Kim and C. D. Scott. Robust kernel density estimation.

The Journal of Machine Learning Research, 2012. 1, 2

[12] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet clas-

sification with deep convolutional neural networks. In NIPS,

2012. 3, 7

[13] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. In Proceed-

ings of the IEEE, 1998. 7

[14] W. Liu, G. Hua, and J. R. Smith. Unsupervised one-class

learning for automatic outlier removal. In CVPR, 2014. 1, 2,

6, 7, 8

[15] J. B. MacQueen. Some methods for classification and analy-

sis of multivariate observations. In Proceedings of 5th Berke-

ley Symposium on Mathematical Statistics and Probability,

pages 281–297. University of California Press, 1967. 4

[16] L. Manevitz and M. Yousef. One-class document classifica-

tion via neural networks. Neurocomputing, 2007. 1, 2

[17] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algo-

rithms for mining outliers from large data sets. In ACM SIG-

MOD Record, 2000. 1, 2

[18] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning

representations by back-propagating errors. Cognitive mod-

eling, 1988. 1

[19] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge.

arXiv:1409.0575, 2014. 3, 6

[20] M. Sakurada and T. Yairi. Anomaly detection using autoen-

coders with nonlinear dimensionality reduction. In Proceed-

ings of the MLSDA 2014 2nd Workshop on Machine Learn-

ing for Sensory Data Analysis, page 4. ACM, 2014. 1, 2

[21] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola,

and R. C. Williamson. Estimating the support of a high-

dimensional distribution. Neural computation, 2001. 2, 7

[22] F. Schroff, A. Criminisi, and A. Zisserman. Harvesting im-

age databases from the web. TPAMI, 2011. 1

[23] M.-L. Shyu, S.-C. Chen, and K. Sarinnapakorn. A novel

anomaly detection scheme based on principal component

classifier. IEEE Foundations and New Directions of Data

Mining Workshop, 2003. 1, 2

[24] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong.

Locality-constrained linear coding for image classification.

In CVPR, pages 3360–3367, 2010. 7

[25] Y. Xia, X. Cao, F. Wen, and J. Sun. Well begun is half done:

generating high-quality seeds for automatic image dataset

construction from web. In ECCV, 2014. 1, 6, 7

[26] H. Xu, C. Caramanis, and S. Mannor. Outlier-robust pca: the

high-dimensional case. Information Theory, IEEE Transac-

tions on, 2013. 1, 2

[27] K. Yamanishi, J.-I. Takeuchi, G. J. Williams, and P. Milne.

On-line unsupervised outlier detection using finite mixtures

with discounting learning algorithms. In Knowledge Discov-

ery and Data Mining, 2000. 1, 2

1519

